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Abstract 
 

Small molecules (SMs) are integral to biological processes, influencing metabolism, homeostasis, and 

regulatory networks. Despite their importance, a significant knowledge gap exists regarding their 

downstream effects on biological pathways and gene expression, largely due to differences in scale, 

variability, and noise between untargeted metabolomics and sequencing-based technologies. To address 

these challenges, we developed a multi-omics framework comprising a machine learning-based 

protocol for data processing, a semi-supervised network inference approach, and network-guided 

analysis of complex traits. The ML protocol harmonized metabolomic, lipidomic, and transcriptomic 

data through batch correction, principal component analysis, and regression-based adjustments, 

enabling unbiased and effective integration. Building on this, we proposed a semi-supervised method to 

construct transcriptome-SM interaction networks (TSI-Nets) by selectively integrating SM profiles into 

gene-level networks using a meta-analytic approach that accounts for scale differences and missing 

data across omics layers. Benchmarking against three conventional unsupervised methods 

demonstrated the superiority of our approach in generating diverse, biologically relevant, and robust 

networks. While single-omics analyses identified 18 significant genes and 3 significant SMs associated 

with insulin sensitivity (IS), network-guided analysis revealed novel connections between these 

markers. The top-ranked module highlighted a cross-talk between fiber-degrading gut microbiota and 

immune regulatory pathways, inferred by the interaction of the protective SM, N-acetylglycine (NAG), 

with immune genes (FCER1A, HDC, MS4A2, and CPA3), linked to improved IS and reduced obesity 

and inflammation. Together, this framework offers a robust and scalable solution for multi-modal 

network inference and analysis, advancing SM pathway discovery and their implications for human 

health. Leveraging data from a population of thousands of individuals with extended longevity, the 

inferred TSI-Nets demonstrate generalizability across diverse conditions and complex traits. These 

networks are publicly available as a resource for the research community. 
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Introduction 

 

The rapid advancements in high-throughput mass spectrometry and the emergence of metabolomics as 

a key field in omics research, have uncovered new and complex roles of small molecules (SMs) in 

biological processes and their impact on health and diseases [1]. SMs, typically defined as organic 

compounds with a molecular weight of less than 1,500 Da, can be classified based on their origin as 

either endogenous or exogenous [2][3]. Endogenous SMs, also known as primary metabolites, are 

synthesized internally through an organism's metabolic processes [4], whereas exogenous SMs, often 

referred to as chemical exposures, encompass a wide range of substances such as medications, dietary 

supplements, pollutants, and more [5][6]. 

 

SMs play a pivotal role in biological systems, influencing processes such as metabolism, homeostasis, 

and the regulation of proteins and gene expression [7][8]. Their effect is predominantly mediated 

through interactions with biological macromolecules, notably proteins [9]. These interactions can be 

physical, such as enzymatic reactions or regulatory interactions [10][11]. However, in spite of the 

extensive research on physical protein-SM interactions, significant gaps remain in our understanding of 

the downstream effects of SMs on biological pathways and the modulation of gene expression [12][13]. 

Recent studies utilizing RNA-sequencing (RNA-seq) have, in fact, demonstrated diverse differential 

gene expression patterns upon administration of metabolic compounds in animal models [14-16]. 

 

Multi-omics approaches have emerged as a new paradigm in systems biology. Omics integration has 

been successful in improving the accuracy of predictive models for clinical outcomes [17], increasing 

statistical power in biomarker discovery, and identifying biological pathways and networks influencing 

human complex traits. Systematic integration of multiple omics layers-such as epigenomic, 

transcriptomic, and proteomic profiles- with SM profiles and chemical information has shown success 

in predicting patient drug responses and personalized drug repurposing for a range of clinical outcomes 

[21][22]. In more recent years, computational and instrumental advances in untargeted metabolomics 

have facilitated the integration of high-throughput SM profiles with sequencing-based technologies. 

Prominent metabolomics platforms, such as MetaboAnalyst and XCMS, now support omics integration 

at the pathway level for pathway-outcome relationships [23][24]. Beyond pathway-level integration, 

network inference from SM and gene expression profiles provides a holistic and often novel view on 

gene-SM relationships. Such networks can be knowledge-guided, inferred via aggregating protein-SM 

interactions across multiple pathway databases [25]. Alternatively, interaction networks can also be 

data-driven, constructed through statistical modeling of metabolomic and genomic profiles [23][26]. 

 

Recent multi-omics measurements in large-scale human population studies, such as the NIA’s Long 

Life Family Study (LLFS) or NHLBI’s Framingham Heart Study (FHS), have successfully identified 

individual SM markers for various complex traits through metabolome-wide association studies 

(MWAS) conducted on thousands of samples [27][28]. However, integrating SM profiles with other 

omics data types remains challenging and is subject to major limitations. Untargeted metabolomics 

profiles are generally measured by liquid chromatography / mass spectrometry (LC/MS), which 

captures the mass-to-charge ratios (m/z) of compounds [29]. In contrast, most other omics 
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measurements, such as RNA-seq, are based on sequencing technologies. These fundamentally different 

technologies produce distinct distributions, variabilities, and noise characteristics. These differences 

can lead to model overfitting and false associations during omics integration if not properly accounted 

for [30][31]. Furthermore, RNA-seq experiments generally captures at least over 10,000 gene 

expression profiles, while most LC/MS experiments capture around 1,000 SMs. This disparity in scale 

can introduce bias, favoring the larger dataset when jointly modeling omics data [32]. 

 

Lastly, when it comes to network inference, it is crucial to assess the reliability and biological 

interpretability of these multi-modal networks. Previous approaches have predominantly relied on 

pathway annotations from databases such as KEGG for network evaluation and biological 

interpretation [33][26][34]. While effective, these annotations are biased toward well-characterized 

compounds, leaving a significant knowledge gap for many newly identified metabolites and chemical 

exposures. Additionally, many metabolic processes are tissue-specific. However, LC/MS measurements 

in large-scale human studies typically use easily accessible biospecimen, such as blood, which may not 

accurately reflect the full range of metabolic status [35][36]. Therefore, there remains the need for 

unbiased and generalizable approaches to evaluate these multi-modal networks and increase their 

interpretability.  

 

To address these challenges, we propose a comprehensive framework for integrating untargeted LC/MS 

profiles with transcriptomics data to construct Transcriptome-SM Interaction Networks (TSI-Nets), and 

apply them to study human complex traits. Using the data of the NIA’s LLFS, one of the largest human 

multi-omics studies to date [37], the framework includes steps for processing LC/MS and RNA-seq 

profiles for omics integration, multi-modal network inference, and network-guided analysis of complex 

traits. Our framework enables the discovery of biologically meaningful interactions and provides 

insights into the intricate relationships between genes, SMs, and their contribution to metabolic health. 

 

2. Materials & Methods 

 

2.1. Participants 

 

Procedures and criteria for eligibility and recruitment of the LLFS participants are described in detail 

by Wojczynski et al [37]. For this study, data from the first clinical exam containing 4953 total 

participants from 539 families was used. Glucose (mg/dL), insulin (pmol/L), total triglyceride (TG; 

mg/dL), interleukin 6 (IL6; pg/mL), hemoglobin (g/dL) and glycosylated hemoglobin were measured 

by the LLFS central laboratory at the University of Minnesota. Participants taking diabetic medications 

or diagnosed with type 2 diabetes mellitus (T2DM) characterized by fasting glucose levels >= 126 

mg/dL or glycosylated hemoglobin >= 6.5% were excluded. Additionally, all non-diabetic participants 

with fasting time < 8h were also excluded to avoid any metabolic bias. Insulin sensitivity (IS) was 

calculated by HOMA2 software using fasting and glucose measurements [38]. BMI was calculated as 

weight (kg) / height (m2). All traits were adjusted for age, age-squared (age2), age-cubed (age3), sex, 

clinical field centers, and the top 20 genetic principle components (PCs) using a stepwise regression 

model. IS, TG, and IL6 were also ln-transformed prior to covariate adjustments. 
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2.2. LC/MS workflow 

 

In the LC/MS workflow, each batch generally consisted of 92 research samples, 2 quality control (QC) 

samples, and 2 blank samples. QC samples were prepared by pooling a subset of the research samples. 

Peak lists were generated through MS feature detection, background subtraction, and adduct selection. 

Following peak list generation, compounds were identified by annotating mass, MS/MS fragmentation 

patterns, and retention times to both in-house and online libraries. Peak areas were then obtained for the 

identified compounds. To account for technical variability in raw peak areas, a random forest-based 

method was applied [29], leveraging QC variability within each batch. These peak areas, adjusted for 

technical variability, were further processed to account for potential biological confounders. The 

variables include chronological age, age², sex, smoking status, and medication usage. A stepwise 

regression model coupled with principal component analysis (PCA) were used for covariate 

adjustment. All steps in the workflow were conducted separately for polar SMs and lipids. Detailed 

protocol information is provided in the Supplementary Text S1. 

 

2.3. RNA-seq protocol 

 

RNA extraction and sequencing were performed by the McDonnell Genome Institute (MGI) at 

Washington University. Total RNA was obtained from PAXgene™ Blood RNA tubes through the 

Qiagen PreAnalytiX PAXgene Blood miRNA Kit (Qiagen, Valencia, CA). RNA-Seq data processing 

was carried out by version 3.3 of the nf-core/RNASeq pipeline with STAR/RSEM, applying default 

parameters (https://zenodo.org/records/5146005). Genes with fewer than three counts per million in 

over 98.5% of samples were excluded, and samples with more than 8% intergenic reads were also 

removed. The remaining data were transformed by the variance stabilizing transformation (VST) 

function in DESeq2 [39]. The transformed gene expression levels were then adjusted through a 

stepwise regression model for age, age2, sex, field centers, percent of intergenic reads, and the counts of 

red blood cells, white blood cells, platelets, monocytes, and neutrophils as baseline covariates. 

Furthermore, RNA-seq batch information and the top 10 principal components (PCs) of gene 

expression were incorporated into the model as additional covariates. 

 

2.4. Multi-modal network inference 

 

2.4.1. Conventional methods 

Traditionally, network inference in single-omic profiles (e.g., RNA-seq) relies on unsupervised 

learning, where feature relationships (commonly refer to as edge weights) are first quantified using 

similarity metrics. An unsupervised clustering algorithm is then applied to the resulting edge weight 

matrix to define modules of densely connected features. We refer to this as the 'conventional' network 

inference approach in this study. 

In the conventional methods applied here, adjusted SM profiles (comprising polar metabolites, lipids, 

and identified exposures) were combined with adjusted gene expression profiles from the start of the 

network inference workflow. Edge weights of gene-gene, gene-SM, and SM-SM pairs were computed 
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using two established methods: WGCNA [40] and GENIE3 [41]. For WGCNA, the optimal soft-

threshold (β = 2.3) was selected based on an approximate scale-free topology index of 0.9 and mean 

connectivity of 15. The resulting adjacency matrix was converted into a topological overlap matrix. For 

GENIE3, a forest-based model was applied with default parameters. 

Following edge weight computation, clustering was performed using MONET software, which 

implements two top-performing methods from the 2019 DREAM Challenge for gene-level module 

detection: modularity optimization (MO) and kernel-based (KB) clustering [42][43]. The conventional 

network inference workflow thus consists of WGCNA and GENIE3 in combination with KB and MO 

clustering approaches. A detailed description of these methods is provided in Supplementary Text S2. 

 

2.4.2. Semi-supervised approach 

The proposed model combines the conventional unsupervised network inference with a supervised 

approach to selectively integrate SM and RNA-seq profiles, creating multi-modal networks. First, 

gene-level modules were constructed from the adjusted RNA-seq data of the LLFS using conventional 

approaches as described earlier. These modules serve as a baseline for the supervised integration of SM 

profiles, guided by statistical associations and a meta-analysis strategy. Upon construction of gene-level 

clusters, SMs were connected to the genes in modules based on a two-step significance assessment. 

 

Initially, associations between each SM and individual gene across co-expression modules were 

calculated using linear mixed models (LMMs). After multiple testing correction for SM associations 

with each gene in the co-expression network, SMs with significant associations were directly connected 

to their corresponding genes. In the second step, a correlated meta-analysis (CMA) framework was 

applied based on the gene-SM associations, leveraging the co-expression structure of modules to 

further refine the integration of SMs. For each SM, CMA combines gene-SM associations of genes 

within each module, while accounting for the inter-correlation of these genes using a variance-

covariance matrix derived from gene-SM associations [44]. To perform CMA, a pre-defined gene-SM 

association threshold (p-value = 0.0025) was used to select nominally significant SMs for CMA. SMs 

with significant meta-analytic p-value after multiple testing correction were then connected to the 

genes in each module. The detailed statistical and algorithmic framework of the semi-supervised 

approach is described in the Supplementary Text S3. 

 

2.4.3. Knowledge-guided network inference 

In addition to the semi-supervised multi-modal network inference based on data-driven coexpression 

networks from the LLFS data, knowledge-guided TSI-Nets were constructed using external and 

independent sources. Specifically, protein-protein interaction (PPI) networks from STRINGdb and 

InWeb, as well as coexpression networks derived from GEO were used as the baseline gene-level 

networks. Modules of these networks were selected from those generated by the winners of the 2019 

DREAM challenge for unsupervised network clustering [42]. SMs were then integrated into these 

baseline networks using the same two-step semi-supervised approach described earlier. 

 

2.5. TSI-Net inference evaluation 
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To benchmark network inference approaches, we evaluated TSI-Nets based on external biological 

evidence and network diversity metrics. Independent knowledge sources were used to assess the 

biological relevance of inferred modules. For functional validation, metabolic-set enrichment analysis 

(MSEA) was performed using MetaboAnalyst 6.0 [23]. Additionally, Gene Ontology (GO) enrichment 

analysis was conducted using GOATOOLS [45]. To further assess the biological coherence of modules, 

gene-gene interaction support was evaluated using STRINGdb PPI networks [46], where support was 

defined as the proportion of genes within a module that interact with at least one other gene in the same 

module. Similarly, transcription factor (TF) co-regulation support was assessed using human tissue-

specific gene regulatory networks (GRNs) for blood cell lineages [47], where support was defined as 

the proportion of genes sharing a common TF with at least one other gene in the module. Lastly, the 

diversity of TSI-Nets was evaluated by examining the number of modules, as well as the number of 

genes and SMs participating in the networks.  

 

2.6. “Omics-wide” and network association tests 

 

LMMs were used for all genome-wide, transcriptome-wide, metabolome-wide, and lipidome-wide 

association tests to account for familial relatedness based on the LLFS kinship matrix (details in 

Supplementary Text S3). To control for inflation factors for each “omics”-wide association study 

(OWAS), the BACON method was applied if the inflation factor (λ) ≥1.2  [48]. Lastly, to test the 

association of multi-modal modules with complex traits, Pascal was used [49]. This method computes 

the sum of chi-squared statistics upon ranking all omics units across the entire network based on their 

significance for a complex trait. 

 

2.7. Framingham Heart Study 

 

Replication of the transcriptomic analysis for each trait was conducted using data from the Framingham 

Heart Study (FHS) cohort. FHS is a multi-generational, family-based study investigating genetic, 

molecular, and environmental factors influencing cardiovascular and related traits [50]. For this study, 

we utilized data from the second examination of the third-generation cohort, which includes the largest 

number of RNA-seq measurements available. Eligible participants were selected based on the same 

criteria as those used for the LLFS cohort, and all traits were adjusted in a manner consistent with the 

methods outlined in Section 2.1. RNA-seq measurements were processed and adjusted following the 

same method described in Section 2.3. After applying these criteria and adjustments, a maximum of 

1,248 subjects were included in the transcriptomic analysis. 

 

3. Results 

 

3.1. Overview of Multi-Modal TSI-Net Construction Framework 

 

This study is structured into three main stages to build a comprehensive multi-omics integration 

framework with applications for complex human traits (Figure 1): 
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1. LC/MS data processing: To address the challenges of integrating metabolomics and transcriptomics 

data, we developed a ML-based protocol for processing untargeted LC/MS profiles in conjunction with 

RNA-seq data. This protocol leverages ML-based batch effect correction, PCA, and regression-based 

adjustments for biological confounders to harmonize multi-omics data while preserving true biological 

signals. 

2. Transcriptome-SM interaction network (TSI-Net) inference: Building on the processed RNA-seq 

and LC/MS profiles, we benchmarked conventional unsupervised network inference methods against a 

proposed semi-supervised approach for constructing TSI-Nets. In the semi-supervised framework, 

homogeneous gene-level baseline networks are built from RNA-seq profiles and SM profiles are 

selectively integrated into these networks based on statistical associations and meta-analysis. The 

proposed method ensures meaningful multi-modal network construction by accounting for differences 

in scale, variability, and missing data across the omics layers. Additionally, it enables the integration of 

SM profiles into the established gene networks, such as STRINGdb PPI networks or GEO coexpression 

networks, to construct knowledge-guided TSI-Nets. 

3. Application of TSI-Nets for analysis of complex traits: To demonstrate the applicability of the 

established TSI-Nets for biological interpretations, they were applied to study complex metabolic traits, 

IS, BMI, TG, and IL6. Network association tests and module-level gene-SM interaction analyses 

demonstrated significant gene-SM interactions relevant to metabolic health. In particular, the top-

ranked modules revealed a novel interplay between gut fiber-degrading microbiome metabolism and 

immune regulation, that is protective for metabolic health. 

 

3.2. Enhanced multi-omics integration with LC/MS data processing protocol 

 

3.2.1. Data distribution 

The proposed LC/MS protocol is designed to account for technical, demographic, and biological 

confounders. It showed marked improvement in data quality, making it suitable for integration with 

sequencing-based technologies (e.g., RNA-seq) and complex trait analysis. Initially, raw LC/MS peak 

areas exhibited a highly skewed exponential distribution with a sharp decay, characterized by high 

kurtosis and standard deviation (SD) (Figure 2a). Following the processing pipeline, SM peak residuals 

approximated a normal distribution, with most SMs exhibiting significantly reduced kurtosis and SD 

values constrained between 0 to 1 (Figure 2a). Moreover, the processed LC/MS data aligned the SM 

profiles with the distribution patterns and ranges of adjusted RNA-seq data and complex traits, despite 

no direct influence from either category during processing (Figure 2a). This alignment is critical for 

unbiased data integration in downstream analyses [51]. A similar pattern was observed for SMs in the 

lipid category (Supplementary Figure 1). 

While corrections for technical variables reduced the SD of raw peak areas, this alone proved 

insufficient for preparing data for multi-omics integration (Supplementary Figure 1), whereas 

accounting for demographic and biological confounders played a pivotal role in achieving high-quality 

data suitable for integration. Additional data distribution patterns across different SM categories are 

detailed in Supplementary Figure 1. 

 

3.2.2. Heritability analysis 
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Heritability (h2) analysis of the fully processed lipid and polar SMs was conducted using SOLAR [52]. 

Across both lipid and polar SM categories, strong h2 was observed (h2 = 0.30 for lipids and h2 = 0.294 

for polars; Figure 2b), which is consistent with findings from other populations [53]. h2 patterns varied 

among lipid categories, with most lipids exhibiting high h2 (average h2 = 0.34). However, triglycerides 

showed relatively lower h2 (average h2
triglycerides = 0.21; Figure 2b). This reduced h2 may reflect a 

greater environmental contribution for triglycerides, as they are strongly influenced by diet and lifestyle 

[54]. Supporting this, we also observed a strong correlation between BMI and TG levels among the 

LLFS participants (r = 0.32; Supplementary Figure 2c). Notably, similar h2 patterns of lipids were 

observed during the second clinical visit of the LLFS (Supplementary Figure 3), further validating the 

consistency of the findings. 

For polar SMs, compounds derived from dietary, gut microbiome, endogenous, or mixed 

dietary/endogenous sources exhibited high heritability overall (Figure 2b). Conversely, most drugs 

profiled in the LLFS cohort showed lower heritability (average h2
drugs = 0.198). Interestingly, chemical 

exposures also demonstrated heritability patterns similar to those of endogenous and dietary SMs, 

which might be due to environmental similarities within families and the influence of genetic variation 

on exposure metabolism [55]. The consistent and relatively strong heritability observed across various 

SM categories and clinical visits highlights the reliability of the LC/MS data measurement and 

processing protocols. 

 

3.2.3. Stable OMICS integration following data processing 

Following LC/MS data processing, gene-SM association tests were performed to evaluate p-value 

distribution patterns and inflation factors (λ) across the association scans. As shown in Figure 2c, gene-

SM associations based on the processed data exhibited a distribution that closely aligned with uniform 

expectations. Notably, most scans centered around λ = 1, indicating stable integration of the omics 

profiles. This represents a remarkable improvement over raw omics profiles, which showed substantial 

deviations from uniformity (Figure 2c). For trait-gene and trait-SM associations, larger inflation factors 

were observed. However, applying the BACON approach effectively corrected this inflation, resulting 

in p-value distributions that better adhere to the expected uniform pattern under the null hypothesis 

(Supplementary Figure 4). The combination of robust data processing across the omics scans and 

inflation control enables stable multi-omics integration and reliable association testing. 

 

3.3. Semi-supervised network inference outperforms conventional approaches 

 

3.3.1. Benchmarking TSI-Net construction: Support from independent knowledge 

Following the data processing protocol, the processed LC/MS and RNA-seq profiles were integrated 

using the methods described in Section 2.4 to construct TSI-Nets. Data-driven networks of the LLFS 

generated by conventional approaches (WGCNA-MO, WGCNA-KB, and GENIE3-KB) were 

benchmarked against the proposed semi-supervised model based on CMA. Seven evaluation metrics 

were employed, focusing on support for multi-modal components from independent knowledge sources 

and network diversity. 

MSEA of SMs across multi-modal modules demonstrated the superior performance of the CMA model, 

with 57.47% of modules showing enrichment for at least one metabolic term, compared to 38.46% for 
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the second best-performing method, WGCNA-MO. (Figure 3a). Next, Gene-gene interactions of TSI-

Net modules were matched against STRINGdb PPI networks. The CMA model exhibited the highest 

degree of support, with an average of 59.33% of gene-level interactions within modules supported by 

STRINGdb (Figure 3b). The CMA model similarly excelled in capturing TF co-regulation of genes in 

the TSI-Net modules, as assessed using blood-specific GRNs. On average, 62.85% of genes across the 

modules were supported by TF co-regulation (Figure 3c). However, for GO enrichment analysis, 

WGCNA-MO emerged as the best-performing approach, with 48.71% of modules showing enrichment 

for at least one GO term. The CMA model followed as the second-best method with 24% enrichment 

for GO terms (Figure 3d). 

3.3.2. Benchmarking TSI-Net construction: Network diversity 

Next, we evaluated the diversity of TSI-Nets in terms of gene and SM representation, as well as the 

total number of inferred modules. The CMA model provided far superior performance compared to all 

conventional approaches and captured a broader range of gene-SM interactions. TSI-Net inferred by 

CMA retains approximately 99% of all SMs and 96% of all genes profiled in the LLFS within modules. 

For genes, this demonstrates an almost 38-fold increase compared to the second-best method for 

independent support, WGCNA-MO, which retained only 2.5% of genes (Figure 3e). Similarly, SM 

representation within TSI-Nets inferred by conventional approaches ranged from 38% (GENIE3-KB) 

to 74% (WGCNA-KB) (Figure 3f). Lastly, The CMA model inferred a total of 388 multi-modal 

modules across the entire network—an almost 10-fold increase compared to WGCNA-MO (Figure 3g). 

The diversity metrics, combined with the external support for genes and SMs across TSI-Nets, 

demonstrate the ability of the CMA approach to vastly improve network coverage and representation, 

while increasing their independent support. 

3.3.3. TSI-Net properties 

After benchmarking TSI-Nets inferred by different methods, we examined the properties of the 

networks inferred by the CMA model in greater detail. TSI-Nets inferred by CMA demonstrated 

consistent integration of SMs into the baseline gene-level networks regardless of their source. On 

average, SMs constitute ~21% and 16% of the modules in LLFS-derived and knowledge-guided 

networks, respectively (Figure 3a). In contrast, modules inferred by the conventional methods exhibit a 

higher proportion of SMs (Supplementary Figure 5). This difference is primarily due to the smaller 

number of modules and reduced gene diversity in networks constructed by conventional methods 

(Figure 2e & 2g), limiting their capacity to distribute SMs across diverse modules. 

 

SMs within modules exhibit strong intra-module coherence, despite SM inclusion in gene-level 

modules being based solely on their relationships with genes. Module-wise PCA on SMs revealed that, 

on average, PC1 explains 44% of the variance among SMs within TSI-Net modules, which is greater 

than the variance explained by PC1 for genes (Figure 3b). This result aligns with our expectations, as 

SMs generally constitute a smaller proportion of modules, and the variance explained by PC1 is 

inversely correlated with the number of SMs in a module (Supplementary Figure 6). Additionally, the 

PCA patterns observed in knowledge-guided TSI-Nets were similar and consistent to those in the LLFS 

TSI-Nets, regardless of the sources of the baseline gene-level modules (STRING, InWeb, and GEO; 

Supplementary Figure 7). Pairwise SM-SM association tests further demonstrated that SMs within TSI-
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Net modules are frequently associated with one another. Specifically, 91% of modules showed an 

average -log10(p-value) > 1.3 (corresponding to p-value < 0.05 ) for SM-SM associations (Figure 3c). 

 

Gene-SM connections across modules showed consistent interaction patterns in LLFS and knowledge-

guided TSI-Nets (Supplementary Figures 8 & 9) with the median number of genes interacting with a 

given SM being 13 in LLFS networks and 14 in knowledge-guided networks. While these interactions 

are distributed across different modules, they exhibit an underlying biological relevance supported by 

independent knowledge sources. On average, 38.24% of genes interacting with an SM also interact 

with each other based on STRINGdb PPI networks. Additionally, 58.9% of genes share TF co-

regulation with other genes interacting with the same SM across all modules (Figure 3d), further 

highlighting the effectiveness of the semi-supervised integration of SMs within gene-level networks. 

 

3.4. Single Omic and Network Association Studies on Insulin Sensitivity 

Upon developing and assessing methodologies for data processing and multi-modal network inference, 

the established TSI-Nets were applied to investigate the molecular signatures of IS and other metabolic 

traits. To this end, we first conducted single-omics association analyses, followed by network-guided 

investigation of key genes-SM interactions and their relationship with metabolic health. 

 

3.4.1. Transcriptome-wide association study (TWAS)  

TWAS identified 18 significant genes associated with IS, 15 of which were successfully replicated in 

the FHS cohort with consistent regression coefficients as those from the LLFS cohort (Table 1). While 

none of these genes have been previously reported for IS in TWAS literature, 6 genes (CPA3, GATA2, 

HDC, MS4A2, AKAP12, and PTGER2) were previously identified as significant markers of fasting 

glucose or insulin measurements according to the TWAS Atlas [56]. GO enrichment analysis did not 

identify any significant biological processes or functions associated with these 18 genes. However, 7 

genes (FCER1A, CPA3, GATA2, HDC, SLC45A3, MS4A2, and ENPP3) were found to interact with 

each other based on the STRING PPI network, with all of them coherently exhibiting positive 

coefficients for IS, suggesting a protective relationship. The TWAS QQ-plot for IS is provided in 

Supplementary Figure 4a. 

 

3.4.2. Metabolome-wide association study (MWAS) 

MWAS identified three SMs significantly associated with IS. Two polar metabolites: N-acetylglycine 

(NAG; p = 3.90E-5) and dimethylguanidino valeric acid (DMGV; p = 8.71E-09), and one lipid: 

phosphatidylcholine 35:1 (p = 1.65E-4). The opposing directions of association for NAG and DMGV 

with IS in the LLFS cohort are consistent with their previously reported roles in metabolic health. NAG 

is positively associated with IS in our analysis. It has been previously linked to improved glucose 

homeostasis and overall metabolic health [57-59]. In contrast, DMGV is negatively associated with IS, 

and it has been implicated in increased risks of T2DM and non-alcoholic fatty liver disease [60][27]. 

For lipids, phosphatidylcholine 35:1 is also positively associated with IS. While little is known about 

its roles as a metabolic marker, Julve et al. reported increased levels of phosphatidylcholine 35:1 in 

post-therapy subjects with type 1 diabetes mellitus [61]. MWAS QQ-plots for lipidome and polar 

metabolome associations with IS are provided in Supplementary Figure 4b-c. 
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3.4.3. Network association study 

Network association studies were performed on the knowledge-guided and LLFS TSI-Nets using 

Pascal, as described in Section 2.6, expanding upon single-omic analyses by capturing significant 

modules enriched for multi-modal interactions relevant to IS. Seven significant knowledge-guided TSI-

Net modules (p < 8.88E-5; Table 2) and 20 significant LLFS TSI-Net modules (p-value < 1.29E-4; 

Supplementary Table 1) were identified. Most of these modules contained at least one transcriptome-

wide or metabolome-wide significant node for IS. Moreover, they were also enriched with suggestive 

nodes (p < 0.05) that are interacting with the significant nodes. QQ-plots and p-value distribution of 

network association tests for IS are provided in Supplementary Figures 10 & 11. 

 

3.5. TSI-Net in Practice: Uncovering a Cross-Talk between Gut Microbiome Metabolism and 

Immune System for Metabolic Health 

 

The top-ranked TSI-Net module, derived from the GEO co-expression network (p = 4.10E-10), 

highlights a potential cross-talk between gut microbiome metabolism and the immune system for 

metabolic health. The module contains 4 transcriptome-wide significant genes (FCER1A, HDC, 

MS4A2, and CPA3). It also includes 2 metabolome-wide significant SMs (NAG and DMGV) directly 

connected to all genes. This pattern was also observed in the most significant LLFS module 

(Supplementary T1). 

 

FCER1A, HDC, MS4A2, and CPA3 are known for their roles in IgE-mediated inflammatory responses 

in mast cells [62][63]. Contrary to their pro-inflammatory functions in mast cells, these genes exhibit 

protective associations with IS in the LLFS cohort, which were also replicated in the FHS (Table 1). 

HDC, MS4A2, and CPA3 have also been associated with lower blood glucose levels in non-diabetic 

populations [64]. Additionally, FCER1A has been linked to anti-inflammatory functions in white blood 

cells, including IgE clearance [65], IL10 production [66]. Consistently, these genes were inversely 

associated with BMI, TG, and IL6 in the LLFS, further reinforcing their protective evidence in 

metabolic health (Figure 5b). 

 

NAG, a metabolite derived from gut microbiome activity and linked to fiber metabolism [67][68], has 

been previously associated with improved metabolic health [57-59]. In addition, its protective effects 

were further validated in an in-vivo study where NAG supplementation improved weight loss in diet-

induced obese mice [69]. NAG is associated with higher IS and lower BMI and TG in the LLFS cohort. 

Conversely, DMGV, a pro-inflammatory metabolite increased in oxidative stress [70], is associated 

with lower IS and higher levels of BMI, TG, and IL6 in the LLFS. This aligns with prior reports linking 

DMGV to increased risk of metabolic and cardiovascular complications [27][61]. However, the 

molecular roles of DMGV and NAG remain to be elucidated. 

 

In the top-ranked TSI-Net module, NAG is positively connected to FCER1A, HDC, MS4A2, and CPA3, 

aligning with their protective associations for IS, BMI, TG, and IL6. In contrast, DMGV is negatively 

connected to these genes and is associated with adverse metabolic and inflammatory outcomes (Figure 
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5). These findings are consistent with the established role of fiber intake and fiber-degrading 

microbiome activity in reducing inflammation across various conditions [71][72]. Supporting this, 

rs2251746, an intronic variant in FCER1A, has also been associated with Ruminococcaceae abundance 

[73], a key fiber-degrading bacterial family in gut [74]. DMGV levels exhibit a strong inverse 

association with NAG levels (p = 4.65E-34). Notably, higher DMGV levels have also been linked to 

reduced fruit and vegetable consumption [61]. 

 

In conclusion, TSI-Net analysis reveals a novel cross-talk between gut microbiome metabolism and the 

immune system, driven by the interaction of NAG with FCER1A, HDC, MS4A2, and CPA3. This axis is 

strongly associated with improved IS and reduced obesity and markers of inflammation, including 

DMGV and IL6. 

 

4. Discussion 

 

The present study consists of 3 separate, yet complementary sections to address the critical challenges 

of mutli-omics integration, network-based analyses, and uncovering novel biologically relevant gene-

SM relationships: a machine learning-based LC/MS processing protocol, a semi-supervised network 

inference model (CMA) for multi-modal TSI-Net construction, and the analysis of TSI-Nets for 

complex metabolic traits (Figure 1). 

 

The LC/MS data processing protocol combines a forest-based method for batch correction, PCA for 

noise reduction, and a stepwise regression model to adjust for biological confounders. Common 

normalization approaches for omics integration, such as min-max or z-score normalization, can 

effectively shift the omics data to the same distribution [75][76]. However, this can oversimplify 

complex multi-omics relationships and distort true associations. In the proposed protocol, both LC/MS 

and RNA-seq profiles are transformed and subsequently adjusted for covariates using regression-based 

ML models, resulting in residuals that approximate a normal distribution. In addition, while a variety of 

methods have been developed for processing LC/MS profiles [29], their downstream implications for 

optimal omics integration are often overlooked. Our results demonstrate that while batch effect 

correction reduces variability, comprehensive adjustments for confounders are required to prevent 

inflation in gene-SM associations (Supplementary Figure 1). Although effective for the LLFS cohort 

with large-scale measurements, this ML protocol may be less suitable for smaller populations where 

simpler models could suffice. Regardless of the strategy, thorough sensitivity analyses-- such as 

distribution patterns, heritability assessments, and QQ-plots of multi-omics associations-- are essential 

to ensure the robustness of protocols used for reliable multi-omics integration. (Figure 2). 

 

Following processing RNA-seq and LC/MS profiles, conventional unsupervised network inference 

approaches were benchmarked against our semi-supervised approach based on CMA to construct TSI-

Nets. The conventional methods face challenges in multi-modal integration due to scale differences and 

missing data across omics layers. In fact, optimal multi-modal modules for each conventional method 

were inferred by down-scaling gene expression profiles through keeping genes with highest edge 

weights for SMs, which in turn led to a lack of diversity across the networks (Figure 3e-g). The semi-
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supervised CMA model addresses these limitations by leveraging gene-level networks to selectively 

incorporate SMs based on statistical significance. This approach ensures maximal utilization of RNA-

seq data while accounting for the smaller scale of SM profiles. Additionally, combination of gene-SM 

associations with meta-analysis allows us to obtain combined SM association while accounting for 

missing data across different omics profiles. Lastly, CMA prevents inflation in gene-SM meta-analysis 

outcomes by adjusting them for gene correlations within modules. CMA has also been implemented for 

“omics”-wide association studies in correlated or overlapping populations [18][77][78]. 

 

Evaluation of TSI-Nets is crucial for their credibility and utilization. Our evaluation framework 

incorporates diversity metrics, PPI, and TF co-regulation support alongside the widely-used enrichment 

analysis [34] to reduce the bias towards well-studied genes and SMs (Figure 3). Interestingly, while PPI 

and TF co-regulation primarily pertain to transcriptomic evaluation, we observed that genes connected 

to the same SM in CMA-derived TSI-Nets exhibit both PPI and TF co-regulation support, further 

validating the network's biological coherence (Figure 4d). 

 

TSI-Nets constructed from both LLFS and knowledge-guided inputs exhibit consistent properties 

(Figure 4) but yield distinct results in association tests (Supplementary Figure 10 & 11). LLFS modules 

concentrated significant omics associations within a few highly correlated clusters, whereas 

knowledge-guided modules displayed more uniformly distributed significance patterns, reflecting their 

independence from the LLFS population. Given the complexity of TSI-Nets, prioritizing top-ranked 

modules and nodes with higher significance offers a practical strategy for deriving biological insights. 

In this study, the top-ranked module for IS highlighted a cross-talk between gut microbiome 

metabolism and the immune system, characterized by the interaction between the microbiome-drived 

NAG with immune genes FCER1A, HDC, MS4A2, and CPA3 with protective effects for metabolic 

health and inflammation (Figure 5). 

 

The TSI-Net framework provides a promising paradigm for bridging the knowledge gap on the 

molecular relationships of the SMs. However, it is built on statistical relationships, which, while robust, 

cannot establish causality. This highlights the need for functional validation of the identified 

interactions to confirm their biological importance. In addition, the current study focuses on 

transcriptome-SM interactions inferred from gene expression and SM abundance, which do not directly 

capture physical protein-SM interactions. Future efforts could integrate proteomic data and protein-SM 

molecular docking with the TSI-Net framework to create comprehensive protein-SM interaction 

networks. Lastly, applying graph neural networks to TSI-Nets could broaden their applications by 

enhancing the predictive power for complex traits. 

 

5. Conclusions 

 

This study presents a comprehensive framework for multi-omics integration, network inference, and 

analysis by addressing challenges in LC/MS data processing, multi-modal network construction, and 

network-guided biological interpretations. Through utilizing data from the healthy LLFS population 

with exceptional longevity, the inferred TSI-Nets demonstrate generalizable applicability for studying 
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varied conditions and complex traits. Furthermore, the integration of SMs originating from diverse 

sources highlights the potential to advance SM pathway discovery, particularly for understudied 

metabolites. Overall, this framework sets a promising foundation for future advancements in multi-

omics research. 

 

Data and code availability 

The LLFS data is available at the Exceptional Longevity Translational Resources portal 

(https://prod.eliteportal.synapse.org/Explore/Projects/DetailsPage?shortName=LLFS). LLFS and 

knowledge-guided TSI-Net modules and their respective gene-SM interactions are provided as 

supplemental information. TWAS, MWAS, and network association summary statistics for IS are 

provided as supplemental information. All code implementations will be provided in later revisions of 

the manuscript. 
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Figure 1 

 

Figure 1. General workflow of the study. a) In the first section of the study, a ML-based protocol is proposed, 

composed of data transformation and regression-based adjustments to prepare the LC/MS and RNA-seq profiles 

for integration. b) In the second part, conventional unsupervised network inference approaches as well as a 

newly proposed semi-supervised method were used to construct TSI-Nets. The semi-supervised method includes 

unsupervised construction of gene-level networks from the RNA-seq profiles with the conventional approaches, 

followed by supervise integration of SMs into the baseline networks. c) The semi-supervised method is 

benchmarked against the conventional approaches using multiple evaluation metrics. d) Upon benchmarking the 

resulting TSI-Nets, they were used to study metabolic traits, such as IS or BMI, in a network-guided manner. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. LC/MS data processing results. a) From left to right, the first plot illustrates the distribution of raw 

peak areas for dimethtylguanidino valeric acid (DMGV). Second plot demonstrates the distribution of DMGV 

upon adjustments for technical, demographical, and biological covariates. Third plot shows the distribution of 

FCER1A gene upon data processing. Finally, the fourth plot represents the distribution of insulin sensitivity upon 

covariate adjustment. b) The plot on the left illustrates the heritibality (h2) of lipids across different lipid 

categories. The plot on the right illustrates the h2 of polar SMs grouped by their primary source. c) QQ-plot of 

FCER1A gene with raw metabolome peak areas (left) and processed peak areas (right). Lipid categories include: 

“Acar”: acetylcarnitines, “Cer”: ceramides, “CE”: cholesterol esters, “DG”: diglycerides, “HexCer”: 

hexosylceramides, “LPC”: lysophosphatidylcholines, “LPE”: lysophosphatidylethanolamines, “PC”: 

a) 

b) 

c) 
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phosphatidylcholines, “PE”: phosphatidylethanolamines, “SM”: sphingomyelins. The primary source of polars 

include: “Diet”: from dietary sources, “Diet / Gut microbiome”: from gut microbiome metabolism, “Mixed”: 

from dietary and endogenous sources, “Endogenous”: synthesized internally within the body, “Drugs”, 

“Exposures – Others”, and “Limited source information”. 
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Figure 3 
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Figure 3. Benchmarking network inference approaches for TSI-Net construction. a) Represents the 

proportion of TSI-Net modules with significant hits from MSEA. b) Represents the average proportion of gene-

gene interactions supported by STRINGdb PPI networks. For each module, proportion of support was 

calculated, which was averaged across all modules. c) Represents the average proportion of genes co-regulated 

by same TFs based on the blood-specific GRNs. d) Represents the proportion of TSI-Net modules with 

significant GO terms. e) Representation of genes profiled in the LLFS across TSI-Nets inferred by each method. 

f) Representation of SMs profiled in the LLFS across TSI-Nets inferred by each method. g) Total number of TSI-

Net modules inferred by each method. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CMA-derived TSI-Net properties. a) Violin plots representing the composition of the TSI-Net 

modules based on the proportion of SMs across modules in the LLFS and knowledge-guided TSI-Nets. b) Violin 

plots of the variance explained by PC1 across the LLFS TSI-Net modules. For each module, separate PCA were 

performed on genes and SMs participating in the module. c) Histogram of the average –log10(p-value) of SM-SM 

associations in the TSI-Net modules. In each module, pairwise SM-SM associations were assessed and 

subsequently averaged for the number of pairs. The maximum range of the plot was set to –log10(p-value) ≤ 30 

for readability. d) Average percentage of support for SM-molecule interacting genes across the LLFS TSI-Nets 

a) b) 

c) 

d) 
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based on the STRINGdb PPI and blood GRN. Percentage of support for the gene set of each SM was calculated 

and averaged across all SMs. 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Demonstration of the significant gene-SM interactions in the top-ranked module for IS. a) NAG 

and DMGV are connected to all 4 genes illustrated in the sub-module. NAG is also connected to BMI and TG 

(not IL6), DMGV is connected to BMI, TG, and IL6, and the 4 genes are connected to BMI and TG. However, 

only FCER1A, HDC, and CPA3 are connected to IL6. The large blue and red ellipses are used for clear 

illustration. b) Association summary of the significant nodes of the top-ranked module for the metabolic traits. 
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Table 1. Significant TWAS summary statistics for IS 

 

Gene 
Symbol 

LLFS P-value LLFS Beta FHS P-value FHS Beta TWAS Atlas 

FCER1A 9.87E-12 0.449 9.65E-14 0.375 - 

CPA3 1.71E-11 0.400 6.71E-15 0.336 Fasting Glucose 

GATA2 7.17E-11 0.236 1.41E-13 0.254 
Fasting Glucose, 
Fasting Insulin 

HDC 1.14E-10 0.277 1.84E-13 0.244 Fasting Glucose 

SLC45A3 1.52E-10 0.368 3.69E-10 0.287 - 

ABCG1 2.94E-10 0.549 1.49E-08 0.458 - 

MS4A2 9.02E-10 0.354 9.12E-11 0.337 Fasting Glucose 

AKAP12 9.73E-10 0.355 8.48E-14 0.337 Fasting Glucose 

ITGB8 1.83E-08 0.353 N/A N/A - 

CX3CR1 1.85E-07 -0.646 8.64E-06 -0.4444 - 

MBNL3 3.06E-07 0.434 0.782 -0.0385 - 

PTGER2 5.32E-07 -0.805 1.55E-08 -0.768 Fasting Glucose 

LINC02458 5.39E-07 0.418 1.51E-12 0.474 - 

CCDC71 9.71E-07 1.087 7.15E-5 0.809 - 

KLHDC8B 1.77E-06 0.419 5.62E-5 0.291 - 

LTF 2.27E-06 -0.175 0.0925 -0.0434 - 

GCSAML 2.52E-06 0.446 9.70E-12 0.503 - 

ENPP3 2.62E-06 0.413 2.61E-11 0.502 - 
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Table 2. Network association summary of the significant knowledge-guided TSI-Net modules 

 

Module ID Module P-value Available Nodes Significant Nodes* Suggestive Nodes** 

GEO97 4.10E-10 63 7 9 

STRING193 5.52E-08 68 4 10 

GEO89 2.50E-06 101 2 20 

GEO149 8.31E-06 145 1 26 

GEO104 1.87E-05 33 1 10 

InWeb47 2.25E-05 48 1 10 

GEO102 6.78E-05 61 1 15 

* Transcriptome significance threshold: p = 3.05E-06, polar metabolome significance threshold: p = 2.27E-04, lipidome significance 

threshold: p = 2.66E-04 

** Suggestive association: p < 0.05 
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