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AbstrAct
Aim An in silico pathway analysis was performed in an 
attempt to identify new biomarkers for cervical carcinoma.
Methods Three publicly available Affymetrix gene 
expression data sets (GSE5787, GSE7803, GSE9750) 
were retrieved, vouching for a total 9 cervical cancer 
cell lines, 39 normal cervical samples, 7 CIN3 samples 
and 111 cervical cancer samples. An Agilent data set 
(GSE7410; 5 normal cervical samples, 35 samples from 
invasive cervical cancer) was selected as a validation set. 
Predication analysis of microarrays was performed in the 
Affymetrix sets to identify cervical cancer biomarkers. 
We compared the lists of differentially expressed genes 
between normal and CIN3 samples on the one hand 
(n=1923) and between CIN3 and invasive cancer samples 
on the other hand (n=628).
Results Seven probe sets were identified that were 
significantly overexpressed (at least 2 fold increase 
expression level, and false discovery rate <5%) in both 
CIN3 samples respective to normal samples and in 
cancer samples respective to CIN3 samples. From these, 
five probes sets could be validated in the Agilent data 
set (P<0.001) comparing the normal with the invasive 
cancer samples, corresponding to the genes DTL, HMGB3, 
KIF2C, NEK2 and RFC4. These genes were additionally 
overexpressed in cervical cancer cell lines respective to 
the cancer samples. The literature on these markers was 
reviewed
Conclusion Novel biomarkers in combination with 
primary human papilloma virus (HPV) testing may 
allow complete cervical screening by objective, non-
morphological molecular methods, which may be 
particularly important in developing countries

IntRoduCtIon
Persistent infections with oncogenic human 
papilloma virus (HPV) play a central role 
in the carcinogenesis of carcinoma of the 
uterine cervix.1–4 However, only a small frac-
tion of high-risk HPV-positive women will 
eventually develop a clinically relevant lesion 
as the majority of HPV infections induce 
low-grade precursor lesions that are cleared 
spontaneously.4 The molecular biological 
events involved in progression from low-grade 
lesions to high-grade lesions and invasive 
cancer are not well understood. Induction 
of genomic instability and global disruption 

of gene expression, particularly in the HPV 
E6 and E7 oncoproteins, has been implicated 
in HPV-associated carcinogenesis. Novel 
biomarkers that allow monitoring of these 
essential molecular events in histological and 
cytological specimens are likely to improve 
the detection of lesions that have a high risk 
of progression, in both primary screening 
and triage settings.1 4 

Although polyvalent HPV vaccines seem 
promising to eradicate cervical cancer 
in the future, this disease will be with us 
for the next decades as these vaccines are 
at present not generally available in the 
Western and developing world, while not 
being entirely effective.2 This implicates that 
screening will remain important as a strategy 
to reduce mortality caused by carcinoma of 
the cervix uteri. Rapid molecular methods 
for detecting HPV DNA have become 

Key questions

What is already known about this subject?
 ► Human papilloma virus (HPV) infections play a cru-
cial role in cervical cancer carcinogenesis.

 ► Only a minority of patients with HPV infections de-
velop invasive cervical cancer.

 ► HPV testing is currently used from cervical can-
cer screening and can be improved using new 
biomarkers.

What does this study add?
 ► DTL, HMGB3, KIF2C, NEK2 and RFC4 are significant-
ly overexpressed in both CIN3 samples respective to 
normal samples and in cancer samples respective 
to CIN3 samples.

 ► These genes were additionally overexpressed in 
cervical cancer cell lines respective to the cancer 
samples.

How might this impact on clinical practice?
 ► These novel biomarkers in combination with primary 
HPV testing may allow complete cervical screening 
by objective, non-morphological molecular methods.

 ► It is necessary to identify a cut-off level expression 
of these genes to create an algorithm for molecular 
screening.

http://www.esmo.org/
http://esmoopen.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/esmoopen-2018-000352&domain=pdf&date_stamp=2018-06-28
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commercially available over the last decade and have been 
introduced for HPV-based cervical cancer screening in 
some countries.1 4 Despite several advantages, HPV detec-
tion has a low positive predictive value for cervical cancer 
implicating that HPV-positive women need to be triaged 
with additional testing to determine optimal risk strati-
fication and management.3 5 Disease-specific biomarkers 
such as p16(INK4A), HPVE6/E7 mRNA, topoisomerase 
2a, Ki67 or novel methylation assays have been evaluated 
in various settings but are at this point not sufficiently 
validated to be incorporated in HPV-based screening 
programmes.1 In the PALMS Study it was recently demon-
strated that p16/Ki67 dual-stained cytology combines 
superior sensitivity and non-inferior specificity over 
cytology for detecting CIN2+ in a group of 27 349 women 
attending routine cervical cancer screening.6 Reduced 
expression of the tumour suppressor CDNK2A leads 
to downstream overexpression of p16 in premalignant 
cervical cells. Some small panels such as methylation 
status of cell adhesion molecule 1 (CADM1) and T-lym-
phocyte maturation associated protein (MAL) showed to 
have promise as triage tests for HPV-positive women.5–10 
However, a recent study assessing DNA methylation status 
of MAL, ADCYAP1, PAX1 and CADM in 205 patients with 
low-grade or high-grade CIN and cervical cancer demon-
strated that ADCYAP1 and PAX1 had a relatively better 
discriminatory ability than did methylated MAL and 
CADM1, which illustrates that the best panel still needs 
to be discovered.11

Recently we conducted an in silico analysis looking for 
driver pathways on all publicly available Affymetrix data 
sets containing normal and pretreatment (pre)invasive 
cancer samples with relevant clinical information.12 In the 
present paper we addressed and validated the biomarkers 
which came up in this analysis and we reviewed the litera-
ture on the subject.

MAteRIAls And MetHods
Patient data sets
Patient data sets used were described previously.12 Briefly 
all publicly available Affymetrix data sets (HGU133-se-
ries: GSE5787, GSE7803, GSE9750) containing normal 
and pretreatment (pre)invasive cervical cancer samples 
with relevant clinical information were retrieved from 
the Gene Expression Omnibus (GEO; http://www. ncbi. 
nlm. nih. gov/ gds). The only available Agilent data set 
(GSE741) fulfilling the same criteria was selected as a vali-
dation set. The three Affymetrix gene expression data sets 
vouched for a total of nine cervical cancer cell lines, 39 
normal cervical samples, 7 CIN3 samples and 111 cervical 
cancer samples. The Agilent data set contained data of 
5 normal cervical samples and 35 samples from invasive 
cervical cancer. No information was available on the HPV 
status of the samples.

data normalisation and exploration
Data normalisation and exploration was described in 
detail in previous papers.12 13

Biomarker analysis for early diagnosis
To detect potential biomarkers for early diagnosis, we 
performed predication analysis of microarrays comparing 
normal cervical samples to CIN3 samples and CIN3 
samples to invasive cervical cancer samples as described 
previously.12 We also compared the lists of differen-
tially expressed probe sets between normal versus CIN3 
samples, CIN3 versus cancer samples and normal versus 
cancer samples (figure 1).

Immunohistochemical staining
Immunohistochemical validation for high mobility 
group-box 3 (HMGB3) was performed on formalin-fixed 
paraffin-embedded sections of normal, CIN III and inva-
sive cervical cancer samples using a polyclonal antibody 
against the C-terminal region of HMGB3 (Aviva Systems 
Biology, San Diego, USA), diluted 1/100 on a Dako auto-
stainer.

Results
Biomarker discovery for early detection
In order to identify biomarkers for potential early 
detection of cervical cancer, a biomarker discovery 
analysis of the Affymetrix microarrays was performed 
comparing: (A) expression profiles of the normal 
cervical samples versus the CIN3 samples; and (B) the 
normals versus the invasive cancer samples. Predic-
tion analysis of genes comparing the top 100 most 
differentially expressed genes in the normal and inva-
sive samples showed that CDNK2A, MAL, ECT2 and 
PPP1R3C came up as potential biomarkers (figure 2).12 
Of these genes, CDNK2A, ECT2 and PPP1R3C could 
be validated in the Agilent GSE7410 data set (figure 3). 
Expression of CDNK2A and ECT was lower in the CIN 
III and invasive samples compared with the normals 
making these genes less suitable for early detection. 
Expression of PPP1R3C is higher in CIN III and invasive 
cancer versus the normals, but levels of expression are 
similar in the premalignant and malignant samples in 
the Affymetrix data sets, which is also inconvenient in a 
triage setting. Therefore, we decided to adopt a second 
approach which was described in detail in a previous 
paper.12 Briefly we compared the lists of differentially 
expressed genes between normal and CIN3 samples on 
the one hand (n=1923) and between CIN3 and invasive 
cancer samples on the other hand (n=628) and looked 
for genes with higher expression in invasive cancer 
compared with CIN III and higher expression in CIN 
III compared with the normals. Seven probe sets were 
identified that were significantly overexpressed (at least 
2 fold increased expression level, and false discovery 
rate <5%) in both CIN3 samples respective to normal 
samples and in cancer samples respective to CIN3 
samples. From these, six probe sets corresponded to six 
unique genes: Aurora kinase A (AURKA), denticleless 
E3 ubiquitine protein ligase homologue DTL, HMGB3, 
kinesin family member 2 C (KIF2C), NIMA(never in 

http://www.ncbi.nlm.nih.gov/gds
http://www.ncbi.nlm.nih.gov/gds
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mitosis gene a)-related kinase 2 (NEK2) and RFC4. 
Five probe sets could be validated in the Agilent data 
set (P<0.001) comparing the normal with the invasive 

cancer samples, corresponding to the genes DTL, 
HMGB3, KIF2C, NEK2 and RFC4 (figure 4). AURKA 
reached borderline significance (P 0.073) in a similar 

Figure 1 Heat map depicting genes enriched in tumour samples compared with normal samples according to GSA analysis.

Figure 2 (A) Biomarker discovery analysis showing prediction analysis of Affymetrix microarrays comparing the top 100 
differentially expressed genes. (B) Retained genes were compared in the normal, CIN III, invasive cancer samples and the cell 
lines.
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analysis. There was no difference in the expression of 
these genes in samples of patients with lymph node 
metastases or without lymph node metastases in the 
Agilent samples. The above genes were additionally 
overexpressed in cervical cancer cell lines respec-
tive to the cancer samples, suggesting they are cancer 
cell intrinsic and thus can be considered as potential 
biomarkers for cervical cancer tailored to early diag-
nosis. Genes that showed significantly lower expression 
in (pre)cancer samples compared with normal samples 

were not retained as biomarkers, as the absence of a 
marker for (pre)malignancy may be caused by technical 
errors and therefore is more difficult to use in daily 
practice than the presence of the marker.

Validation of the data
Data validation was discussed in detail in a previous 
paper.12 In addition we performed immunochemical 
staining for HMGB3 in normal cervix, CIN III and inva-
sive carcinoma and could show absent staining in normal 

Figure 3 Validation of the retained genes in the Agilent GSE7410 data set.

Figure 4 Validation of the biomarkers in the Agilent GSE7410 data set comparing the normal samples (dark blue) with the 
invasive cancer samples (all patients light blue, lymph node positive patients intermediate blue).
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cervix, absent to weak staining in CIN III and clear strong 
nuclear staining in invasive carcinomas (figure 5).

dIsCussIon
In the present in silico study we could identify six 
biomarkers which have the potential to be used for early 
detection of patients at risk to develop progressive cervical 
lesions: AURKA, DTL, HMGB3, KIF2C, NEK2 and RFC4. 
All these genes play pivotal roles in the control of prolifer-
ation and differentiation. Using a different methodology 
Koch and Wiese performed a similar microarray analysis 
of 24 normal and 102 cervical cancer biopsies from four 
pooled publicly available studies.14 They found seven 
probes which are induced in all cervical cancer stages 
and hereby confirmed the relevance of AURKA, DTL and 
NEK2 in addition to GINS1, PAK2, PRKDC and CEP 55.

AURKA is a member of the evolutionary conserved 
Aurora serine/threonine kinase family which is important 
to maintain genomic stability.15 16 Overexpression of 
AURKA promotes cell proliferation through G1/S cell 
cycle transition and to antiapoptosis, and can cause poly-
ploidy and chromosomal instability, xenograft tumour 
growth and chemoresistance.17 18 Simultaneous inhibition 
of AURKA and AURKB results in a dramatic decrease in 
spindle microtubule stability.19 The human AURKA gene 
maps to 20q13, a region frequently amplified in breast 
cancers and is also overexpressed in several tumours.20 
Although it has been suggested that AURKA expression 
may predict the outcome of patients with cervical cancer, 
its precise function and molecular mechanism in cervical 
cancer pathogenesis remains unclear.15 Using immuno-
histochemical staining in 180 cervical cancer tissues, Sun 
et al showed that AURKA is overexpressed in cervical 
cancer and that expression is significantly correlated with 
tumour size (P=0.023), lymphovascular space involve-
ment (P<0.001) and deep invasion (P=0.014).18 Twu et 
al performed immunohistochemical staining of AURKA 
and AURKB in 20 samples of normal cervix, 35 CIN III 
samples and 95 invasive cervical carcinoma samples (76 
squamous and 19 adenocarcinomas) and could show 
that expression of these genes is significantly increased 
in invasive carcinoma and CIN III.21 Overexpression of 
AURKA was higher in squamous carcinoma compared 

with adenocarcinoma (50% vs 21%, P=0.023). There was 
correlation between AURKA and AURKB expression and 
survival.22 A screen of the human kinome has identified 
AURKA as being synthetically lethal on the background 
of HPV infection.23

DTL is an early checkpoint regulating gene interacting 
with p21.24 25 It is also known as CDT2 (CDC10-depen-
dent transcript 2), DCAF2, L2DTL or RAMP.24 Check-
point genes maintain genomic stability by arresting cells 
after DNA damage. Many of these genes also control cell 
cycle events in unperturbed cells. DTL/CDT2 is required 
for normal cell cycle control, primarily to prevent repli-
cation.25 DTL promotes genomic stability as an essential 
component of the CUL4-DDB1 complex that controls 
CDT1 levels.26 It has been shown that changes in the 
expression of TP53, which play a major role in the patho-
genesis of cervical cancer, affects its downstream miRNAs 
and their most important gene targets MEIS1, AGTR1, 
DTL, TYMS and BAK1 in head and neck squamous cell 
carcinoma.27 28 The DTL gene was a found to be of func-
tional relevance in the tumorigenesis of hepatocellular, 
gastric, colonic and breast carcinoma, and rhabdomyo-
sarcoma, and may be of prognostic importance.25 28–32 
According to the Human Protein Atlas project (www. 
proteinatlas. org) low DTL expression was found in 
cervical cancer but was also seen in normal cervical tissue.

NEK2 is a serine/threonine kinase involved in the regu-
lation of centrosome duplication and spindle assembly 
during mitosis.33 34 Dysregulation of these processes 
causes chromosome instability and aneuploidy.33 There 
are three isoforms that result from alternate splicing of 
this gene, named NEK2A, NEK2B and NEK3C. NEK2A is 
31% structurally identical to AURKA.33 Subcellular local-
isation analysis shows that NEK2A resides in both cell 
nucleus and cytoplasm.34 It displays a cell cycle dependent 
expression pattern, being low in G1, increasing through 
S and G2 to reach peak in late G2/M and decreasing on 
entry into mitosis.35 Overexpression of NEK2 has been 
reported in cervical and other cancer cell lines and 
several neoplastic diseases such as preinvasive and inva-
sive breast carcinomas, lung adenocarcinomas, testicular 
seminomas, liver cancer, pancreatic carcinomas, pros-
tate carcinomas, and diffuse large B cell lymphomas.36–40 

Figure 5 Immunochemical staining for HMBG3 in normal cervix, CIN III and invasive carcinomas and could show absent 
staining in normal cervix (A), absent to weak staining in CIN III (B) and clear strong nuclear staining in invasive (C) carcinomas.

www.proteinatlas.org
www.proteinatlas.org
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NEK2 is a bad prognostic factor in patients with breast 
cancer, non-small cell lung cancer, colonic carcinoma 
and pancreatic carcinoma.36–41 Because NEK2A has such 
a broad spectrum of roles in different cell processes, it is 
an attractive target for treatment.42

HMGB3, also known as HMG4, HMG2A, is a recently 
discovered member of the high mobility group (HMG) 
superfamily of HMG proteins, and is classified with 
HMGB1 and HMGB2 into the HMG-box subfamily.43 The 
80% identity between HMG-box proteins suggests similar 
functions at a molecular level. HMGB1 and HMGB2 can 
interact with DNA and subsequently bend linear DNA, 
thereby facilitating nucleoprotein complex formation 
through alteration of local chromatin architecture.43–45 
HMGB3 has been reported to be overexpressed in a 
variety of human cancers such as gastric cancer, oesopha-
geal squamous cell carcinoma, bladder cancer, non-small 
cell lung cancer and breast cancer.46–51 Overexpression 
of HMGB3 is correlated with aggressive behaviour and 
poor prognosis in almost all of these tumour types.48–51 
HMGB3 has been identified in Hela cervical cancer 
cells.52 According to the Human Protein Cancer Atlas 
cervical cancers have variable staining for HMGB3 
whereas staining is absent in normal cervix. No further 
data are available on the expression of HMGB3 in cervical 
cancer.

KIF2C encodes a kinesin-like protein that functions 
as a microtubule-dependent molecular motor.53 The 
encoded protein can depolymerise microtubules, thereby 
promoting the anaphase of mitotic chromosome segre-
gation and may be required to coordinate the onset of 
sister centromere separation.53 KIF2C therefore plays an 
important role during cell proliferation and may be an 
essential gene in carcinogenesis. KIF2C can induce spon-
taneous CD4(+) T cell responses of the Th1-type which 
are tightly controlled by peripheral T regulatory cells, 
and may be an attractive target for antigen-specific immu-
notherapies.54 This hypothesis was confirmed by Lu et al 
who were able to show that tumour infiltrating lympho-
cytes recognising mutated KIF2C and POLA2 epitopes 
could mediate complete durable regressions in patients 
with metastatic melanoma.53 Comprehensive expression 
analysis in other human cancers demonstrated KIF2C 
overexpression in gastric, pancreatic, glioma, ovarian, 
head and neck, and breast cancers.55–59 According to the 
Human Protein Cancer Atlas most cervical cancers have 
variable staining for KIF2C whereas staining is absent in 
normal cervix.

The human replication factor C (RFC) is a multinumer-
ical protein consisting of five distinct subunits that are 
highly conserved through evolution.60 The RFC family 
functions as clamp loaders that load PCNA onto DNA in 
an ATP-dependent process during DNA synthesis.60 RFC 
is involved in DNA repair following DNA damage.61 The 
RFC4 gene that encodes for the fourth largest subunit 
of the RFC complex has been reported to be deregu-
lated in diverse malignancies including prostate cancer, 
head and neck squamous cell carcinomas, hepatocellular 

carcinoma, colonic carcinomas and cervical cancer.62–68 
Using cDNA array comparative genomic hybridisation 
Narayan et al indentified a number of over-represented 
and deleted genes in 29 cases of cervical carcinoma.64 
This analysis exhibited frequent and robust upregu-
lated expression for RFC4 and KIF4A among others 
such as EPHB2, CDCA8, MUC4, MMP1, MMP13 and 
AKT1 in cervical cancer compared with normal cervix. 
Comparing three primary isolates and two established 
cervical cancer cell lines to normal keratinocytes Kang et 
al could detect overexpression of RPA, RFC, PCNA and 
DNA polymerase, which seem to play a role in adeno-as-
sociated virus DNA replication.63 Increased expression 
of sine oculis homebox homologue 1 (SIX1, a master 
regulator of DNA replication in cervical cancer cells) can 
be induced by the E7 oncoprotein of HPVs in cervical 
intraepithelial neoplasia and cervical cancer and can 
result in higher levels of expression of genes related 
to the initiation of DNA replication such as RFC4.69 
Recently Niu et al showed that dysregulation of CDKN2A, 
IL1R2 and RFC4 may contribute to cervical cancer 
progression and may be potential diagnostic markers.70 
Huang et al could identify and validate a seven-gene 
signature (consisting of UBL3, FGF3, BMI1, PDGFRA, 
PTPRF, NOL7 and RFC4) in, respectively, a training 
set (n=50) and a testing set (n=50) of invasive cervical 
cancer samples from 100 patients using a custom oligo-
nucleotide microarray. Multivariate analysis showed that 
International Federation of Gynecology and Obstetrics 
(FIGO stage) and the seven-gene signature are inde-
pendent prognostic factors associated with relapse-free 
survival of patients with cervical cancer.71

Novel biomarkers in combination with primary HPV 
testing are needed to enable complete cervical screening 
by objective, non-morphological molecular methods, 
which may be particularly important in developing coun-
tries.3 5 The potential biomarkers in this paper should be 
further validated in cytology and histological samples of 
patients with normal, cervical, intraepithelial neoplasias 
and primary and recurrent cervical cancer. Particularly 
assessing the diagnostic performance of cytology and/
or HPV positivity versus a quantitative polymerase chain 
reaction (PCR) measuring the expression of a panel of 
the above genes warrants furthers study. In an interesting 
study proving this concept Nischalke et al could demon-
strate that measuring IGF2BP3, HOXB7 and NEK2 mRNA 
levels by PCR in addition to cytology has the potential to 
improve diagnostic precision to detect malignant biliary 
disorders from brush cytology specimens.41 Sensitivity and 
specificity were highest when the three diagnostic markers 
were combined with routine cytology. As the expression 
levels are not mutually exclusive between the normal and 
cancer samples, an algorithm using multiple biomarkers 
will have to be developed in the future to use this test for 
molecular screening of cervical cancer. Further studies 
are also needed to clarify whether some of the retained 
genes may also be used as therapeutic targets.72
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