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Abstract: (1) Background: Iron tetrasulfophthalocyanine with a large nonlinear optical coefficient,
good stability, and high catalytic activity has aroused the attention of researchers in the field of
photo-Fenton reaction. Further improvement of the visible light photo-Fenton catalytic activity under
circumneutral pH conditions for their practical application is still of great importance. (2) Methods:
In this paper, iron tetrasulfophthalocyanine (FePcS) and phosphomolybdic acid (PMA) cointercalated
layered double hydroxides (LDH) were synthesized by the ion-exchange method. All samples
were fully characterized by various techniques and the results showed that FePcS and PMA were
successfully intercalated in layered double hydroxides and the resulted compound exhibited strong
absorption in the visible light region. The cointercalation compound was tested as a heterogeneous
catalyst for the visible light photo-Fenton degradation of bisphenol A (BPA) at circumneutral pH.
(3) Results: The results showed that the degradation and total organic carbon removal efficiencies
of bisphenol A were 100% and 69.2%, respectively. (4) Conclusions: The cyclic voltammetry and
electrochemical impedance spectroscopy measurements demonstrated that the main contribution
of PMA to the enhanced photo-Fenton activity of FePcS–PMA–LDH comes from the acceleration
of electron transfer in the reaction system. Additionally, the possible reaction mechanism in the
photo-Fenton system catalyzed by FePcS–PMA–LDH was also proposed.

Keywords: photo-Fenton; iuron tetrasulfophthalocyanine; phosphomolybdic acid; layered double
hydroxides; circumneutral pH

1. Introduction

In recent years, great endeavors have been made to develop efficient chelating agents for stabilizing
iron and enhancing the photo-Fenton degradation of refractory organic contaminants in water under
neutral pH conditions [1–4]. To date, a large number of Fe complexes such as Fe–ethylenediaminetetraacetic
acid, Fe–oxalate, Fe–ethylenediamine–N, N′–disuccinic acid, and iron phthalocyanine complex (FePc)
have been reported as photo-Fenton catalysts [5–8], in which FePc has been found to have good response
to visible light [7,9–11]. Under visible light irradiation, effective energy transfer can occur between the
excited FePc and H2O2, resulting in the formation of the •OH radical, which can oxidize organic matter
with high efficiency [12]. However, the practical application of FePc is limited because of the low quantum
yield of •OH resulting from the short life of excited MPc [13].
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Coupling FePc with polyoxometalates (POM) may be an effective strategy to improve the utilization
of electronically excited FePc. Previous studies have shown that POM can act as an electron acceptor
and lead to the formation of reduced POM [14–18], which can not only accelerate the transfer of
Fe(III) to Fe(II) in FePc, but can also activate hydrogen peroxide or oxygen to produce various reactive
oxygen species with strong oxidizing property [19]. Inspired by these studies, we expect that the
introduction of phosphomolybdic acid (PMA), a Keggin polyoxometalate, can greatly enhance the
photo-Fenton catalytic activity of FePc. Considering the high solubility of FePcS and PMA in aqueous
media, the immobilization of FePcS–PMA is of great importance for the recovery and reuse of this
catalyst. Layered double hydroxides (LDHs) have been considered as attractive materials for their
high surface area, variable gallery height, and strong adsorption performance [20–22]. Moreover, due
to the remarkable anion-exchange capacity, LDHs are very suitable supporters for the immobilization
of the anionic complex [23,24].

With this understanding, we report herein the synthesis of FePcS–PMA–LDH composite catalyst
using ZnAl–layered double hydroxide (ZnAl–LDH) as the host material to support FePcS and PMA. The
as-prepared catalyst was used as an efficient heterogeneous catalyst for the photo-Fenton degradation
of bisphenol A (BPA) under visible light irradiation and neutral pH.

2. Materials and Methods

2.1. Synthesis of FePcS–PMA–LDH

ZnAl–LDH with a Zn/Al ratio of 2 was prepared through the co-precipitation method at a constant
pH of 6. FePcS was synthesized and purified according to the method of Griffin [25]. To synthesize the
FePcS–PMA–LDH, a 100 mL suspension containing 2.0 g ZnAl–LDH was added dropwise to a 50 mL
mixed solution of FePcS/PMA (0.02 g:0.06 g) under magnetic stirring and an inert atmosphere. In
addition, 20 mL of ethylene glycol and 20 mL of ethanol were added to the reacting mixture, which was
sonicated for 10 min to obtain a homogeneous dispersion and was then magnetically stirred for 24 h.
The obtained precipitate was filtered and washed with deionized water under an inert atmosphere,
and then dried at 60 ◦C under vacuum.

2.2. Characterization

The x-ray diffraction (XRD) patterns were investigated by a LabX-6000 diffractometer
(Shimadzu, Hong Kong, China). The Fourier transform infrared (FTIR) spectra were recorded
by a Nicolet 380 FTIR spectrometer using KBr pellets at room temperature. The zeta potential
values were measured using a Zeta sizer (nano zs90, Malvern Instruments, Worcestershire, UK).
The Brunauer–Emmett–Teller (BET) measurements of the materials were taken on a IGA 100B
instrument (Hiden, Warrington, England). Diffuse reflectance–UV–Vis (DRS–UV–Vis) measurements
were performed on a Shimadzu UV-2550 double-beam digital spectrometer (Hong Kong, China)
equipped with conventional components of a reflectance spectrometer. Scanning electron microscopy
(SEM) images were obtained using a scanning electron microscope (SEM, JSM-6360LV, JEOL, Peabody,
MA, USA).

The electrochemical measurements were performed with a CHI660 Electrochemical Workstation
(Shanghai Chenhua Instrumental Co. Ltd., Shanghai, China) and a conventional three-electrode
system, in which a ZnAl–LDH/FePcS–LDH/FePcS–PMA–LDH modified glassy carbon electrode
(GCE), a platinum plate, and a saturated calomel electrode were used as the working, counter,
and reference electrodes, respectively. The electrolyte was 0.1 M KCl solution containing 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) mixture. Cyclic voltammetry (CV) experiments were conducted at a
sweep rate of 100 mV/s and the scan range was from −0.2 to +0.8 V. The electrochemical impedance
spectra (EIS) were obtained over the frequency range from 100 kHz to 0.01 Hz with an AC signal
amplitude of 10 mV.
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2.3. Photocatalytic Tests and Analytical Methods

The photocatalytic experiments were conducted in a photochemical reaction instrument
(BL-GHX-CH500, Xi’an Depai Biotech. Co. Ltd., Xi’an, China) and a 500 W xenon lamp was
applied as the visible-light source. Typically, 40 mg FePcS–PMA–LDH was added to 100 mL of BPA
solution with the initial concentration of 10 mg L−1. The initial pH value of the solution was adjusted
by adding NaOH or HNO3 solutions. The mixed solution was magnetically stirred for 30 min in
the dark to achieve adsorption equilibrium between FePcS–PMA–LDH and BPA. Then, the xenon
lamp was turned on and H2O2 was added to the BPA solution. At predetermined time intervals, the
sample was taken out and centrifuged to obtain the supernatant for analysis. The concentration of the
remaining BPA in the aqueous solution was determined with high efficiency liquid chromatography
(HPLC, Agilent 1260). The concentration of Total Organic Carbon (TOC) during the degradation
solutions was measured by a TOC analyzer (Shimadzu TOC-L CPH CN 200, Kyoto, Japan) equipped
with an auto-sampler. Electron spin resonance (ESR) spectra of •OH, O2

•−, and 1O2 were tested by an
ESR spectrometer (JEOL JES-FA, Peabody, MA, USA).

3. Results

3.1. Characterization of Catalyst

Figure 1 shows the XRD patterns of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH. As
demonstrated in the diffractograms of ZnAl–LDH, the diffraction peaks at 2θ = 9.8◦ (003), 19.8◦

(006), 34.2◦ (009) matched well with the characteristic peaks of the reported ZnAl–LDH [26–28]. The
above peaks can also be found in the patterns of FePcS–LDH and FePcS–PMA–LDH, but slightly shifted
to lower angles when compared with ZnAl–LDH. Additionally, the value of the basal distance increased
from 0.894 nm for ZnAl–LDH to 1.037 nm and 1.046 nm for FePcS–LDH and FePcS–PMA–LDH,
respectively (Table 1). These results indicate the interlayer space of ZnAl–LDH is expanded after
intercalated by FePcS and FePcS–PMA.Materials 2020, 13, x FOR PEER REVIEW 4 of 15 
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Figure 1. X-ray diffraction (XRD) patterns of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH.

Table 1. Basal spacing of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH, determined by the
Bragg’s Law.

Samples 2θ (◦) Basal Spacing (nm)
(003)(003) (006) (009)

ZnAl–LDH 9.88 19.68 33.78 0.894

FePcS–LDH 8.52 18.26 32.22 1.037

FePcS–PMA–LDH 8.44 18.08 32.36 1.046
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The molecular structure and chemical nature of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH
were analyzed by FTIR spectra, which are shown in Figure 2. In the spectrum of ZnAl–LDH, the
characteristic absorption peaks at 3446, 1630, and 1403 cm−1 can be attributed to the O–H stretching
vibration of interlayer water molecules, the bending vibration of H2O in the brucite-like layer, and the
stretching vibration of nitrate, respectively [29–31]. Compared to the ZnAl–LDH sample, the FTIR
spectra of FePcS–LDH and FePcS–PMA–LDH appeared as a new absorption band at 1120 cm−1, which
was assigned to the stretching vibration absorption of the S=O bond in FePcS [32,33], whereas the
infrared absorbance near 647 cm−1 was assigned to the vibration absorption of C–H out-of-plane ring
bend on the aromatic ring in FePcS [34]. Furthermore, in contrast to ZnAl–LDH, the FTIR spectrum
of FePcS–PMA–LDH appeared as characteristic peaks of PMA. The absorption peak at 871 cm−1

corresponded to the stretching vibrations of Mo–Oc–Mo and Mo–Ob–Mo bands, and the stretching
vibrations at 966 cm−1 and 1064 cm−1 referred to Mo=Od and P–Oa bands [35–37].The results of the
FTIR spectra further confirmed the successful modification of FePcS and FePcS–PMA in ZnAl–LDH.
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Figure 2. Fourier transform infrared (FTIR) spectra of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH.

Figure 3 presents the evolution of the zeta potential as a function of pH for the ZnAl–LDH,
FePcS–LDH, and FePcS–PMA–LDH with the particle concentration of 2 g/L. As can be seen, the zeta
potential values of ZnAl–LDH were positive in a wide range of pH (pH = 4–10), which resulted from
the structural charge and the hydroxyl groups located on the surface of the ZnAl–LDH particles [38].
However, the zeta potential values for FePcS–LDH and FePcS–PMA–LDH were reversed to negative
because of the immobilization of FePcS and FePcS–PMA. The physical electrostatic force between the
LDH’s structural positive charges and anionic charge compounds is one of the main interaction forces
between LDHs and the anionic compounds [39]. Therefore, the immobilized anionic compounds can
neutralize the structural charges of ZnAl–LDH. It should be noted that FePcS–PMA exhibited more
negative zeta potential values than FePcS–LDH. This result also reflects that FePcS and PMA have
been cointercalated into the interlayer galleries of ZnAl–LDH.

The surface morphologies of the catalysts were examined by SEM. As shown in Figure 4, the surface
of ZnAl–LDH was smooth, while relatively rough surfaces of FePcS–LDH and FePcS–PMA–LDH
particles can be observed, which may result from the homogeneous distributions of FePcS and
FePcS–PMA on the LDHs surface. It also should be noted that FePcS–PMA–LDH exhibited a rougher
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surface morphology compared with FePcS–LDH, indicating that FePcS–PMA–LDH can provide more
adsorption sites than FePcS–LDH.
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Figure 3. Variation of zeta potential with pH of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH.
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Figure 4. Scanning electron microscopy (SEM) images of ZnAl–LDH (a), FePcS–LDH (b), and
FePcS–PMA–LDH (c).

The specific area, pore volume, and pore size of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH
were measured by nitrogen adsorption–desorption isotherms. As shown in Figure 5, ZnAl–LDH,
FePcS–LDH, and FePcS–PMA–LDH exhibited type H3 hysteresis loops of the Brunauer–Deming–
Deming–Teller (BDDT) type IV isotherm [40], illustrating the above catalysts belong to the characteristic
of mesoporous materials [41,42].

The specific areas, pore volumes, and pore sizes of the three samples are listed in Table 2, where
the specific area, pore volume, and pore size of ZnAl–LDH were 9 m2/g, 0.012 cm3/g, and 16.6 nm,
respectively. After loaded with FePcS, the values increased to 16 m2/g, 0.031 cm3/g, and 18.0 nm,
respectively. For FePcS–PMA–LDH, the corresponding values (22 m2/g, 0.041 cm3/g, and 21.7 nm)
were higher than those of ZnAl–LDH and FePcS–LDH, suggesting that FePcS–PMA–LDH can provide
more catalytic active sites in the process of pollutant degradation [43]. These results are in agreement
with the SEM observations.

Table 2. Brunauer–Emmett–Teller (BET) surface areas, pore volumes, and pore sizes of ZnAl–LDH,
FePcS–LDH, and FePcS–PMA–LDH.

Samples BET Surface Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

ZnAl–LDH 9 0.012 16.6

FePcS–LDH 16 0.031 18.0

FePcS–PMA–LDH 22 0.041 21.7
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Figure 5. Nitrogen adsorption–desorption isotherms of ZnAl–LDH, FePcS–LDH, and FePcS–
PMA–LDH.

From the UV–Vis diffused reflectance spectra of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH
(Figure 6), it can be seen that FePcS–PMA–LDH had two strong absorption bands at around 650 nm
and 350 nm, while ZnAl–LDH exhibited an absorption only in the ultraviolet light region (250–340 nm).
The additional UV–Vis absorbance for FePcS–PMA–LDH can be ascribed to the existence of FePcS with
the “Q-band” and “B-band” absorption band [44]. Additionally, because of the existence of PMA, the
region of absorption peak around 650 nm for FePcS–PMA–LDH was larger than that for FePcS–LDH.
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Figure 6. Diffuse reflectance spectra of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH.

3.2. Catalytic Performance of Samples

Figure 7 shows the degradation and mineralization of BPA in aqueous solution by various
systems, in which the experimental conditions of the photo-Fenton reaction were decided according
the influence factor experiments (Figures S1–S4). As shown in Figure 7, negligible degradation and
mineralization of BPA in the system with only visible light (curve a) indicates that BPA is quite
stable under visible light irradiation. Under the dark conditions (curves b–e), the degradation and
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mineralization rates of BPA are rarely increased, which may be caused by the fact that H2O2 cannot be
converted into •OH radicals without light irradiation. Additionally, only 28.6% of BPA was removed
in the “Vis/FePcS–PMA–LDH” system (curve f), demonstrating that it is inefficient to degrade BPA
when FePcS–PMA–LDH is only used as a photocatalyst. While in the “Vis/H2O2” (curve g) and
“Vis/H2O2/ZnAl-LDH” (curve h) systems, the degradation efficiencies of BPA were 90.8% and 91.2%
after only 80 min irradiation (Figure 7a), however, both of them had limited Total Organic Carbon (TOC)
removal efficiencies, which were 18.5% and 18.9%, respectively (Figure 7b). These results indicate that
the hydroxyl radicals released in this system can only degrade BPA into longer-lived intermediates.
As for the “Vis/H2O2/FePcS-LDH” (curve i) and the “Vis/H2O2/FePcS–PMA–LDH” (curve j) systems,
the BPA degradation achieved 100% due to the photo-Fenton like reaction [45–47]. However, the BPA
mineralization efficiency in the Vis/H2O2/FePcS–PMA–LDH system (69.2%) within 180 min was much
larger than that in the Vis/H2O2/FePcS–LDH system (41.4%). Moreover, compared with the kinetic
rate constants of ZnAl–LDH, FePcS–LDH, and FePcS–PMA–LDH (shown in Figure 8), the kinetic rate
constant of FePcS–PMA–LDH (0.061 min−1) was higher than that of ZnAl–LDH (0.022 min−1) and
FePcS–LDH (0.032 min−1). These results show that FePcS–PMA–LDH has better catalytic activity than
ZnAl–LDH and FePcS–LDH for the degradation of BPA under circumneutral pH condition.Materials 2020, 13, x FOR PEER REVIEW 8 of 15 
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Figure 7. (a) Degradation of bisphenol A (BPA) under different conditions. (b) Mineralization of
BPA under different conditions. (a) Vis; (b) H2O2; (c) H2O2/ZnAl–LDH; (d) H2O2/FePcS–LDH;
(e) H2O2/FePcS–PMA–LDH; (f) Vis/FePcS–PMA–LDH; (g) Vis/H2O2; (h) Vis/H2O2/ZnAl–LDH;
(i) Vis/H2O2/FePcS–LDH; (j) Vis/H2O2/FePcS–PMA–LDH. [BPA] = 10 mg/L; [H2O2] = 6 mM; pH
= 6.0; catalyst dosage = 0.4 g/L; Light intensity = 500 W.
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Figure 8. The kinetic rate constant of BPA degradation in the photo-Fenton system with different
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The stability is also an important index in the practical application of the catalyst. The stability
of FePcS–PMA–LDH was evaluated by recycling tests (Figure 9), where the results show that the
degradation and mineralization reached 97.6% and 65.3% after three cycles, implying that the catalyst
is relatively stable in photo-Fenton catalytic applications.
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3.3. Photo-Fenton Mechanism Discussion

To explore the catalytic mechanism of the photo-Fenton system with FePcS–PMA–LDH, active
species capture experiments were carried out. In these experiments, isopropanol (IPA), p-benzoquinone
(PBQ), ammonium oxalate (AO), and sodium azide (NaN3) were applied as the scavengers of •OH,
O2
•−, h+ and 1O2, respectively. The results of the experiments are shown in Figure 10, it can be clearly

seen that the degradation of BPA is more or less suppressed by these four scavengers. Particularly,
the suppression of BPA degradation by IPA, PBQ, and NaN3 were more prominent than that by AO,
which means that •OH, O2

•− and 1O2 play main roles in the system.
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In order to understand the production path of hydroxyl radicals, superoxide radicals, and singlet
oxygen, the corresponding ESR spin trapping experiments were carried out in the systems with
ZnAl–LDH, PMA–LDH, FePcS–LDH, and FePcS–PMA–LDH, respectively. As shown in Figure 11,
significant signals of •OH, O2

•−, and 1O2 can be detected in the systems with FePcS–LDH and
FePcS–PMA–LDH, which were much stronger than that in the PAM–LDH and ZnAl–LDH systems.
These results demonstrate that the generation of these radicals is mainly due to the existence of FePcS.
As a kind of Fe complexes, FePcS was extensively studied as a photo-Fenton catalyst, in which the iron
center can react with H2O2 to form •OH [47,48]. In addition, FePcS proved that it could be excited
to generate an excited state (FePcS*) upon irradiation, which can interact with O2 to form O2

•− and
1O2 [48]. Compared with the FePcS–LDH system, the signals of •OH, O2

•−, and 1O2 were all further
enhanced in the FePcS–PMA–LDH system, which verified that the addition of PMA is favorable to the
formation of these active species. According to the study of Chen et al. [18], polyoxometalates (POM)
can easily capture electrons from electron acceptors to form reduced POM (POM−). POM− can not
only promote the transition between Fe(III) to Fe(II) in FePc to accelerate the Fenton-like reaction, but
can also directly reduce O2 to O2

•−. Therefore, as a kind of POM, PMA has a synergistic effect with
FePcS in the generation of •OH, O2

•−, and 1O2.
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Figure 11. Electron spin resonance (ESR) spectra of (a) DMPO–HO· adducts, (b) DMPO–O2
•− adducts

and (c) TEMP–1O2 adducts in the photo-Fenton system with ZnAl–LDH, PMA–LDH, FePcS–LDH, and
FePcS–PMA–LDH under visible light irradiation.

The electrochemical measurements were carried out to investigate the process of electron transfer.
The CV curves of ZnAl–LDH/GCE, FePcS–LDH/GCE, and FePcS–PMA–LDH/GCE are shown in
Figure 12. The CV curves of ZnAl–LDH/GCE and FePcS–LDH/GCE show a couple of small redox
peaks, whereas the FePcS–PMA–LDH modified GCE shows a pair of stable, symmetrical, and obvious
redox peaks. These results imply that a faster electron transfer occurred on the surface of the
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FePcS–PMA–LDH/GCE electrode [49–51], which promotes the redox reaction between Fe(III) to Fe(II)
in the iron center of FePcS.Materials 2020, 13, x FOR PEER REVIEW 11 of 15 
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Figure 12. Cyclic voltammetry of ZnAl-LDH/GCE, FePcS-LDH/GCE, and FePcS–PMA–LDH/GCE in
0.1 M KCl solution containing K3[Fe(CN)6]/K4[Fe(CN)6] (both 5 mM) with a scan rate of l0 mV/s.

The above results can also be confirmed by the EIS measurements. According to previous
reports [52–55], the smaller radius of the Nyquist circle implies a faster electron transfer rate. As shown
in Figure 13, the radius on the EIS Nyquist plot of FePcS–PMA–LDH/GCE was much smaller than that
of ZnAl–LDH/GCE and FePcS–LDH/GCE, indicating a faster charge transfer occurred on the interface
of the FePcS–PMA–LDH/GCE electrode. These results show that the presence of FePcS and PMA make
the electron transfer easier and thus favor the photo-Fenton treatment in water.

Materials 2020, 13, x FOR PEER REVIEW 11 of 15 

 

 

Figure 12. Cyclic voltammetry of ZnAl-LDH/GCE, FePcS-LDH/GCE, and FePcS–PMA–LDH/GCE in 
0.1 M KCl solution containing K3[Fe(CN)6]/K4[Fe(CN)6] (both 5 mM) with a scan rate of l0 mV/s. 

The above results can also be confirmed by the EIS measurements. According to previous reports 
[52–55], the smaller radius of the Nyquist circle implies a faster electron transfer rate. As shown in 
Figure 13, the radius on the EIS Nyquist plot of FePcS–PMA–LDH/GCE was much smaller than that 
of ZnAl–LDH/GCE and FePcS–LDH/GCE, indicating a faster charge transfer occurred on the 
interface of the FePcS–PMA–LDH/GCE electrode. These results show that the presence of FePcS and 
PMA make the electron transfer easier and thus favor the photo-Fenton treatment in water. 

 

Figure 13. Nyquist diagrams obtained at ZnAl–LDH/GCE, FePcS–LDH/GCE, and FePcS–PMA–
LDH/GCE in 0.1 M KCl solution containing K3[Fe(CN)6]/K4[Fe(CN)6] (both 5 mM). 

-0.2 0.0 0.2 0.4 0.6 0.8

-15

-10

-5

0

5

10

15 ZnAl-LDH/GCE
FePcS-LDH/GCE
FePcS-PMA-LDH/GCE

 

 
C

ur
re

nt
(μ

A
)

Potential(V VS. SCE.)

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1000

2000

3000

4000

5000

6000

Z'/ohm

-Z
"/

oh
m

ZnAl-LDH/GCE
FePcS-LDH/GCE
FePcS-PMA-LDH/GCE

Figure 13. Nyquist diagrams obtained at ZnAl–LDH/GCE, FePcS–LDH/GCE, and FePcS–PMA–LDH/

GCE in 0.1 M KCl solution containing K3[Fe(CN)6]/K4[Fe(CN)6] (both 5 mM).



Materials 2020, 13, 1951 11 of 14

According to the above experiments, the main contribution of PMA to the enhanced photo-Fenton
activity of FePcS–PMA–LDH comes from the acceleration of electron transfer in the reaction system.
The possible reaction mechanism can be proposed in Figure 14. FePcS can first be excited under the
irradiation of visible light. Then, PMA can capture electrons from the excited FePcS to generate reduced
PMA (PMA−). On one hand, PMA− can reduce Fe(III)–PcS to Fe(II)–PcS, which can react with H2O2

to form •OH. On the other hand, PMA− can directly act with O2, leading to the formation of O2
•−.

Furthermore, O2 can directly react with excited FePcS to form O2
•−, and 1O2. Therefore, •OH, O2

•−,
and 1O2 become the main active species for BPA degradation in this system. Of course, the roles of
PMA in the studied catalyst need to be further investigated.
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