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The application of PhICl2/NH4SCN and PhICl2/KSeCN reagent systems to the synthesis of
the biologically active S/SeCN-containing isocoumarins via a process involving thio/
selenocyanation, enabled by thio/selenocyanogen chloride generated in situ, followed
with an intramolecular lactonization was realized. Gram-scale synthesis, further
derivatization to access C4 thio/selenocyanated Xyridin A and anti-tumor activities of
the obtained products highlight the potential use of this method.
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INTRODUCTION

Organosulfur and selenium compounds have been widely used in organic and biological chemistry
(Parnham and Graf, 1991; Ip and Ganther, 1992; Ji et al., 1999; Mugesh et al., 2001; Yao and Larock,
2003; Borges et al., 2005; Mehta et al., 2009; Santos et al., 2009; Sperança et al., 2011; Wilkins et al.,
2016; Glenadel et al., 2018; Lin et al., 2020; Mampuys et al., 2020). Among them, organic
thiocyanated compounds and their selenylated analogs have attracted continuous attention of
organic and medicinal chemists. They can be used as versatile building blocks to achieve various
useful synthetic transformations since their thiocyanato and selenocyanato moieties can be readily
converted to other sulfur and selenium-containing functional groups (Castanheiro et al., 2016;
Zhang et al., 2018; Wu et al., 2021; Yuan et al., 2021). In the meanwhile, naturally occurring or
pharmaceutically interesting organothio/selenocyanates have been reported to show a broad
spectrum of bioactivities (Chen et al., 2007). For instances, the SCN-containing 4-
phenoxyphenoxyethyl thiocyanate (Elhalem et al., 2002), psammaplin B (Piña et al., 2003), and
cavernothiocyanate (Hirota et al., 1996) have been evaluated as antiparasitic agents, HDAC enzyme
inhibitor and antifouling agents, respectively (Figure 1). Furthermore, it is reported that some
NSAID selenocyanated derivatives exert promising activities in reducing the viability of certain type
of cancer cell lines (Plano et al., 2016; Liu et al., 2018) (Figure 1). In these regards, direct or late-stage
introduction of thio/selenocyanato functional groups into bioactive compounds is of great
significance in organic and medicinal chemistry.

The chemistry that describes the preparation of 4-chalcogen isocoumain through the cyclization
of 2-alkynylaryl esters promoted by electrophilic chalcogen species has been well documented (Yao
and Larock, 2003; Mehta et al., 2009; Sperança et al., 2011; Wilkins et al., 2016; Glenadel et al., 2018;
Lin et al., 2020). On the other aspect, thio/selenocyanation of alkenes (Yang et al., 2015; Zhang et al.,
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2018; Ye et al., 2019; Meng et al., 2020; Nadiveedhi et al., 2020)
and hetero/aromatics (Feng et al., 2018; Rezayati and Ramazani,
2020) has also been extensively investigated. However, the thio/
selenocyantion of alkynes, a straightforward and versatile route to
construct Cvinyl–S(e) CN bond with the concomitant
incorporation of a second functionality into the substrate, has
remained less exploited. For examples, only dithio/
selenocyanation (Prakash et al., 2001; Lu et al., 2018),
hydrothiocyanation (Jiang et al., 2017; Wu et al., 2018), and
iodothiocyanation (Zeng and Chen, 2018) of alkynes have been
established so far. The thiocyanation and especially

selenocyanation of alkynes coupled with an intramolecular
functionalization, which could afford structurally diverse
heterocycles remain unexplored. Our literature survey showed

FIGURE 1 | Representative examples of biologically interesting thio/selenocyanated compounds.

SCHEME 1 | PhICl2-Mediated Synthesis of Functionalized
Heterocycles.

TABLE 1 | Optimization on the reaction conditionsa.

Entry Oxidant (equiv) [SCN] (equiv) Solvent Yield (%)b)

1 PhICl2 (2) NH4SCN (2) DCM 80
2 PhICl2 (2) NH4SCN (2) DCE 92
3 PhICl2 (2) NH4SCN (2) MeOH trace
4 PhICl2 (2) NH4SCN (2) EtOAc trace
5 PhICl2 (2) NH4SCN (2) toluene trace
6 PhICl2 (2) NH4SCN (2) MeCN 82
7 PhICl2 (1) NH4SCN (1) DCE 65
8 PhICl2 (3) NH4SCN (3) DCE 90
9 PIDA (2) NH4SCN (2) DCE 20
10 PIFA (2) NH4SCN (2) DCE 25
11 PhIO (2) NH4SCN (2) DCE 20
12 I2 (2) NH4SCN (2) DCE NRc

13 NBS (2) NH4SCN (2) DCE NDd

14e PhICl2 (2) NH4SCN (2) DCE 96
15f PhICl2 (2) NH4SCN (2) DCE 95

aReaction coditions: A mixture of oxidant and NH4SCN, in solvent (5 ml) was stirred at rt
for 0.5 h, then 1a (0.20 mmol) was added, stirred at rt for 12 h.
bYield of isolated products.
cNR = no reaction.
dND = no desired product.
e1a (0.20 mmol) was added, stirred at 50°C for 2 h.
f1a (0.20 mmol) was added under N2 atmosphere, stirred at 50°C for 2 h.
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that the existing approaches include a metal-free synthesis of
thiocyanato-containing azaspirotrienediones via photocatalytic
carbothiocyanation of N-phenylpropynamides (Chen et al.,
2019), a visible light-promoted carbon nitride-catalyzed
thiocyanation of methylthiolated alkynones with NH4SCN
affording the corresponding thiocyanated thioflavone products
(Zeng et al., 2021), and a TCCA/NH4SCN-mediated cyclization/
thiocyanation of alkynyl aryl ketones enabling the synthsis of 3-
thiocyanated chromones (Xiao et al., 2021). Most recently, Zhou
and co-workers reported the synthesis of isoquinolylsenocyanates
and quinolylsenlenocyanates via electrophilic selenocyanogen
cyclization induced by pseudohalogen (SeCN)2 generated in
situ (Wang et al., 2022). Each of the above methods has its
merits in preparing the corresponding S/SeCN-containing
heterocycles. However, owing to the importance of the SCN/
SeCN-containing heterocycles, it is still highly desirable to
develop alternative and innovative approaches to realize the
assemblage of versatile SCN/SeCN-containing heterocyclic
framework.

PhICl2, the first hypervalent iodine reagent discovered in
1886 (Willgerodt, 1886), has found wide application in various
organic transformations (Stang and Zhdankin, 1996). In 2019,
we reported that PhICl2 could enable halolactonization of
ortho-alkynylbenzoates, resulting in the formation of a
series of functionalized 4-chloroisocoumarins under metal
free conditions (Scheme 1A) (Xing et al., 2019b). By using
PhICl2/NH4SCN system, we also realized the synthesis of the
C5 thiocyanated 2-pyridones from pyridin-2(1H)-ones,
demonstrating the efficiency of the reagents system in direct
C-H functionalization/thiocyanation (Scheme 1B) (Tao et al.,
2021). However, to the best of our knowledge, this oxidative
PhICl2/NH4SCN system has never been used to the synthesis
of thiocyanated heterocycles via intramolecular oxidative
cyclization/oxythiocyanation of alkyne compounds, a
strategy that is different from the above direct C–H
functionalization/thiocyanation approach. In current work,
we describe that by adopting PhICl2/NH4SCN reagents
system, the biologically interesting C4-thiocyanated
isocoumarins could be regioselectively achieved via

oxythiocyanation of o-alkynylbenzoates. Furthermore, the
protocol could be extended to the synthesis of C4-
selenocyanated isocoumarins by using PhICl2/KSeCN,
which is applied in organic synthesis for the first time
(Scheme 1C).

RESULTS AND DISCUSSION

Optimization of Reaction Conditions
At the outset of our studies, we were interested to investigate
whether the PhICl2/NH4SCN reagent system could be applied
to the intramolecular cyclization as well as oxythio/
selenocyanation of o-alkynylbenzoates, in hope of achieving
the biologically interesting C4-thio/selenocyanated
isocoumarins. Our study on condition optimization was
commenced with the simplest o-alkynylbenzoate 1a. To our
delight, the desired C4-thiocyanated isocoumarin 2a could be
obtained in 86% yield from the reaction of 1a with 2
equivalents of PhICl2 and 2 equivalents of NH4SCN in
DCM for 12 h at room temperature (Table 1, entry 1). The
solvents screening showed DCE to be superior to other
commonly used solvents, including DCM, MeOH, EtOAc,
toluene, and MeCN (Table 1, entries 2–6). Neither
increasing nor decreasing the dosage of PhICl2/NH4SCN
were beneficial for improving the yield of the product
(Table 1, entries 7–8). The other oxidants including PIDA,
PIFA, PhIO, I2, and NBS were also applied to take the place of
PhICl2, however, lower yield, no reaction or none desired
product were observed in these cases (Table 1, entries
9–13). The other SCN-containing inorganic salts including
NaSCN, KSCN, AgSCN and CuSCN have also been
investigated, but none of them provided better outcome
than NH4SCN (SI, Supplementary Table S1, entries 14–17).
We have also found that the reaction temperature had an
obvious influence on the outcome of the reaction. Performing
the reaction of 1a (0.20 mmol), PhICl2 (0.4 mmol) and
NH4SCN (0.4 mmol) in DCE at 50°C not only improved the
reaction yield to 96%, but also shorten the reaction time to 2 h

SCHEME 2 | Gram-scale Synthesis and Product Derivatization.
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(Table 1, entry 14). However, when the reaction temperature
was further elevated to 60°C, it was found that product 2a was
obtained in relatively lower yield, with the starting substrate 1a
recovered in a yield of 5% (SI, Supplementary Table S1, entry
19). Furthermore, the reaction does not need a N2 atmosphere
(Table 1, entry 14 vs 15). Based on the outcomes of the above
screening experiments, the best yield of product 2a (96%)
could be obtained by subjecting NH4SCN (2 equiv), PhICl2 (2
equiv) to DCE at 50°C for 2 h (Table 1, entry 14).

Scope Exploration of Substrates
With the optimized conditions in hand, we came to investigate
the substrate scope of this reaction by subjecting various
o-alkynylbenzoates to the standard condition (Table 2). First,
the electronic effect of R1 substituent on the phenyl ring of
o-alkynylbenzoates was explored. Substrates with either
electron-donating or -withdrawing groups on the phenyl ring
were found to well participate the cyclization/thiocyanation
reaction and the desired C4 thiocyanated ioscoumarins 2b-f

TABLE 2 | Electrophilic thio/selenocyanation of o-alkynylbenzoatea.

aA mixture of PhICl2 (0.4 mmol) and NH4SCN (0.4 mmol) or KSeCN (0.4 mmol) in DCE (5 ml) was stirred at rt for 0.5 h, then 1 (0.20 mmol) was added, stirred at 50°C for 2 h, isolated
yields.
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were obtained in good to excellent yields. Moreover, it is worth
noting that substrates bearing electron-donating groups (1a-c)
exhibited better performance than those bearing electron-
withdrawing substituents (1d-f). For instances, when R1 is a
strong electron-withdrawing -NO2 group, the reaction
smoothly afforded the corresponding isocoumarin 2d in 56%
yield. Replacement of the -NO2 group with -Cl or -F groups
provided better results, with corresponding products 2e-f
obtained in 87 and 85%, respectively. The electronic effect of
substituents on the alkyne motif was carefully tested next. To our
satisfaction, this transformation was applicable to alkynoates
bearing diverse substituents ranging from phenyl, naphthyl,

thienyl to alkyl, with the corresponding C4 thiocyanated
products 2g-t accomplished in good to excellent yields. Most
strikingly, TMS functionality in the substrate was also well
tolerated under the reaction conditions and the target product
2r was obtained in 80% yield. The method was also applicable to
terminal alkyne, which could afford the corresponding C3-
unsubstituted isocoumarin 2s in 84% yield.

Encouraged by the feasibility of oxythiocyanation of
o-alkynylbenzoates, we further explored the synthesis of C4
selenocyanated isocoumarins, a closely related analogue of
thiocyanated isocoumarins. Since the NH4SeCN was not
commercially available, we had to resort to other

SCHEME 3 | DFT Computation of Possible Reaction Pathways to (SCN)2.

SCHEME 4 | Proposed Mechanistic Pathway.
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selenocyanate sources (SI, Supplementary Table S2). To our
delight, when KSeCN was applied, the reaction worked equally
well as the oxythiocyanation and the corresponding
selenocyanated product 3a was obtained in 92% yield. Under
the adjusted conditions, a series of o-alkynylbenzoates were
converted to the corresponding selenocyanated analogs 3b-m
in high to excellent yields, regardless of the electronic effect of
substituents on the phenyl ring. Notably, functional groups such
as -F, -Cl, -NO2, and -CO2Me remained intact during the
transformation, thereby facilitating late-stage functionalization
of the obtained products. Furthermore, heterocycle-fused
substrate 1n also reacted smoothly under the newly optimized
reaction conditions, affording the corresponding product 3n in
good yield. Finally, good to excellent yields were observed for
substrates with R2 being substituents ranging from aliphatic,
hetero/aromatic ring to TMS functionality (3o-t). The
structure of 2h (CCDC: 2126012) and 3h (CCDC: 2126018)
were unambiguously confirmed through X-ray crystallographic
analysis, for details, see supporting information.

Synthetic Applications
The isocoumarin skeleton commonly exists in many naturally-
occurring compounds and potent pharmaceutical agents
displaying anti-tumor, antifungal, and anti-inflammatory
properties (Pal and Pal, 2019). For instance, Xyridin A
(Ruangrungsi et al., 1995) was isolated in 1995 from Xyris
indica, and was found to possess antibacterial activity against
various bacteria (Saeed, 2003). To further demonstrate the
synthetic utility of our method, a gram-scale reaction was
performed with substrate 1u under standard conditions and
the corresponding C4 thio/selenocyanated Xyridin A
derivatives 2u and 3u were obtained in 87 and 90%,
respectively (Scheme 2). Ultimately, compounds 2u and 3u
could be readily transformed into SCF3- (Liang et al., 2015)
and SeCF3-containing Xyridin A derivatives 2v and 3v by
treatment with TMSCF3 and Cs2CO3 in acetonitrile. Moreover,
[3 + 2] cycloaddition of compounds 2u/3uwith sodium azide was
also performed to afford Xyridin A bearing thiotetrazole moiety
2w/3w in 94 and 96% yields (Liang et al., 2015), respectively.

Investigation of Mechanism
We have previously postulated that the reaction of PhICl2 with
NH4SCN could generate PhI(SCN)2 as a reactive hypervalent
iodine (III) species via a ligand-exchange process (Scheme 3). In
order to further corroborate whether PhI(SCN)2 species was
indeed formed, the reaction of TolICl2 with NH4SCN in
CDCl3 was carried out and 1H NMR analysis was
implemented. The outcome revealed that only the peak of
2.46 ppm (s), which can be attributed to the methyl group of
TolICl2, and the peak of 2.29 ppm(s), which can be attributed to
the methyl group of p-iodotoluene, were observed throughout the
whole reaction process (see SI for details). No signal from
PhI(SCN)2 was detected, though. In order to further
understand the most appropriate pathway adopted by the
reaction between PhICl2 with NH4SCN, a computational study
was carried out and the result is shown in Scheme 3. The reaction
pathway b involving formation of PhI(SCN)2 obviously requires
more energy than other pathways. Even though pathway a is also
theoretically possible, the 1H NMR experiment result did not
support the formation of PhICl(SCN). It is not the reaction
pathway with the lowest energy, either. Pathway c with the
formation of ClSCN is not only consistent with the 13C NMR
experiment (Tao et al., 2021), but also preferred
thermodynamically (see SI for details).

Based on these newly gained experimental (control
experiments see ESI, Supplementary Scheme S1,
SupplementaryFigure S1, S2 and computational calculation)
and computational results as well as previous literature reports
(Kita et al., 1997; Woon et al., 2006; Ito et al., 2019; Xing et al.,
2019a; An et al., 2020), a possible mechanistic pathway for the
formation of the C4 thiocyanated isocumarins was proposed
(Scheme 4). Differing from the previous mechanism (Kita
et al., 1997), we tentatively proposed that intermediate A, an
ionic form of PhICl2, reacted with thiocyanate directly to give the
reactive thiocyanogen chloride, which could be supported by the
observation of peak of 109.1 ppm in its 13C NMR analysis (Tao
et al., 2021). Then the reaction of thiocyanate with thiocyanogen
chloride provides (SCN)2, which further reacts with the oxidative
PhICl2 to give thiocyanogen chloride (Tao et al., 2021). Next,

FIGURE 2 | Antitumor activity of synthesized 4-thio/selenocyanated isocoumarins (10 μM) against HCT 116 (A) and MCF 7 (B) cell lines, determined by a CCK-
8 assay.
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electrophilic addition between the reactive thiocyanogen chloride
with substrate 1a gave rise to intermediate B (Xing et al., 2019a;
An et al., 2020; Hellwig et al., 2020; Lynch and Scanlan, 2020; Sun
et al., 2020; Jurinic et al., 2021; Slivka and Onysko, 2021). Due to
the presence of the adjacent electron-withdrawing
methoxycarbonyl group which makes the C (sp2) connecting
with the Ph substituent more electron-deficient, a favored
intramolecular 6-exo cyclization occurred in intermediate B,
leading to formation of the cyclic intermediate C. Finally,
removal of the methyl group by the nucleophilic attack of
chloride ion gave the title product 2a (Scheme 4).

CCK-8 Assay
Finally, those synthesized 4-thio/selenocyanated isocoumarins
were screened in vitro for antitumor activity test using CCK-8
assay against HCT 116 and MCF 7 cell lines (for details, see the
ESI, Supplementary Figure S5). The results in Figure 2 indicated
that these compounds showedmoderate activity against HCT 116
after 48 h exposure. Compound 2l was found to be the most
potent candidate of the series, which exerted 69% inhibition at
10 μM concentration against HCT 116. Moreover, the screening
results revealed that those compounds were active against MCF 7
cell line. Especially, compound 2f, 3h, and 3r seem to be equally
potent with 84, 82, and 81% antiproliferative inhibition at 10 μM
concentration against MCF 7 cell line, respectively.

CONCLUSION

In summary, we have realized an alternative synthesis of C4 thio/
selenocyanated isocoumarins in a highly regioselective manner
with good to excellent yields. Compared with the previous direct
C–H functionalization/thiocyanation of a heterocyclic skeleton,
this method realized the construction of the functionalized
isocoumarin framework via a hypervalent iodine-mediated
electrophilic thio/selenocyanation approach. In addition to the
features of metal-free conditions, mild reaction conditions, high-
yielding of products and broad tolerance of functional groups, the
obtained thio/selenocyanated isocoumarins were found to
possess anti-tumor activities and have been proven to be
useful building blocks, as the functionalized Xyridin A could
be converted to other pharmaceutically interesting Xyridin A
derivatives.

MATERIALS AND METHODS

Reagents and solvents were purchased as reagent grade and were
used without further purification. PhICl2 (Zhao and Zhang, 2007)
were prepared according to literature methods. All reactions were
performed in standard glassware, heated at 70°C for 3 h before

use. Flash column chromatography was performed over silica gel
(200–300°mesh) using a mixture of ethyl acetate (EtOAc), and
petroleum ether (PE).

Experimental Details General Procedure for
tbl2
To an oven-dried 25 ml round-bottom flask were added NH4SCN
or KSeCN (0.4 mmol), PhICl2 (0.4 mmol) and DCE (5 ml). The
mixture was stirred at rt for 30 min. Then, substrate 1 (0.2 mmol)
in DCE (5 ml) was added to the reaction mixture in one portion.
The reaction was heated to 50°C in an aluminum heating block
and stirred for another 2 h, poured into the saturated brine
solution (20 ml). The product was extracted with DCM
(20 ml), dried with Na2SO4 and concentrated. The crude
product was purified using silica gel column
chromatography.Table 2
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