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Systemic lupus erythematosus (SLE) is a chronic complex systemic autoimmune disease
characterized by multiple autoantibodies and clinical manifestations, with the potential to
affect nearly every organ. SLE treatments, including corticosteroids and
immunosuppressive drugs, have greatly increased survival rates, but there is no
curative therapy and SLE management is limited by drug complications and toxicities.
There is an obvious clinical need for safe, effective SLE treatments. A promising treatment
avenue is to restore immunological tolerance to reduce inflammatory clinical
manifestations of SLE. Indeed, recent clinical trials of low-dose IL-2 supplementation in
SLE patients showed that in vivo expansion of regulatory T cells (Treg cells) is associated
with dramatic but transient improvement in SLE disease markers and clinical
manifestations. However, the Treg cells that expanded were short-lived and unstable.
Alternatively, antigen-specific tolerance (ASIT) approaches that establish long-lived
immunological tolerance could be deployed in the context of SLE. In this review, we
discuss the potential benefits and challenges of nanoparticle ASIT approaches to induce
prolonged immunological tolerance in SLE.
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INTRODUCTION

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune inflammatory disease that affects
multiple organ systems. Clinical symptoms are heterogenous and range from mild to life
threatening. SLE has a significant disease burden worldwide. Mortality in SLE has decreased
significantly in the past 50 years (1), attributed to the use of immunosuppressive drugs, better
supportive treatments and earlier diagnosis. Acute SLE-related mortality is usually due to
uncontrolled inflammation and acute renal failure, while late mortality is linked to
cardiovascular complications (2). Since the 1990’s late-phase clinical trials from more than 40
agents have failed in SLE. However, improvement in outcome measures, the efficacy of B cell
activating factor (BAFF) and type 1 interferon (IFN) receptor 1 inhibition, and the promise of
tolerance restoration, through drugs such as low-dose (LD) IL-2, underpin new optimism for future
drug development (3–5). Tolerizing immunotherapies have the potential to revolutionize the
treatment of autoimmune diseases by directly impacting adaptive immunity and restricting
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autoinflammatory responses by inducing peripheral
immunological tolerance, either by expanding pre‐existing
regulatory T cells (Treg) or by reprogramming autoreactive
CD4+ T cells into Treg. While not extensively trialed in SLE
yet, promising data in other autoimmune diseases provide
learnings that may be applicable in SLE and patients at high-
risk. In this review we examine the potential for antigen-specific
immunotherapy to restore tolerance in lupus autoimmunity and
discuss the advantages and challenges of immunotherapies and
tolerizing approaches in SLE.
CLINICAL AND ETIOLOGICAL
CONSIDERATIONS

SLE is 43.9% heritable, and the relative risk for siblings is 23.7.
Shared environmental factors - such as infections - account for
25.8% of risk: the relative risk for spouses is 4.4 (6). Although the
pathogenesis of SLE is not fully understood, the key elements are:
dysregulated immune tolerance towards autologous nucleic
acids with concurrent production of autoantibodies and
autoreactive T-cells, disrupted clearance of apoptotic debris
with increased self-antigen load and presentation to T cells,
and interferon-driven inflammatory responses (7). Tissue
damage – to skin, respiratory, renal, cardiovascular, central
nervous and musculoskeletal systems – results from pathogenic
autoantibodies, immune complex deposition and inflammation.
SLE-associated environmental stressors, including UV light and
infections may increase apoptotic load. With inadequate
clearance, Toll Like Receptors (TLRs) recognize cellular debris
(through damage associated molecular patterns, DAMPs) and
initiate the inflammatory cascade, with pro inflammatory
cytokine and type 1 interferon (IFN) production (8, 9).
Presentation of nuclear self-antigens, such as dsDNA, chromatin,
and RNA-containing antigens, to T and B cells induces the
production of nuclear antigen-specific autoantibodies and
autoreactive T-cells. There are multiple autoantibodies in SLE,
including those directed towards nuclear antigen (ANA),
double-stranded DNA (dsDNA), Smith (Sm), Ro, La,
antiphospholipid (APL), and ribonucleoproteins (RNP) (10).
Multiple lines of enquiry demonstrate loss of T and B cell
tolerance in lupus. For example, the study of rare genetic
variants associated with familial aggregation of lupus with other
rheumatic autoimmune diseases identified regulation of T cell
activation and T cell receptor (TCR) signaling as key underlying
pathways (11). Furthermore, single cell transcriptomic analysis of
peripheral blood (PB) identified antigen presenting cell, B cell and
T cell dysregulation (12).
OPPORTUNITIES FOR INTERVENTION
WITH TOLERIZING APPROACHES

SLE is classified (EULAR/ACR 2019 criteria) by the presence of
ANA >1:80 and weighted scores for clinical and serological
Frontiers in Immunology | www.frontiersin.org 2
parameters (13). Some ANA+ individuals with very early
disease or disease in evolution may fall below classification
threshold. They may progress, to be re-classified as SLE, or
may follow a milder and more stable clinical course. By the time
of diagnosis, the majority of patients that meet SLE criteria will
have some type of irreversible organ damage with clinical
complications. The lupus disease course is characterized by
flares and ongoing organ damage (14). Therapeutic
intervention to a target of low disease activity (LLDAS) or
clinical and serological remission reduces lupus-associated
flares and organ damage, even when only achieved transiently
(15). Typically, phase 3 trials of novel agents in SLE have
struggled with small effect sizes due to disease heterogeneity,
trial design issues, use of concomitant immunosuppression and
endpoint validation (15). Instigation of trials in early disease and
high-risk subjects not yet classified as SLE may improve the
capacity to discriminate responses in patients with minimal
organ damage. In a landmark phase 2 trial, a short course of T
cell tolerizing immunotherapy Teplizumab, halved the
progression of high-risk individuals to type 1 diabetes (16),
while it had failed to meet its primary end-point in a phase 3
trial in recent-onset diabetes (17). Thus, T cell immunotherapy
in people at risk (18) may be more effective before substantial
organ damage.

SLE is associated with more autoantibodies than any other
autoimmune disorder (19). Even before the development of
disease pathology and symptoms, the pre-clinical phase is
characterized by increased levels of autoantibodies, followed by
a shift to multiple pathogenic autoantibodies associated with
kidney, joint, heart, brain, skin and hematopoietic damage,
including ANA, anti-dsDNA, anti-Sm, anti RNP, anti-APL,
anti-Ro and anti-La (10). In general, anti-Ro, anti-La, and APL
appear several years before the diagnosis of SLE, even in
otherwise healthy individuals (20). In contrast, anti-dsDNA,
anti-Sm, and anti–nuclear RNP antibodies usually appear only
months before the clinical manifestations of SLE and are rarely
present in healthy individuals (21, 22). In a retrospective study of
130 military personnel, use of hydroxychloroquine prior to SLE
diagnosis delayed the onset of classified SLE and reduced the
number of autoantibody specificities at and after diagnosis (23).
At least 80% of individuals in this group met at least one SLE
criterion prior to diagnosis. These results support a case for
earlier therapeutic intervention with treatments of low toxicity
before SLE classification and stratification of patients based on
likelihood to respond. For example, current smoking was
associated with elevated BAFF and reduced IL-10, particularly
in ANA+ women (24). T cell expansion and type 1 IFN
signatures were associated with a diagnosis of SLE in ANA+
individuals (25). Longitudinal cohort studies mapping the
progression of SLE in auto-antibody positive healthy at-risk
subjects will help identify early biomarkers of progression from
autoantibodies to SLE, such as markers of functional loss of
immune tolerance (26). Furthermore certain immune
phenotypes might also be useful response biomarkers in
mechanistic trials of immune tolerizing immunotherapies in
individuals at high risk or with early disease.
July 2021 | Volume 12 | Article 654701
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Alternatively tolerizing approaches could be used to increase
the likelihood that immunosuppressive drugs can be safely
withdrawn without flare. In the BOLD clinical trial, standard
immunosuppressive drugs were withdrawn and steroids
substituted until flare, followed by reinstatement of standard
therapy. During each phase cytokines and gene expression were
analyzed to assess drug mechanism of action relative to baseline
type 1 IFN transcriptomic signature. The authors identified that
IL-17, IL-23 and BLyS pathways were changing with disease state
and that IFN signature influenced the response of these pathways
to individual drugs (27). This study provides an interesting
proof-of-concept for a mechanistic trial of agents, such as
tolerizing therapies, that could be introduced to reduce flare
upon drug withdrawal. Although no cellular markers were
included in this study, it demonstrates the utility of baseline
IFN signature to stratify immune biomarker response outcomes.
Future trials might also include Treg or T cell proliferation
biomarkers. In this regard, a PB single cell transcriptomic
resource shows co-clustering of a Treg T cell signature with
dendritic cells (DC) lacking IFN-stimulated genes in lupus
patients and healthy donors (12).

Mechanisms of Immune Tolerance
Immunological tolerance is a vital aspect of a healthy immune
system as it allows for appropriate immune responses to
infectious and tumor antigens while containing potentially
damaging immune responses to self-antigen and healthy tissue.
Reviews of B and T cell antigen recognition and maturation can
be found here (28, 29). During development, highly self-reactive
T cells in the thymus are controlled by deletion (negative
selection) of T cells with the highest affinity TCR for self-
peptides, and by differentiation into CD4+ CD25+ FOXP3+
Treg cells (for non-deleted autoreactive CD4+ T cells), known
as central tolerance. As negative selection depends on a TCR
affinity threshold, weakly autoreactive T cells circulate in the
periphery (30). Peripheral T cell tolerance mechanisms control
autoreactive T cells through anergy (chronic antigen exposure
deactivating T cell function), deletion, and regulation by Treg
(derived from thymus or generated in the periphery). Antigen-
specific Treg cells can suppress activation, proliferation and
cytokine production of CD4+ T cells and CD8+ T cells through
interaction with APCs, including B cells and dendritic cells (DCs),
presenting cognate antigen. Functional antigen-specific
peripheral Treg are key to restoration of immunological
tolerance with immunotherapy as they can be induced from
diverse T cell precursors, and their autoantigen specificity
avoids generalized immune suppression (31).

Peripherally derived Treg cells, including IL-10+ type 1
regulatory T (Tr1) cel ls , are promising targets for
immunotherapy to counteract established autoimmune
diseases. Tr1 cells are induced in the periphery, predominantly
from memory CD4 T cells, and are thus an important potential
target for antigen-specific tolerance approaches (32–34). They
are characterized by expression of IL-10, IFN-g and TGF-b, lack
of FOXP3 expression, expression of surface markers LAG3 and
CD49b, and transcription factors EOMES and Tbet (35–37).
With ongoing signaling by tolerogenic APCs presenting cognate
Frontiers in Immunology | www.frontiersin.org 3
peptide. Tr1 cells are long-lived, and associated with prolonged
tolerance in multiple human autoimmune conditions (38–41).

DCs comprise a heterogeneous group of phagocytic APCs
that sample soluble or apoptotic antigen at skin and mucosal
surfaces, and process and present antigenic peptides to T cells in
draining lymph nodes in context of MHC molecules. During an
inflammatory episode, e.g. driven by infection, adjuvants, or
damage, pathogen- or damage-associated molecular patterns
(PAMPs, DAMPs) trigger the activation of the NF-kB pathway
in DCs, enhancing their capacity to stimulate naïve T cells (42).
DCs presenting antigens in the presence of regulatory signals
that inhibit NF-kB, such as TGF-b or immunomodulatory drugs,
skew antigen-specific T-cells towards regulation (43).

DC subsets developing from hematopoietic progenitors in
bone marrow include plasmacytoid DC (pDCs), myeloid/
conventional DC1 (cDC1) and myeloid/conventional DC2
(cDC2), based on surface markers and immune functions (44,
45). cDC1 and moDCs can cross-present antigens derived from
tissues – including viral, tumor and self-antigens – to CD8 and
CD4 T cells in context of MHC I and II (46, 47). cDC2 are potent
activators of naïve T cells and induce CD4+ Th1, Th2, and Th17
responses (48, 49). pDCs produce high levels of type 1 IFN in
response to nucleic acids via TLR7 and TLR9 signaling (50, 51).
In SLE, pDCs produce high levels of type 1 IFN in response to
nucleic acid and nuclear antigen (52). DCs are potential targets
for immunotherapies to restore the dysregulated SLE immune
system. For example, crosstalk between Treg cells and DCs
through cell and cytokine signaling, controls DC activation
and effector T cell activation. The signaling pathways for DC
development and activation are crucial when considering drug
cargo in the development of novel therapies in lupus.

Pathogenesis of SLE
A basic understanding of the pathogenesis of SLE underpins a
discussion on the development and effectiveness of novel
immunotherapeutic agents. Here we highlight a few important
factors that point to the underlying causes of SLE and that could
be targeted in a therapeutic approach. For further reading please
refer to the following reviews (53, 54).

SLE has been extensively studied using mouse models, which
has helped illuminate pathogenesis. Some mouse models are
genetically predisposed to the development of a lupus-like
disease. Alternatively, a lupus-like disease may be induced in
previously healthy mice. However, although spontaneous SLE
models have been used to test potential therapeutics, successes in
mouse models have not translated well in human trials. The
NZB/NZWF1 (BW) mice and related strains develop
spontaneous immune complex-mediated glomerulonephritis
and mild vasculitis, with autoantibodies (anti-nuclear
antibodies (ANA) and anti-dsDNA predominantly) (55). The
MRL/lprmouse is a unique spontaneous lupus mouse model that
produces a variety of autoantibodies (ANA, anti-dsDNA, anti-
Sm, anti-Ro and anti-La) and develops arthritis, cerebritis,
dermatitis, vasculitis, and glomerulonephritis (56, 57). In
induced mouse models of SLE, exogenous irritants or antigens
are administered to replicate an environmental trigger (58, 59).
Knock-out and knock-in mice backcrossed to lupus-susceptible
July 2021 | Volume 12 | Article 654701

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Robinson and Thomas Antigen-Specific Tolerance in Lupus
backgrounds has expanded understanding of signaling cascades
crucial for the development of SLE (60). Few antigens have been
described in lupus mouse models, hampering the testing of
antigen-specific approaches for lupus in general. However,
antigen non-specific tolerizing approaches have been
demonstrated to improve SLE disease manifestations in mouse
models (61).

Hormones, smoking, ultraviolet light, and viral/bacterial
infections are classic examples of exposures triggering SLE (62,
63). Estrogen and prolactin have been shown to drive immune
responses underpin in part preponderance of women with
SLE (64). Viral infection such as Epstein-Barr virus and
cytomegalovirus have been suspected to play a triggering role
in SLE pathogenesis whereas some pathogens have been linked to
a protective role in SLE (65–67). Circulating levels of
lipopolysaccharides have been shown to be elevated in SLE
patients and to be correlated with disease severity, presumably
through cytokine production (68, 69). Recently, alterations in gut
microbiome have been linked to SLE disease status (70–72).
This review will not thoroughly cover these environmental
factors of but we note that they are important considerations
when developing therapeutic trials for potential interventions.

Apoptotic Clearance, TLRs, Nucleic Acid Sensors
and Cytokines
Abnormal apoptotic clearance can trigger TLRs and nucleic acid
sensors on immune and non-immune cells and produce an
immune response with cytokine production (7). Rare
hereditary genetic mutations e.g. in DNASE1L3 and PRKCD
that lead to abnormal apoptotic pathways provide crucial insight
into the role of apoptotic breakdown and debris clearance in SLE
(73, 74). DNase I activity degrades chromatin in the apoptotic
process and mice with a mutation in this enzyme had increased
levels of anti-DNA antibody production (75). Smoking induces
cellular damage and promotes cytokine production, and UV light
enhances apoptotic turnover, and thus may increase self-antigen
burden in susceptible individuals (76, 77)

Nucleic acid sensors are important surveyors of the
environment and are specifically able to recognize viral
infections and induce type I IFN production. Toll-Like
receptors 3, 7, 8, and 9 shape the immune response by sensing
cellular debris (78). In a pristane-induced lupus mouse model,
TLR7, which senses single stranded RNA, was required for RNA-
reactive autoantibodies (8). TLR9 senses unmethylated CpG
sequence motifs. SLE patients with active disease have higher
level of TLR9+ B cells and monocytes than healthy controls, and
TLR9 levels correlated with antibodies to dsDNA (79, 80).

Type I and Type II IFN contribute a large role to the
pathogenesis of SLE and become elevated prior to development
of autoantibodies (81). Rare single gene disorders, grouped
together as Aicardi-Goutiere’s syndrome, display gene
defects that cause an overproduction of type I IFN (82).
These patients display similar phenotypes to classic SLE,
including autoantibodies.

There is a marked imbalance of T cell cytokines in SLE, with
low levels of IL-2 accompanied by elevated IL-17 and IL-6 (83).
Frontiers in Immunology | www.frontiersin.org 4
IL-2 is a key cytokine in Treg development, survival and
maintenance. It restricts Th17 cell development (84, 85).
Elevated levels of IL-17 are thought to induce tissue
inflammation and recruitment of immune cells. B cell
activating factor (BAFF or BLyS), expressed by stromal and
immune cells, promotes B cell activation in SLE and its levels
positively correlate with antibody levels (86, 87).

Loss of Immune Tolerance
The process of autoimmune disease development can be roughly
categorized into three stages: 1) a priming phase that includes an
inciting event or accumulation of events in individuals at genetic
and environmental risk; 2) the onset of clinical symptoms
marked by organ-specific inflammation; and 3) a chronic
inflammatory tissue-destructive phase (88). During the
transition to clinically significant symptoms, regulatory
processes, including Treg cells, fail to control pathological
autoreactive B and T cells. This imbalance perpetuates the
processes of bystander activation, epitope spreading and
uncontrolled cytokine and antibody production. Epitope
spreading involves the diversification of epitope specificity
from the initial dominant epitope-specific immune response
(89). The specificity of the autoimmune response spreads to
include additional self-epitopes besides the initiating self-
antigens. Chronic inflammation promotes tissue damage and
cascading self-antigen presentation, expanding autoreactive T-
cell specificities, including cryptic or sequestered epitopes (90).
For example, late-stage SLE is characterized by an explosion of
autoantibodies, apparently the result of chronic inflammation
and epitope spreading (19). Bystander activation occurs with
stress, infection or trauma-induced activation of tissue APCs,
activating T cells of additional specificities, which further
promote inflammation and tissue damage. Bystander T cells
can provide help to B cells for autoantibody production, or to
cross-presenting DCs presenting tissue-derived self-antigen (91).
Treg cells may control bystander T cells and epitope spreading
through interaction with cross-presenting DCs. In a rheumatoid
arthritis mouse model Treg cell depletion promoted the
expansion of pathogenic autoreactive T cells, an increase in
inflammatory cytokines, and B‐cell epitope spreading (92).

SLE is marked by abnormal B and T cell interactions and
spontaneous germinal centers in secondary lymphoid organs
(93–95). In SLE there is loss of functional Treg and induction
of effector T cells that produce proinflammatory cytokines and
BAFF, which is not normally observed in healthy people (96, 97)
(98). Multiple lines of evidence demonstrate the importance of
Treg in lupus pre-clinical models. In the NZB/NZWF1
spontaneous model, Treg cell adoptive transfer delayed SLE
progression, reduced renal pathology, and improved survival
(61), while Treg depletion accelerated disease development (99).
In human SLE, most but not all studies demonstrate a reduced
frequency of Treg cells (100, 101). Targeted depletion of pDCs
decreased SLE-associated glomerulonephritis in mice (102, 103).
In human SLE, while pDC are decreased in the blood, they are
increased in lupus-affected organs, suggesting their chemo-
attraction and possible expansion at these sites (104–106).
July 2021 | Volume 12 | Article 654701
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IMMUNOLOGICAL TOLERANCE
THERAPEUTICS IN SLE

Current Tolerizing Strategies for SLE
There are multiple potential targeted immunotherapies
undergoing research and development and early phase clinical
trials for SLE (107, 108). Most techniques exploit antigen‐
presentation pathways of APCs or attempt to deliver antigenic
cargos to locations thought to be involved in regulatory T‐cell
formation (109). Other strategies target antigen‐specific T‐cells
to re‐program pathogenic autoreactivity into disease‐suppressing
autoregulation (110, 111). Table 1 outlines some promising
therapeutic directions aiming to enhance immune tolerance by
targeting DCs and Treg cells.

Expanded Treg Cell Transfer
Several groups have developed methods to expand Treg cells ex
vivo for reintroduction as an autologous cell therapy product.
Treg cells can be isolated from peripheral blood or umbilical cord
blood, but must be expanded due to their low frequency. In vitro
expansion strategies include anti-CD3/CD28-coated beads, with
addition of IL-2 and/or TGF-b and rapamycin (121). Proof of
concept experiments in lupus-prone mice showed that ex vivo-
expanded Treg cells suppressed glomerulonephritis and
prolonged survival (61, 122). Ex vivo-expansion of Treg cells in
the presence of immunosuppressive drugs or Treg transfer into
patients on immunosuppressants can be challenging, as the
drugs may hinder expansion or change function (112).
Furthermore, the process requires a good manufacturing
practice (GMP) environment, which is challenging and
expensive. A clinical trial using ex vivo-expanded autologous
polyclonal Treg cells in patients with autoimmune disease was
terminated in November 2019 due to screen failures and low
enrolment. In a case report, the treatment was shown to be safe
and clinical disease activity to be stable in a single SLE patient.
Infused labeled Treg cells were transiently observed in PB then in
diseased SLE skin, accompanied by skewing from Th1 to Th17
immunity locally (123). Treg are highly plastic and may
differentiate to Th17 in inflammatory settings and where IL-2
is limiting (124). Larger studies are needed to understand the
impact of Treg therapy on disease severity.

HSCT/MSCT
Hematopoietic and/or mesenchymal stem cell transfer (HSCT
and MSCT, respectively) have been trialed in patients with severe
autoimmune diseases, including SLE, who have failed standard
therapy. In SLE patients, HSCT has successfully induced long-
Frontiers in Immunology | www.frontiersin.org 5
term remission (125). In 15 patients with severe SLE evaluated
up to 8 years after HSCT, CD4+CD25highFoxp3+ Treg and
LAPhighTGF-b+CD8+Foxp3+ cells were restored to levels and
function similar to healthy subjects (117). These promising
results suggest that HSCT may reestablish immune tolerance
by replenishing multiple types of Treg cells. However, as HSCT is
associated with significant risks, treatment complications and
cost, it is currently reserved for treatment-refractory patients. A
4-year follow-up of an open-label trial of MSCT in 87 treatment-
refractory SLE patients found a 28% remission rate post-infusion
(118). While double-blind placebo-controlled trials are needed to
understand the true benefits of MSCT, these trials provide
evidence that tolerance may be successfully re-established in SLE.

Low-Dose IL-2
IL-2 levels and CD25 expression by Treg are reduced in SLE
patients and murine lupus models (126–128). IL-2 plays a
pleiomorphic role in the immune system. One of its functions
is to expand and promote survival of Treg cells (129, 130).
Reduced IL-2 favors the differentiation of IFN-g-producing Th1
and IL-17 producing Th17 cells and their accumulation in skin
and kidneys (131, 132), and is associated with inflammation. In
lupus-prone mice, IL-2 treatment increased levels of Treg cells in
lymphoid and peripheral organs and protected them from SLE-
related organ damage (99, 133). There have been several trials in
lupus showing safety and Treg expansion (128, 134). In a recent
double-blind placebo-controlled clinical trial in patients with
suboptimally controlled SLE, LD IL-2 for 12 weeks (s.c. alternate
days for three 2-week cycles), the SLE Responder Index (SRI)-4
response rates at week 12 were 55.17% and 30.00% in LD IL-2
and placebo groups respectively (p=0.052). Although the
primary end point was not met, the significantly greater lupus
nephritis complete remission rate in the LD IL-2 arm was
notable. Immunologically, IL-2 supplementation significantly
increased Tregs and NK cells but did not change total CD4+
or CD8+ T cells and there was no increase in viral load of pre-
existing viruses (3). While promising, LD IL-2 dosing may be
complicated by concomitant expansion of regulatory and
cytotoxic cells. Furthermore, development of neutralizing
autoantibodies with continued treatment is a potential risk
(135). Targeted IL-2 therapies may allow more precise
manipulation of the immune response and longer duration of
action. For example, anti-CD4 and anti-CD2-coated poly(lactic-
co-glycolic) acid (PLGA) nanoparticles loaded with IL-2 and
TGFb expanded Treg cells in vitro and in vivo in the BDF1 lupus
pre-clinical model (136). In a recent phase 1b clinical trial of a
polyethylene glycol (PEG) conjugate of IL-2 (NKTR-358) in
TABLE 1 | Treg and DC based Therapies without Autoantigen.

Therapy Mechanism Clinical trial for SLE References

Adoptive Treg cell or DC transfer Non antigen-specific increase Treg cells,
Antigen-specific tolerogenic DC immunotherapy to induce Treg cells

Yes for Tregs, No for DCs (112–116)

HSCT/MSCT Non antigen-specific immune tolerance Yes (117, 118)
Low-dose IL-2 Non antigen-specific increased survival, proliferation and/or function of Treg cells Yes (3)
Targeted DC immunotherapy Induce tolerance through tolerogenic antigen delivery to DCs No (119, 120)
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patients with mild to moderate SLE, dose-dependent increases in
Tregs (up to 11 fold) were observed, which returned to baseline
20-30 days post-dose (137). Anti-IL-2 antibodies were
not reported.

Tolerogenic DCs
DCs play a critical role in maintaining self-tolerance. Indeed,
targeting steady-state skin migratory DC with antigen coupled to
DC-selective antibodies induced antigen-specific tolerance (138).
Tolerogenic DCs can also be generated in vitro from monocytes
or murine bone marrow precursors in the presence of NF-kB
inhibitors 1,25 (OH)2 vitamin D3 (calcitriol), rapamycin or
glucocorticoids. After proof-of-concept studies in experimental
animal models (139, 140), several groups translated antigen-
specific immunotherapy using modified or tolerogenic
autologous DCs and autoantigenic peptides to clinical trials for
MS (113) and RA (114, 115). These trials demonstrate the
feasibility and safety of this approach, with preliminary
evidence of an immunomodulatory effect in RA. In two pre-
clinical lupus models, histone antigen-loaded tolerogenic DCs
improved clinical scores, increased Treg in affected skin and
reduced anti-histone autoantibodies (141). Tolerogenic DCs
exposed to apoptotic cells were generated from PB monocytes
derived from lupus patients (142). Other approaches have been
developed to target DCs directly in situ, including a PLGA
nanogel to deliver the immunomodulator mycophenolic acid
(MPA) to DCs (119, 120). DCs took up the PLGA-lipid-MPA
nanogel more efficiently and with better DC suppression than a
PLGA nanogel. In a murine lupus model, PLGA-MPA nanogel
increased median survival by 3 months when given
prophylactically and by 2 months when given to mice with
advanced renal damage. Consistent with the local effects of
MPA on DCs, treated mice had a substantial reduction in
DC-derived inflammatory cytokines such as IFN-g and IL-12.
Although not strictly immune tolerance, this approach achieves
sustained delivery of MPA to induce a prolonged anti-
inflammatory effect.

Lupuzor
Lupuzor (rigerimod or IPP-201101) is a 21aa peptide
representing residues 131–151 of the 70K spliceosomal protein
within the U1 small nuclear RNP, phosphorylated at Ser140.
This promiscuous peptide sequence was identified using ex vivo
peptide screening techniques (143). This epitope is recognized by
IgG antibodies and CD4+ T cells from H‐2k MRL/lpr and H‐2d/z

(NZB × NZW)F1 lupus‐prone mice (143, 144). With i.v. delivery,
the peptide inhibits chaperone-mediated autophagy and reduces
B cell MHC class II expression (145). Two trials of IPP-201101
immunotherapy in SLE demonstrated safety and potential
efficacy (146, 147). However, IPP-201101 failed to meet its
primary end point of superiority over standard care in phase
III clinical trials (148). The peptide seemed to have non antigen-
specific immunomodulatory properties, rather than inducing
antigen-specific regulation, and this may be why it was not
superior to standard care. Standard of care high dose
glucocorticoids and immunosuppressive drugs are likely more
bioavailable than an immunosuppressive peptide.
Frontiers in Immunology | www.frontiersin.org 6
These treatment strategies are antigen non-specific and use
nanoparticles (NP) to deliver biologics or immunosuppressive
drugs. In the following sections we consider antigen-specific
tolerizing approaches using NP in SLE.

Potential Antigen-Specific Tolerizing
Platforms for SLE
Antigen-specific therapies for autoimmune diseases involve the
delivery of autoantigen in a regulatory context, with or without a
delivery vehicle that reprograms APCs by modulating NF-kB, or
by antigen delivery to a naturally tolerogenic site e.g. by targeting
steady-state skin-draining APCs or the liver tolerogenic
environment. Some approaches may directly differentiate Tr1
cells from memory T cells.

Peptide alone, delivered s.c., can be tolerogenic. For example,
an islet proinsulin epitope returned promising results in phase 1
trials in T1D (149). Peptides that associate with MHC class II
molecules expressed by APCs, without the need for antigen
processing, can directly target steady-state DC in vivo. Such
antigen processing independent epitopes (“apitopes”) selectively
bind steady-state DCs in vivo because steady-state DCs bear
peptide receptive/empty MHC II at the cell surface, which is lost
upon DC activation (150, 151). Apitopes induce tolerance
through induction of anergy and generation of Tr1 cells (152).
Tr1 cells selectively express a tolerance-associated set of genes
(153, 154). Phase 1 and 2 clinical trials of multiple low dose
apitope delivery have been undertaken in Graves’ disease and MS
respectively. While low-dose soluble antigen administered s.c. is
non-immunogenic, high dose peptide, aggregates or protein
complexes can induce an immune response through immune
complex formation, macrophage or DC activation and
development of autoantibodies.

NPs Delivering Antigens and Immunomodulators
Liposome formulations loaded with peptide or protein antigens
and various NF-kB inhibitors, including curcumin, quecertin and
BAY11-7082 induced antigen-specific tolerance in mice
with antigen-induced arthritis (155). We also developed and
undertook pre-clinical studies of liposomes co-encapsulating
calcitriol and peptide. Calcitriol/peptide liposomes promoted the
differentiation of antigen-specific Foxp3+ Treg, anergy of Tmem,
and IL-10 production upon restimulation with antigen ex vivo
(156). Notably, liposomes were preferentially taken up by activated
PD-L1+ migratory DCs, and regulation was PD-L1-dependent. We
translated this to a phase 1b clinical trial in RA. Other groups have
co-encapsulated antigens in NPs with either rapamycin (157) or
aryl hydrocarbon receptor (AhR) ligands (158) for in vivo uptake
by DC. With substitution of suitable lupus antigenic peptides, these
liposome or NP approaches could be adapted to lupus patients.

Nanoparticles Leveraging Natural
Tolerogenic Processes
Other research groups have developed NPs that resemble
apoptotic bodies, to promote a tolerogenic response to
encapsulated antigen. Specifically, i.v. administration of 500nm
PLGA particles encapsulating antigen induced antigen specific
tolerance (159, 160). These relatively large, negatively-charged
July 2021 | Volume 12 | Article 654701
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particles are preferentially taken up by DCs and macrophages
expressing MARCO, and induce antigen-specific suppression in
the absence of an immunomodulatory drug (161). Another
strategy to mimic signals from apoptotic bodies uses
phosphatidylserine (PS) liposomes. During apoptosis, the PS
phospholipid translocates from the inner leaflet to the outer
leaflet of the lipid bilayer of the dying cell. PS liposomes
suppressed pre-clinical models of T1D and acute EAE in a
non-antigen-specific manner (162, 163). It is unclear whether
this technique would succeed in SLE, which is characterized by
impaired clearance of apoptotic cells.

Peptide-MHC NPs
The TCR may also be directly targeted with NPs coated with
peptide loaded onto MHC class I or II, without co-stimulation.
After i.v. delivery of iron oxide nanoparticles coated with
peptide-MHC class I complexes (pMHC-I) they suppressed
autoreactive CD8+ memory T cells and converted them to a
regulatory, anergic phenotype (110). Nanoparticles coated with
pMHC-II differentiated cognate autoreactive CD4 memory T
cells into Tr1 cells producing IL-10 (111, 164). Nanoparticles
coated with pMHC-II suppressed autoimmune symptoms in
several pre-clinical models in an antigen-specific manner,
without compromising systemic immunity (111). To date, this
approach has not been translated to clinical trials.
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Thus, a wide array of nanoparticle technologies has been
developed. Figure 1 describes some of the technologies
incorporating autoantigens, immunomodulatory drugs, or
targeting strategies, or a combination of strategies. In
summary, approaches that promote the expansion of antigen-
specific Treg cells, particularly Tr1 cells derived from
autoreactive memory T cells, will be required to control
bystander cytokine production and epitope spreading in multi-
system autoimmune diseases, such as SLE.
AUTOANTIGENS IN SLE

Many autoantigens potentially contribute to the development of
SLE and it is unclear which antigen(s) should be targeted in
antigen-specific immunotherapy. Several promiscuous epitopes
have been described across mice and humans. Choosing an
antigen is challenging because there are many different pre-
clinical lupus models, the disease is highly heterogeneous in
humans, and translation of antigen discovery from mouse to
human is difficult. However, assays of T cell responses in organ-
dominant lupus “endotypes” may offer opportunities to identify
relevant skin, joint, renal, neurological and hematologic
antigenic epitopes that are suitable for clinical trials with
focused outcomes.
FIGURE 1 | Potential Nanoparticle Therapies in SLE. A representation of potential immunotherapies for SLE and a simplified schematic of their mechanisms of action. This
figure was created in BioRender.com.
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Despite these hurdles, antigen-specific immunotherapies with
a single strong autoantigen that also promote bystander tolerance
could leverage the expansion of antigen-specific Treg cells and the
suppression of cross-presenting DCs carrying relevant epitopes
from diseased tissue to draining lymph nodes. Bystander
tolerance has been demonstrated for several immunotherapies
in pre-clinical models, including apitopes, peptide/calcitriol
liposomes, and pMHC-NP, associated with the modulation of
immune responses other than the epitope included in the
immunotherapy (111, 165). For example, in a type 1 diabetes
mouse model, calcitriol liposomes encapsulating a single islet
CD4 epitope suppressed the disease and bystander islet-reactive
CD8+ cytotoxic T cells (166). The advantages of harnessing
bystander tolerance mediated by Treg cells, compared to
generalized immunosuppression, is that bystander suppression is
tissue-restricted, and Treg develop from autoreactive memory T
cells. However, suitable antigenic epitopes must be identified.

Haplotypes containing DR2/DQ6, and DR3/DQ2 alleles are
associated with SLE (167). DR2/DR3 heterozygosity is associated
with anti-Ro, anti-La, anti-Sm, anti-ribosomal-P or anti-
ribonuclear protein antibodies, while HLA-DR homozyosity is
associated with anti-Sm and anti-dsDNA (167). HLA-restriction
poses a potential hurdle for the applicability of peptide-specific
immunotherapies, as peptides need to be identified and matched
to patient MHC class II. Long antigenic sequences or mixtures of
epitopes that cover a large percentage of the diseased population
provide potential solutions. HLA-restricted soluble or NP-
associated peptide immunotherapy may be a good way to
achieve some early positive immune outcomes of antigen-
specific immunotherapies, including bystander tolerance in
proof-of-concept clinical trials. Subsequently, tolerizing
immunotherapies with multiple autoantigens or proteins could
be further tested.

Strategies to identify potential self-peptides include: screening
autoreactive T cell proliferation or cytokine production ex vivo,
peptide elution from MHC II molecules, and autoantibody
binding epitopes. Immunization studies in DR3 transgenic mice
have been used to map DR3-restricted SmD T cell epitopes (168).
Studies investigating apoptotic cell-derived self-epitopes
recognized by pathogenic T cells in human and lupus-prone
mouse models identified potential histone epitopes, including
histone H1’22-42, H416–39, H471–94 and H382–105 (169, 170).
These extended epitopes bind multiple HLA-DR allomorphs.
Most also bound anti-histone autoantibodies (171, 172). In
human PB cultures, these peptides promoted TGF-b secretion
and expanded Foxp3+Treg cells in the presence of IL-2 in vitro
(170). In SVF1 lupus-prone mice, s.c. administration of H471–94
every 2 weeks induced TGF-b-producing pDCs and Treg cells and
protected mice from renal disease (173, 174). A 70K-U1RNP131-
151 T helper epitope was identified in NZBxNZW F1 and MRL/
Fas(lpr) mice, which led to further identification of SmD1 and
hnRNP A2/B1 epitopes in each strain. Of interest the SmD95-119

epitope recognized by anti-Sm antibodies is homologous to an
Epstein-Barr virus EBNA I peptide, suggesting a mechanism for
epitope spreading through bystander T helper cells (144, 175).
Certain nuclear antigens tend to induce epitope spreading to
related other nuclear antigens in mouse models (Table 2).
Frontiers in Immunology | www.frontiersin.org 8
If administered as antigen-specific tolerizing immunotherapy,
one would therefore predict induction of bystander tolerance (183).

Further research into SLE immunotherapy would benefit
greatly from a humanized model that could better represent
the human immune system (184, 185).
CONCLUSION

SLE is a devastating autoimmune disease with a large unmet need
for better therapies. Promising work has identified some
immunological markers of immune tolerance in individuals at
risk who have not progressed to a diagnosis of SLE, and some
nuclear-derived antigenic epitopes that may be presented by
multiple MHC II molecules. More work is needed to carefully
map the autoantigen specificity and HLA restriction of expanded
T cells in patients with recent-onset SLE. The pre-clinical phase
and milder organ-specific endotypes of SLE provide potential
opportunities to intervene in individuals with a less aggressive or
more focused disease processes, associated with lower levels of
organ damage. Technological platforms showing promise in
early-phase clinical trials or preclinical models in other
autoimmune diseases could be adapted for trials in SLE. Given
the clinical complexity, sensible beginning strategies would
comprise small mechanistic studies with immune biomarker
and safety outcomes in well-defined limited disease settings.
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TABLE 2 | Epitope spreading in mouse models after autoantigen immunization.

Antigen Autoimmune Epitope Spread Reference

Ro 60 (aa 316–335) Ro60, La, Sm, U1RNP (176)
SmD1 protein A-RNP, SmD (176)
SmB protein A-RNP, SmD (176)
SmD183–119 SmD, dsDNA (177)
SmB′/B aa PPPGMRPP SmD, 70k-/A-U1RNP (178)
Murine La (aa 13–30) Ro52 (179)
A2/B1 hnRNP (aa 50–70) hnRNP (180)
Nucleosome (lupus-prone
mice)

dsDNA, nucleosome, histone (181)

La (aa 13–30) La, Ro (179)
Histone H1 H2, ssDNA (182)
July 2021 | Volume 12 | Art
icle 654701

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Robinson and Thomas Antigen-Specific Tolerance in Lupus
REFERENCES
1. Bernatsky S, Boivin JF, Joseph L, Manzi S, Ginzler E, Gladman DD, et al.

Mortality in Systemic Lupus Erythematosus. Arthritis Rheumatism (2006)
54:2550–7. doi: 10.1002/art.21955

2. Borchers AT, Keen CL, Shoenfeld Y, Gershwin ME. Surviving the Butterfly
and the Wolf: Mortality Trends in Systemic Lupus Erythematosus.
Autoimmun Rev (2004) 3:423–53. doi: 10.1016/j.autrev.2004.04.002

3. He J, Zhang R, Shao M, Zhao X, Miao M, Chen J, et al. Efficacy and Safety of
Low-Dose IL-2 in the Treatment of Systemic Lupus Erythematosus: A
Randomised, Double-Blind, Placebo-Controlled Trial. Ann Rheumatic Dis
(2020) 79:141–9. doi: 10.1136/annrheumdis-2019-215396

4. Urowitz MB, Ohsfeldt RL, Wielage RC, Dever JJ, Zakerifar M, Asukai Y,
et al. Comparative Analysis of Long-Term Organ Damage in Patients With
Systemic Lupus Erythematosus Using Belimumab Versus Standard
Therapy: A Post Hoc Longitudinal Study. Lupus Sci Med (2020) 7. doi:
10.1136/lupus-2020-000412

5. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al.
Trial of Anifrolumab in Active Systemic Lupus Erythematosus.N Engl J Med
(2020) 382:211–21. doi: 10.1056/NEJMoa1912196

6. Kuo CF, Grainge MJ, Valdes AM, See LC, Luo SF, Yu KH, et al. Familial
Aggregation of Systemic Lupus Erythematosus and Coaggregation of
Autoimmune Diseases in Affected Families. JAMA Intern Med (2015)
175:1518–26. doi: 10.1001/jamainternmed.2015.3528

7. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens Targeted in Systemic
Lupus Erythematosus Are Clustered in Two Populations of Surface
Structures on Apoptotic Keratinocytes. J Exp Med (1994) 179:1317–30.
doi: 10.1084/jem.179.4.1317

8. Savarese E, Steinberg C, Pawar RD, Reindl W, Akira S, Anders HJ, et al.
Requirement of Toll-Like Receptor 7 for Pristane-Induced Production of
Autoantibodies and Development of Murine Lupus Nephritis. Arthritis
Rheum (2008) 58:1107–15. doi: 10.1002/art.23407

9. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, et al.
Spatiotemporal Regulation of MyD88–IRF-7 Signalling for Robust Type-I
Interferon Induction. Nature (2005) 434:1035–40. doi: 10.1038/nature03547

10. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James
JA, et al. Development of Autoantibodies Before the Clinical Onset of
Systemic Lupus Erythematosus. New Engl J Med (2003) 349:1526–33. doi:
10.1056/NEJMoa021933

11. Wang CL, Kuo CF, Yeh YH, Hsieh MY, Kuo CT, Chang SH. Familial
Aggregation of Myocardial Infarction and Coaggregation of Myocardial
Infarction and Autoimmune Disease: A Nationwide Population-Based
Cross-Sectional Study in Taiwan. BMJ Open (2019) 9:e023614. doi:
10.1136/bmjopen-2018-023614

12. Nehar-Belaid D, Hong S, Marches R, Chen G, Bolisetty M, Baisch J,
et al. Mapping Systemic Lupus Erythematosus Heterogeneity at the Single-
Cell Level. Nat Immunol (2020) 21:1094–106. doi: 10.1038/s41590-020-
0743-0

13. Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman
R, et al. 2019 European League Against Rheumatism/American College of
Rheumatology Classification Criteria for Systemic Lupus Erythematosus.
Ann Rheum Dis (2019) 78:1151–9. doi: 10.1136/annrheumdis-2019-216700

14. Tselios K, Gladman DD, Touma Z, Su J, Anderson N, Urowitz MB. Disease
Course Patterns in Systemic Lupus Erythematosus. Lupus (2019) 28:114–22.
doi: 10.1177/0961203318817132

15. Golder V, Tsang A.S.M.W.P.. Treatment Targets in SLE: Remission and Low
Disease Activity State. Rheumatol (Oxf) (2020) 59:v19–28. doi: 10.1093/
rheumatology/keaa420

16. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ,
et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1
Diabetes. N Engl J Med (2019) 381:603–13. doi: 10.1056/NEJMoa1902226

17. Vudattu NK, Herold KC. Treatment of New Onset Type 1 Diabetes With
Teplizumab: Successes and Pitfalls in Development. Expert Opin Biol Ther
(2014) 14:377–85. doi: 10.1517/14712598.2014.881797

18. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al.
Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF,
the Endocrine Society, and the American Diabetes Association. Diabetes
Care (2015) 38:1964–74. doi: 10.2337/dc15-1419
Frontiers in Immunology | www.frontiersin.org 9
19. Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody Explosion in
Systemic Lupus Erythematosus: More Than 100 Different Antibodies Found
in SLE Patients. Semin Arthritis Rheum (2004) 34:501–37. doi: 10.1016/
j.semarthrit.2004.07.002

20. Spronk PE, Limburg PC, Kallenberg CGM. Review : Serological Markers of
Disease Activity in Systemic Lupus Erythematosus. Lupus (1995) 4:86–94.
doi: 10.1177/096120339500400202

21. Gaither KK, Fox OF, Yamagata H, Mamula MJ, Reichlin M, Harley JB.
Implications of Anti-Ro/Sjögren's Syndrome A Antigen Autoantibody in
Normal Sera for Autoimmunity. J Clin Invest (1987) 79:841–6. doi: 10.1172/
JCI112892

22. Ma Z, Rp M, Js M. Anti-dsDNA Antibodies in Laboratory Workers
Handling Blood From Patients With Systemic Lupus Erythematosus.
J Rheumatol (1992) 19:1380–4.

23. Dema B, Charles N. Autoantibodies in SLE: Specificities, Isotypes and
Receptors. Antibodies (Basel) (2016) 5:2. doi: 10.3390/antib5010002

24. Hahn J, Leatherwood C, Malspeis S, Liu X, Lu B, Roberts AL, et al.
Associations Between Smoking and Systemic Lupus Erythematosus (SLE)-
Related Cytokines and Chemokines Among US Female Nurses. Arthritis
Care Res (Hoboken) (2020). doi: 10.1002/acr.24370

25. Slight-Webb S, Smith M, Bylinska A, Macwana S, Guthridge C, Lu R, et al.
Autoantibody-Positive Healthy Individuals With Lower Lupus Risk Display
a Unique Immune Endotype. J Allergy Clin Immunol (2020) 146:1419–33.
doi: 10.1016/j.jaci.2020.04.047

26. Li Q-Z, Karp DR, Quan J, Branch VK, Zhou J, Lian Y, et al. Risk Factors for
ANA Positivity in Healthy Persons. Arthritis Res Ther (2011) 13:R38–8. doi:
10.1186/ar3271

27. Merrill JT, Immermann F, Whitley M, Zhou T, Hill A, O’Toole M, et al. The
Biomarkers of Lupus Disease Study: A Bold Approach May Mitigate
Interference of Background Immunosuppressants in Clinical Trials.
Arthritis Rheumatol (2017) 69:1257–66. doi: 10.1002/art.40086

28. Aster JC. Normal B and T Lymphocyte Development. In: Rosmarin AG,
editor. (2021). UpToDate, UpToDate, UpToDate.

29. Monroe JG, Rothenberg E, eds. Molecular Biology of B-Cell and T-Cell
Development. Springer (1998).

30. Anderton SM, Wraith DC. Selection and Fine-Tuning of the Autoimmune
T-Cell Repertoire. Nat Rev Immunol (2002) 2:487–98. doi: 10.1038/nri842

31. Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, et al.
A Requisite Role for Induced Regulatory T Cells in Tolerance Based on
Expanding Antigen Receptor Diversity. Immunity (2011) 35:109–22. doi:
10.1016/j.immuni.2011.03.029

32. Meiron M, Zohar Y, Anunu R, Wildbaum G, Karin N. CXCL12 (SDF-1a)
Suppresses Ongoing Experimental Autoimmune Encephalomyelitis by
Selecting Antigen-Specific Regulatory T Cells. J Exp Med (2008) 205:2643–
55. doi: 10.1084/jem.20080730

33. Bollyky PL, Wu RP, Falk BA, Lord JD, Long SA, Preisinger A, et al. ECM
Components Guide IL-10 Producing Regulatory T-Cell (TR1) Induction
From Effector Memory T-Cell Precursors. PNAS (2011) 108:7938–43. doi:
10.1073/pnas.1017360108

34. Yao Y, Vent-Schmidt J, McGeough MD,WongM, Hoffman HM, Steiner TS,
et al. Tr1 Cells, But Not Foxp3+ Regulatory T Cells, Suppress NLRP3
Inflammasome Activation via an IL-10–Dependent Mechanism. J Immunol
(2015) 195:488–97. doi: 10.4049/jimmunol.1403225

35. Bluestone JA, Abbas AK. Natural Versus Adaptive Regulatory T Cells. Nat
Rev Immunol (2003) 3:253–7. doi: 10.1038/nri1032

36. Roncarolo MG, Gregori S, Bacchetta R, Battaglia M, Gagliani N. The Biology
of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-
Mediated Diseases. Immunity (2018) 49:1004–19. doi: 10.1016/j.immuni.
2018.12.001

37. Zhang P, Lee JS, Gartlan KH, Schuster IS, Comerford I, Varelias A, et al.
Eomesodermin Promotes the Development of Type 1 Regulatory T (TR1)
Cells. Sci Immunol (2017) 2. doi: 10.1126/sciimmunol.aah7152

38. Bacchetta R, BiglerM, Touraine JL, Parkman R, Tovo PA, Abrams J, et al. High
Levels of Interleukin 10 Production In Vivo Are Associated With Tolerance in
SCID Patients Transplanted With HLA Mismatched Hematopoietic Stem
Cells. J Exp Med (1994) 179:493–502. doi: 10.1084/jem.179.2.493

39. Gianfrani C, Levings MK, Sartirana C, Mazzarella G, Barba G, Zanzi D, et al.
Gliadin-Specific Type 1 Regulatory T Cells From the Intestinal Mucosa of
July 2021 | Volume 12 | Article 654701

https://doi.org/10.1002/art.21955
https://doi.org/10.1016/j.autrev.2004.04.002
https://doi.org/10.1136/annrheumdis-2019-215396
https://doi.org/10.1136/lupus-2020-000412
https://doi.org/10.1056/NEJMoa1912196
https://doi.org/10.1001/jamainternmed.2015.3528
https://doi.org/10.1084/jem.179.4.1317
https://doi.org/10.1002/art.23407
https://doi.org/10.1038/nature03547
https://doi.org/10.1056/NEJMoa021933
https://doi.org/10.1136/bmjopen-2018-023614
https://doi.org/10.1038/s41590-020-0743-0
https://doi.org/10.1038/s41590-020-0743-0
https://doi.org/10.1136/annrheumdis-2019-216700
https://doi.org/10.1177/0961203318817132
https://doi.org/10.1093/rheumatology/keaa420
https://doi.org/10.1093/rheumatology/keaa420
https://doi.org/10.1056/NEJMoa1902226
https://doi.org/10.1517/14712598.2014.881797
https://doi.org/10.2337/dc15-1419
https://doi.org/10.1016/j.semarthrit.2004.07.002
https://doi.org/10.1016/j.semarthrit.2004.07.002
https://doi.org/10.1177/096120339500400202
https://doi.org/10.1172/JCI112892
https://doi.org/10.1172/JCI112892
https://doi.org/10.3390/antib5010002
https://doi.org/10.1002/acr.24370
https://doi.org/10.1016/j.jaci.2020.04.047
https://doi.org/10.1186/ar3271
https://doi.org/10.1002/art.40086
https://doi.org/10.1038/nri842
https://doi.org/10.1016/j.immuni.2011.03.029
https://doi.org/10.1084/jem.20080730
https://doi.org/10.1073/pnas.1017360108
https://doi.org/10.4049/jimmunol.1403225
https://doi.org/10.1038/nri1032
https://doi.org/10.1016/j.immuni.2018.12.001
https://doi.org/10.1016/j.immuni.2018.12.001
https://doi.org/10.1126/sciimmunol.aah7152
https://doi.org/10.1084/jem.179.2.493
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Robinson and Thomas Antigen-Specific Tolerance in Lupus
Treated Celiac Patients Inhibit Pathogenic T Cells. J Immunol (2006)
177:4178–86. doi: 10.4049/jimmunol.177.6.4178

40. Roncarolo MG, Gregori S, Bacchetta R, Battaglia M. Tr1 Cells and the
Counter-Regulation of Immunity: Natural Mechanisms and Therapeutic
Applications. In: Fillatreau S, O'Garra A, editors. Interleukin-10 in Health
and Disease. Berlin, Heidelberg: Springer (2014). p. 39–68.
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125. Crispıń JC, Tsokos GC. IL-17 in Systemic Lupus Erythematosus. J Biomed
Biotechnol (2010). doi: 10.1155/2010/943254

126. Mizui M, Koga T, Lieberman LA, Beltran J, Yoshida N, Johnson MC, et al.
IL-2 Protects Lupus-Prone Mice From Multiple End-Organ Damage by
Limiting CD4–CD8– IL-17–Producing T Cells. J Immunol (2014) 193:2168–
77. doi: 10.4049/jimmunol.1400977

127. Meropol NJ, Porter M, Blumenson LE, Lindemann MJ, Perez RP, Vaickus L,
et al. Daily Subcutaneous Injection of Low-Dose Interleukin 2 Expands
Natural Killer Cells In Vivo Without Significant Toxicity. Clin Cancer Res
(1996) 2:669–77.

128. von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T,
et al. Low-Dose Interleukin-2 Selectively Corrects Regulatory T Cell Defects
in Patients With Systemic Lupus Erythematosus. Ann Rheum Dis (2016) 75
(7):1407–15. doi: 10.1136/annrheumdis-2015-207776

129. McHugh MD, Park J, Uhrich R, Gao W, Horwitz DA, Fahmy TM. Paracrine
Co-Delivery of TGF-b and IL-2 Using CD4-Targeted Nanoparticles for
Induction and Maintenance of Regulatory T Cells. Biomaterials (2015)
59:172–81. doi: 10.1016/j.biomaterials.2015.04.003

130. Siddhanti S, Fanton C, Dixit N, Lu L, Chindalore V, Levin R, et al. THU0054
NKTR-358, a Novel IL-2 Conjugate, Stimulates High Levels of Regulatory T
Cells in Patients With Systemic Lupus Erythematosus. Ann Rheum Dis
(2020) 79. doi: 10.1136/annrheumdis-2020-eular.3165

131. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic
Cells Induce Peripheral T Cell Unresponsiveness Under Steady State
Conditions in Vivo. J Exp Med (2001) 194:769–80. doi: 10.1084/
jem.194.6.769

132. Mansilla MJ, Sellès-Moreno C, Fàbregas-Puig S, Amoedo J, Navarro-
Barriuso J, Teniente-Serra A, et al. Beneficial Effect of Tolerogenic
Dendritic Cells Pulsed With MOG Autoantigen in Experimental
Autoimmune Encephalomyelitis. CNS Neurosci Ther (2014) 21:222–30.
doi: 10.1111/cns.12342

133. Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY,
et al. Tolerogenic Dendritic Cell Vaccines to Treat Autoimmune Diseases:
Can the Unattainable Dream Turn Into Reality? Autoimmun Rev (2014)
13:138–50. doi: 10.1016/j.autrev.2013.09.008

134. Rosenzwajg M, Lorenzon R, Cacoub P, Pham HP, Pitoiset F, El Soufi K, et al.
Immunological and Clinical Effects of Low-Dose Interleukin-2 Across 11
Autoimmune Diseases in a Single, Open Clinical Trial. Ann Rheum Dis
(2019) 78(2):209–17. doi: 10.1136/annrheumdis-2018-214229
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