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Abstract: We explore a phase engineering strategy to improve the electrochemical performance
of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot
hydrothermal approach has been employed to synthesize MoS2 nanostructures. MoS2 and MoO3

phases can be readily controlled by straightforward calcination in the (200–300) ◦C temperature
range. An optimized temperature of 250 ◦C yields a phase-engineered MoO3@MoS2 hybrid, while
200 and 300 ◦C produce single MoS2 and MoO3 phases. When tested in LIBs anode, the optimized
MoO3@MoS2 hybrid outperforms the pristine MoS2 and MoO3 counterparts. With above 99%
Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g−1 after 100 cycles, and
maintains a capacity of 278 mAh g−1 at 700 mA g−1 current density. These favorable characteristics
are attributed to the formation of MoO3 passivation surface layer on MoS2 and reactive interfaces
between the two phases, which facilitate the Li-ion insertion/extraction, successively improving
MoO3@MoS2 anode performance.

Keywords: core-shell structure; hybrid anode; MoS2; MoO3; hydrothermal synthesis

1. Introduction

For the ever-growing need for renewable resources, the energy storage area has
attracted much attention to alleviate environmental catastrophe and energy difficulties
caused by traditional fossil fuels [1]. In this regard, rechargeable Li-ion batteries (LIBs) have
become by far the most promising energy storage systems for portable electronic devices
and electric vehicles, due to their comparatively greater energy and power density, and
long-cycle life [2–4]. Since the electrochemical properties of the active materials govern the
LIB’s performance, the development of new materials for LIBs is a crucial factor. Although
LIBs are receiving growing attention, a graphite anode with a theoretical capacity of
372 mAh g−1 cannot meet the challenging requirements for higher energy density [5].

To substitute for graphite, various anode materials have been explored to improve the
electrochemical performance, including transition metal dichalcogenides (TMDs) [6–10],
transition metal oxides (TMOs) [11–13], titanium-based materials [14,15], carbon nanoma-
terials [16,17], and their composite materials [18,19]. Alloying-type anodes (Si, Sn, Ge) are
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the other alternative candidates that can replace graphite due to their very high theoretical
capacity and relatively higher working potential, beneficial for reducing the risk of dendrite
formation. However, the major drawback of these alloy-type anode materials is their mas-
sive volume expansion during cycling: for instance, Si expands up to 320%, leading to the
failure of the active material. Extensive studies are ongoing to fix their volume expansion
and stabilize them for LIBs [20–22]. Anode materials of the insertion type, such as carbona-
ceous materials and titanium-based oxides, have limited specific capacity. Compared to
these insertion-type materials, conversion-type materials have a higher theoretical capacity
of (600–1000 mAh g−1) and may be ideal to meet the energy demand for large-scale energy
storages [23]. Over the past several decades, TMOs, one of the conversion-type materials’
families, have been studied extensively in LIBs [23,24]. Recent research has shifted focus
from transition metal oxides (TMOs) to transition metal sulfides (TMSs), due to their better
electrical conductivity, mechanical and thermal stability, and higher electrochemical activ-
ity [25,26]. The majority of TMSs have 2D layered structures with a chemical composition
of MSn (where n = 1 or 2, and M = Mo, W, Ti,V, or Sn). With an analogous layered structure
to that of graphite anodes, 2D TMSs enable high rate capability via facile Li insertion and
extraction, while the strong covalent bonding within the layers provides structural rigidity
and robustness, leading to stable cyclability [27]. Even the interlayer spacings of these
layer-structured TMSs are wider than graphite (~3.3 Å), for example, ~6.2 Å for MoS2,
~5.9 Å for SnS2, and ~5.7 Å for VS2 [28]. Using 2D TMSs with larger interlayer spacing can
significantly reduce the diffusion barriers for Li-ions, and accommodate their expansion
upon insertion. Most importantly, TMSs have a higher voltage platform compared to
graphite anodes, which prevents the formation of lithium dendrites, and ensures their
high safety [26]. Thanks to those advantageous properties, several TMS-based materials
have shown larger Li storage capacities than graphite anodes, making them promising
candidates for high-performance LIB anodes [25,26]. Molybdenum sulfide (MoS2), one
of the most intriguing TMSs, has been studied in a number of applications, including
nanoelectronics, electrocatalysis, and energy storage systems [29,30]. The MoS2 anode in
LIBs undergoes an intercalation-assisted conversion reaction, where a Mo nanocrystal is
embedded in the Li2S matrix as the final lithiated product and displays a high theoretical
capacity of 670 mAh g−1 [28,31].

Although TMSs materials have many advantages, there are still challenges that need
to be urgently solved. A particular problem is the sulfur dissolution in electrolytes caused
by soluble polysulfide intermediates that occur during Li2S formation/decomposition,
which results in the loss of sulfur components, thus abruptly deteriorating the capacity [26].
Various composite strategies with transition metal oxides have been explored to address
the above problems, such as the TiO2@MoS2 [32], SnO2/SnS2 [33], MoO2/MoS2 [34],
MoO3/MoS2 [35], MoO3/SnS2 [36], Fe2O3/MoS2 [37], and MoS2/MnO [38], which showed
improved electrochemical performance in LIBs. However, making composites with TMO
materials would not be optimal for mitigating the severe shuttling of lithium polysulfide
(LiPSs), since the sulfide electrode interface remains exposed to the electrolyte. Surface
protection, such as introducing a metal oxide protective layer, might help reduce polysulfide
shuttling by preventing the dissolution of intermediates and accumulation of the sulfur
phase on the lithium counter electrode [39]. W.-H. Ryu et al. reported a WO3 protective layer
on WS2 nanofiber anode material, which dramatically improves the cycling performance
in a sodium-ion battery [40]. Therefore, the synergistic effect of structurally stable TMOs’
surfaces with conductive TMS cores can be the key characteristic of potentially excellent
electrochemical performance.

Herein, motivated by such synergetic effects of the TMO-covered TMS hybrid structure,
we have proposed an in situ formation of MoO3 on the MoS2 TMS (denoted as MoO3@MoS2)
by simple post-annealing of hydrothermally synthesized MoS2. Structural characterizations
have verified the formation of the MoO3@MoS2 hybrid structure. The MoO3@MoS2 hybrid
anode has demonstrated much-improved cycling stability compared with the single-phase
MoS2 and MoO3 counterparts, without sacrificing the high power and capacity.
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2. Experimental Section
2.1. Synthesis of MoS2, MoO3@MoS2, and MoO3

The modified one-pot method was employed to synthesize the MoS2 [41]. First,
thiourea (SC(NH2)2, solution A), and ammonium molybdate ((NH4)2MoO4, solution B)
were dissolved in separate beakers for 30 min, followed by pouring solution B into
solution A. This mixture was stirred moderately for another 30 min. Next, the trans-
parent solution was placed into a 100 mL capacity Teflon-lined, stainless-steel autoclave,
which was transferred to a convection oven programmed for the reaction at 200 ◦C for
12 h. After natural cooling to room temperature (RT), the black precipitates were collected,
centrifuged with DI water and ethanol three times, then vacuum-dried at 100 ◦C for 1 h.
Then, the as-synthesized MoS2 was further calcined at (200, 250, and 300) ◦C at a 5 ◦C/min
rate in a box furnace. As per the structural results, the (200, 250, and 300) ◦C annealed
samples were denoted as MoS2, MoO3@MoS2, and MoO3, respectively.

2.2. Material Characterizations

High-resolution powder X-ray diffraction (HRPD) data were collected at the 9B beam-
line of the Pohang Acceleration Laboratory (PAL, Pohang, South Korea), using a monochro-
mated X-ray with a wavelength (λ) of 1.5183 Å. The Raman spectra were collected using
a Renishaw inVia system with an excitation wavelength of 532 nm. X-ray photoelectron
spectroscopy (XPS) measurements (Ulvac PHI X-tool spectrometer) were performed with
Al–Kα X-ray radiation, to investigate the chemical and valance states of the materials. The
Mo K-edge X-ray absorption spectroscopy (XAS) spectra were measured at the Pohang
Accelerator Laboratory (PAL) 8C beamline, in transmission mode, and processed with
Athena software. The morphology and microstructure of the powders were analyzed
by field-emission scanning electron microscopy (FE-SEM, Regulus 8230, HITACHI) and
transmission electron microscopy (TEM, Talos F200X, ThermoFisher). Thermogravimetric
analysis (TGA) of the as-prepared sample was carried out on a NETZSCH (STA 449F3,
Selb, Germany) thermal analyzer with a heating rate of 10 ◦C/min in open-air conditions.
Electrical conductivity was evaluated using a Loresta-GP low-resistivity meter (MCP-
T610, Mitsubishi Chemical corp.). The sample porosity characteristics were determined
by nitrogen adsorption and desorption measurements at 77 k (Micromeritics, Norcross,
GA, USA).

2.3. Electrochemical Measurements

The 2032-coin cells with a two-electrode configuration were used to perform the
electrochemical experiments. The MoS2, MoO3@MoS2, and MoO3 powder samples were
thoroughly mixed with conductive carbon black and poly(vinylidene) fluoride (PVDF)
binder dissolved in N-methyl pyrrolidone (NMP) solution in an 8:1:1 weight ratio to make
a viscous slurry. The working electrode was prepared using a doctor blade casting on a
Cu foil current collector. The electrode loading level was controlled to be ~2.27 mg cm−2

of active material. We used a TMAX roll press machine for calendaring. The density of
electrodes was calculated to be 1.8997 g/cm3. The coin cells were assembled inside a glove
box filled with Ar gas, with a Li metal counter electrode, a separator (Celgard 3501), and
1.0 M LiPF6 in a 1:1 (v:v) ratio of ethylene carbonate/dimethyl carbonate with 3% FEC
additive as the electrolyte. After stabilizing the coin cell for 24 h, electrochemical tests
were performed using a Neware (CT-4008–5 V 10 mA-164) battery cycler at RT. A Bio-Logic
electrochemical system (VMP-3) was used to measure the cyclic voltammetry (CV). The cells
were cycled at different current densities (35 to 700) mA g−1 between the potential window
of (0.01–3.00) V. A cyclic voltammetry (CV) test was done under a 0.1 mV s−1 scan rate
within the potential window of (0.01–3.00) V. A PGSTAT 302 electrochemical workstation
(Metrohm Autolab) was employed to measure the electrochemical impedance spectroscopy
(EIS) in the frequency range (100 kHz to 0.01 Hz) at an open-circuit voltage (OCV).
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3. Results and Discussion

Scheme 1 shows a schematic of the hydrothermal reaction followed by post-annealing
in the air to synthesize MoO3@MoS2 hybrid material. The SEM images in Figure 1a,b
demonstrate that the as-prepared MoS2 exhibits a 2D-sheet-like morphology, reflecting
its 2D hexagonal structure, similar to the previous reports [27,41]. These nanosheets are
twisted together due to their curved morphology, which causes many voids between them.
When annealed at 250 ◦C in the air, the surface of the 2D-sheet-like structures appears some-
what disrupted, associated with the potential formation of a MoO3 layer (Figure 1c,d). The
presence of Mo, S, and O in the EDS (Energy dispersive spectroscopy) pattern (Figure S1
of the Supplementary Information (SI)) indicates that the MoO3@MoS2 hybrid has been
successfully formed. Evidently, the MoO3@MoS2 hybrids exhibit a morphology that shows
a mixture of sheet-like and particle-like characteristics, such that the surfaces appear exces-
sively rough, in apparent contrast to the smooth surface of the pristine MoS2 nanosheets
(Figure 1a). On the other hand, when the sample is further annealed at 300 ◦C, different
sizes of cuboid-shaped grains are observed for pure MoO3 formation (Figure 1e,f).

Synchrotron-based high-resolution powder diffraction (HRPD) was used to investi-
gate the crystal structure of the MoS2, MoO3@MoS2, and MoO3 samples, as presented in
Figures 2a and S2. The characteristic peaks of the MoS2 sample annealed at 200 ◦C match
very well with those of the hexagonal-structured 2D MoS2 with the space group P63/mmc
(JCPDS # 37–1492), while the intense XRD peaks for MoO3 annealed at 300 ◦C confirm the
formation of a highly crystalline α-MoO3 phase with an orthorhombic structure and space
group Pbnm (JCPDS # 35–0609). Notably, the MoO3@MoS2 sample annealed at 250 ◦C ex-
hibits the diffraction peaks corresponding to both hexagonal MoS2 and orthorhombic MoO3
phases, verifying the hybrid structure formation. Notably, the MoO3 peak intensity in the
MoO3@MoS2 hybrid was relatively lower than that of the MoO3 sample heated at 300 ◦C,
suggesting the relatively lower content of the MoO3 than the MoS2. Figure S3a–c depicts
the HRPD profile matching data of MoS2, MoO3@MoS2, and MoO3. The as-prepared
hybrid material perfectly matches and contains the well-positioned diffraction peaks of
MoS2 and MoO3. The lattice volume (v) of the MoS2 component in MoO3@MoS2 hybrid
decreased by 0.71% when it was annealed at 250 ◦C, as shown in Table S1. The lattice
volume contraction is due to the formation of the MoO3 layer, which compresses the core
lattice [42]. In the hybrid, however, the MoS2 phase is not sufficiently crystallized to allow
Rietveld refinement for calculating the weight fraction of MoS2 and MoO3.

Furthermore, the Raman spectra in Figure 2b also prove the successful formation of
the MoO3@MoS2 hybrid, agreeing with the XRD results. The MoS2 spectrum presents
the E1

2g (380.5 cm−1) and A1g (406 cm−1) peaks corresponding to the in-plane and out-of-
plane vibration modes of Mo-S, respectively [43]. The characteristic peak for the MoO3
phase positioned at 664 cm−1 belongs to B2g/B3g mode associated with the triply coordi-
nated oxygen stretching in the 3MoO6− [44]. The Raman spectrum of the MoO3@MoS2
demonstrates the signature of both MoS2 and MoO3 peaks, confirming the formation of the
MoO3@MoS2 hybrid.
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XPS analysis was further performed to verify the chemical and electronic state at the
sample’s surface. Figure S4 of the SI shows the survey spectrum of the MoO3@MoS2 sample,
supporting the concurrent presence of Mo, S, and O elements in the prepared sample.
Figure 3a compares the high-resolution Mo 3d core level XPS spectrum for the MoS2,
MoO3@MoS2, and MoO3 samples. Two distinct peaks displayed at 229.3 and 232.5 eV for
MoS2 correspond to Mo4+ 3d3/2 and 3d5/2 states, respectively. The high-resolution XPS
spectrum of the MoO3 profile exhibits the 236.1 and 233.5 eV peaks corresponding to the
Mo6+ 3d3/2 and 3d5/2 states, respectively [45]. The Mo 3d region of the MoO3@MoS2-
XPS profile reveals the presence of mixed Mo6+ and Mo4+ oxidation states. Interestingly,
the intensity of two distinct peaks at 236.1 and 233.5 eV associated with the MoO3 is
predominant in the XPS spectra of the MoO3@MoS2 sample. Meanwhile, the two other
peaks correspond to Mo4+ oxidation states associated with the MoS2 shift to low binding
energy, suggesting that electron transfer occurs between MoO3 and MoS2 [37]. This finding
implies that the hybrid sample shows a strong coupling between the MoS2 and MoO3
interface. Figure 3b shows the S 2p XPS region of MoS2, MoO3@MoS2, and MoO3. For
MoS2, the deconvoluted S 2p profile exhibits the doublet at 162.1 and 163.2 eV, while MoO3
shows no peak, confirming that only O and Mo are present in the MoO3 sample. The
MoO3@MoS2 hybrid displays a noticeable shift of the two S 2p peaks to a lower binding
energy, revealing that the MoO3 surface layer influences the valence states of the S species.
The spectrum also includes a weak and broad peak at 168.9 eV, likely corresponding to the
S-O bond formed during the post-annealing in air [46,47]. In Figure 3c, the deconvoluted
O 1s region clearly establishes the Mo-O bonding in the MoO3 and MoO3@MoS2 hybrid
samples [48–50]. Environmental sources and complete oxidation at 300 ◦C are attributed to
the observed weak and strong O 1s peaks of MoS2 and MoO3, respectively. When compared
to the MoO3@MoS2 hybrid sample, the shallow O 1s peak supports the evolution of the
MoO3 oxide layer at the MoS2 surface.
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Overall, the Raman results are in complete accordance with the XRD results, but XPS re-
sults show somehow opposite behavior regarding the crystal structure of the MoO3@MoS2
hybrid sample. While XRD is a bulk probe (detected in the micrometer range), XPS is a
surface probe (of a few nanometers). Based on the XPS data recorded in the Mo 3d and
S 2p regions, the peak density associated with the sulfur phase dropped while the peak
density for the oxide phase strengthened (Figure 3a,b), suggesting the MoS2 surface almost
converted to MoO3. XRD results show that the MoS2 phase predominates over the MoO3
phase in bulk, while the XPS peaks show that the oxide phase prevails on the surface of the
MoO3@MoS2 hybrid. The ratio of the integral area between oxygen and sulfur obtained
from XPS survey data is 9:1 (O2p/S2p~90.42/9.58). This ratio asserts our statement that the
surface of MoS2 almost converted to MoO3. In contrast, we observed 1.5 wt% loss after the
oxidation process above 250 ◦C in the TGA curve of as-synthesized MoS2 (Figure S5). Based
on the calculation (see the SI), the bulk MoO3:MoS2 ratio is approximately 1.5:8.5 in the
MoO3@MoS2 hybrid. This finding confirms the results of XRD and Raman. Furthermore,
another bulk probe technique, X-ray absorption spectroscopy (XAS), also exhibits a similar
tendency to XRD. The Mo K-edge position of the MoO3@MoS2 hybrid is much closer to
that of MoS2 spectra, as shown in Figure 4a. There are two notable peaks in the Fourier-
transformed extended X-ray absorption fine structure (FT-EXAFS) spectra (without phase
correction) of MoS2 at approximately 1.91 and 2.92 Å, corresponding to Mo-S and Mo-Mo
interaction in the first and second coordination shells, respectively [51]. As expected, the
FT-EXAFS spectrum of MoO3@MoS2 matches very well with MoS2, rather than MoO3.
This finding further confirms that the MoS2 phase dominates the core of the MoO3@MoS2
hybrid, validating our XRD and Raman results. In light of these results, we conclude that
the precise control of the post-annealing procedure (i.e., 250 ◦C in air) produces a MoO3
surface layer on the MoS2 backbone. Scheme 2 graphically presents the structural changes
during the post-annealing. The optimization of the post-calcination temperature (~250 ◦C)
is critical in tuning the surface oxidation degree of the MoO3@MoS2 hybrid, as the sulfide
phase completely transforms into MoO3 at 300 ◦C.

The morphology and phase information of MoS2, MoO3@MoS2, and MoO3 nanostruc-
tures are further elucidated by TEM/EDS analysis, as depicted in Figure 5. The typical
sheet-like morphology of MoS2 is further confirmed by TEM images (Figure 5a,b). The
selected area electron diffraction (SAED) patterns in Figure 5c displays three diffraction
rings for the (002), (100), and (103) lattice planes, indicating the hexagonal MoS2 polycrys-
talline structure (JCPDS # 37–1492). After introducing MoO3, the sheet-like structures of
MoS2 are partially broken, as seen in Figure 5d,e. An enlarged TEM image shows d002
edges of the MoS2 phase (Figure S6 of the SI). The MoO3@MoS2 diffraction ring intensity
appears weaker and blurrier than MoS2 on the SAED (Figure 5f), but likely relates to the
MoS2 phase. This indicates that the sulfide phases are oxidized on the surface and turn
into MoO3 phases, which disrupts the MoS2 crystallinity. These observations are consistent
with the XRD and XPS results (Figures 2a and 3). In comparison, the cuboid-shaped MoO3
(Figure 5g,h) shows entirely different SAED patterns (Figure 5i). The TEM-EDS elemental
mapping (Figure 5j) indicates the uniform distribution of the Mo, S, and O species in
the MoO3@MoS2 particles. It is evident that sulfur (red) exists within the particle’s core
bodies, while oxide (green) is present at the surface, entirely covering the core. Figure S7a–c
shows the BET sorption isotherm of MoS2, MoO3@MoS2, and MoO3 samples. The type-
III isotherm profiles and absence of a hysteresis loop suggest the low porosity of all the
materials. The BET surface area of MoS2, MoO3@MoS2, and MoO3 is only 8.71, 8.42, and
9.85 m2 g−1, respectively (Table S2). The pore distribution curve (Figure S7d) indicates the
presence of only interparticle porosity.
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The electrochemical performance of each sample was tested in the LIB half-cells. The
cyclic voltammetry (CV) of the MoO3@MoS2 hybrid was measured in the voltage window
of 0.01 to 3.0 V with a sweep speed of 0.1 mV s−1; the result is shown in Figure 6a. A reduc-
tion peak is located at 1.01 V, attributed to the Li-ion insertion between MoS2 layers and
forming LixMoS2. Another peak positioned at 0.46 V is linked to the conversion reaction
of LixMoS2 to (Mo + Li2S) [52]. These two reduction peaks shifted to a higher potential at
about 1.91 and 1.15 V from the second cycle onwards. A shallow reduction peak at 0.1 V
in the first cycle is the characteristic of solid electrolyte interface (SEI) formation. In the
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anodic scan, peaks located at 1.73 and 2.29 V are linked to the reverse conversion reaction
of Mo + Li2S into MoS2, respectively [34]. The position of the oxidation peaks remains un-
changed in the following cycles. Notably, a small irreversible peak at 2.11 V is found in the
first cathodic scan, indicating Li+ intercalation into MoO3 crystals to generate LixMoO3 [53].
Following the first cycle, the corresponding reduction peak did not occur, suggesting that
the MoS2 is the predominant participant in the redox activity of the MoS2@MoO3 hybrid
anode. Therefore, it seems that the main function of MoO3 is to stabilize MoS2. Further,
the observed CV shows excellent reversibility from the 2nd to 5th cycles, which indicates
superior cycling stability. The observed area under the curve of the MoO3@MoS2 composite
is higher than that of its pristine components (shown in Figure S8a,b in SI), indicating
enhanced capacity. Figure 6b shows the galvanostatic discharge/charge (GCD) curve of
MoO3@MoS2 at the current density of 50 mA g−1; where the initial cycle reveals a remark-
ably high reversible (charge) capacity of ~721 mAh g−1. The observed capacity is close to
the theoretical limit of MoO3@MoS2 (~737 mAh g−1). Based on the TGA data (Figure S5),
we estimated the theoretical capacity as described in SI. Figure S9a–c shows the extended
discharge/charge curves for MoS2, MoO3@MoS2, and MoO3. When comparing the GCD
curves of the three samples, it can be seen that the MoO3@MoS2 hybrid outperforms the
MoS2 and MoO3 counterparts in terms of cycling stability during 100 cycles, establishing
its good stability as an active anode material for LIBs. Moreover, the similar trend of the
charge/discharge curve for the hybrid anode from the second cycle indicates excellent
electrochemical stability and conversion reversibility. In contrast, the charge/discharge
capacities for the pristine MoS2 gradually deteriorated over the 100 cycles. Figure 6c further
illustrates the difference in cyclability among MoS2, MoO3@MoS2, and MoO3 anodes. The
MoO3@MoS2 anode possesses a higher initial charge (reversible) capacity than MoS2 and
MoO3, with a Coulombic efficiency (CE) of 80.5, 83.5, and 41.5%, respectively. There is a
significant decrease in capacity for the first few cycles of the MoO3@MoS2 anode. This
phenomenon is commonly observed in the conversion-based anode materials, because
during the discharge-charge process of the initial cycles, the SEI layer is not fully formed.
This accounts for the low CE and capacity loss during initial cycles, as reported in previous
studies [6–20]. The CV result described earlier also accords with this behavior. However,
after a few cycles, the MoO3@MoS2 anode started to stabilize and the Coulombic efficiency
improved, which is a marked difference from the pristine MoS2 or MoO3 anodes. The ob-
tained result highlights the superior Li+ storage performance of the MoO3@MoS2 anode. In
addition, the MoO3@MoS2 anode demonstrates a notably higher capacity (~564 mAh g−1)
than that of MoS2 (~34 mAh g−1) and MoO3 (~434 mAh g−1) at the end of 100 cycles.
Compared with an anode made of pure MoS2, the MoO3@MoS2 anode exhibits enhanced
electrochemical properties because of the MoO3 passivation layer on the surface of the
conductive MoS2. When we disassembled cells for MoS2 and MoO3@MoS2 electrodes
after 30 cycles, we observed the active material residue on the lithium foil (counter elec-
trode) for the MoS2 anode sample. Contrary to this, there was no active material found
on lithium foil (counter electrode) in the hybrid anode sample (Figure S10). During the
charge/discharge cycles, MoS2 and MoO3@MoS2 anodes undergo a steady conversion
process, as evidenced by their Mo K-edge EXAFS spectra measured after the 50 cycles. The
FT-EXAFS spectra peaks from their 50th cycle remain almost identical to those from their
pristine state (Figure S11). Figure 6d and S12 show the rate capability of the MoO3@MoS2
hybrid and its pristine components (MoS2 and MoO3). As the current densities increase
from 35 to 700 mA g−1, the capacities of the MoO3@MoS2 anode decrease; but when the
current density is returned to its initial value (35 mA g−1), the active material retains a
high-capacity value (~434 mAh g−1). The pure MoO3 shows very poor rate performance
compared to MoS2, which is attributed to the poor conductive characteristics of the oxide
material, as presented in Table 1.
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Figure 6. (a) CV and (b) discharge/charge profiles of MoO3@MoS2 between (0.01 and 3.00) V.
(c) Comparative cycling performance at a current density of 50 mA g−1 and (d) rate performance of
MoS2, MoO3@MoS2, and MoO3 anodes in LIBs.

Table 1. Electrical conductivity measurement (by four-point probe) results.

Serial No. Material Average Electrical Conductivity (µS·cm−2)

01 MoS2 5.2442
02 MoO3@MoS2 0.6443
03 MoO3 0.0282

Figure 7a,b shows the electrochemical impedance spectroscopy (EIS) data with a
fitted profile, measured after the 1st and 30th cycles, respectively. An equivalent electrical
circuit is presented, where Rs is the solution resistance, Rct is the charge transfer resistance,
W is Warburg impedance, while the (CPE1 and CPE2) are the constant phase elements.
Figure 7a clearly shows that the semi-circle of the MoO3@MoS2 hybrid anode Nyquist
plot is much smaller than its counterparts (MoS2 and MoO3) after the 1st cycle. The
calculated solution resistance (Rs) and charge transfer resistance (Rct) of the hybrid anode
are 2.392 and 284.308 Ω, respectively, which are lower than those of MoS2 and MoO3
(Table S3). Furthermore, after 30 cycles, the resistance of all the materials increases, but
among them, MoO3@MoS2 shows much smaller resistivity. The hybrid anode material
shows a lower Rct value (304.539 Ω) among the three materials (Table S4) thanks to the
chemically resistive nature of oxide, which protects the sulfide phase from the dissolution
into the electrolyte.
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Figure 7. EIS profiles of MoS2, MoO3@MoS2, and MoO3 (a) after the 1st cycle, and (b) after the
30th cycle.

4. Conclusions

A novel, in situ approach to the synthesis of a hybrid nanostructure has been suc-
cessfully optimized. This involves a two-step process of a hydrothermal reaction with
subsequent air annealing. The successful formation of the MoS2 core-MoO3 shell hybrid
structure was verified by XRD, Raman, XPS, and XAS results. SEM and TEM studies reveal
the morphology evolution with the growth of an oxide layer on the bulk sulfide, which
facilitates stable cycling stability without sacrificing the high capacity and fast-charging
performance. The MoO3@MoS2 hybrid anode delivered an excellent specific charge capac-
ity of 721 mAh g−1, a good rate-capability of 278 mAh g−1 at 700 mA g−1, and the retained
capacity was ~564 mAh g−1 after 100 cycles, with excellent (~99%) Coulombic efficiency.
The outstanding performance of the hybrid anode results from the synergistic interaction
between the passivating layer of MoO3, which eradicates the excessive dissolution of active
material, and the conducting core of MoS2, which ensures smooth electronic conduction.
The work presented in this paper provides a simple, two-step, facile method to synthesize
different transition metal oxide/sulfide hybrid nanostructures.
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gravimetric analysis (TGA) curve of as-synthesized MoS2 in air; Figure S6: HR-TEM image of the
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