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Endothelin receptors in renal interstitial cells do not contribute
to the development of fibrosis during experimental kidney disease
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Abstract
Renal interstitial fibrosis is characterized by the development of myofibroblasts, originating from resident renal and immigrating
cells. Myofibroblast formation and extracellular matrix production during kidney damage are triggered by various factors.
Among these, endothelins have been discussed as potential modulators of renal fibrosis. Utilizing mouse models of adenine
nephropathy (AN) and unilateral ureter occlusion (UUO), this study aimed to investigate the contribution of endothelin signaling
in stromal mesenchymal resident renal interstitial cells. We found in controls that adenine feeding and UUO caused marked
upregulations of endothelin-1 (ET-1) gene expression in endothelial and in tubular cells and a strong upregulation of
ETA-receptor (ETA-R) gene expression in interstitial and mesangial cells, while the gene expression of ETB-receptor (ETB-R)
did not change. Conditional deletion of ETA-R and ETB-R gene expression in the FoxD1 stromal cell compartment which
includes interstitial cells significantly reduced renal ETA-R gene expression and moderately lowered renal ETB-R gene expres-
sion. ET receptor (ET-R) deletion exerted no apparent effects on kidney development nor on kidney function. Adenine feeding
and UUO led to similar increases in profibrotic and proinflammatory gene expression in control as well as in ETA

flflETB
flfl

FoxD1Cre+ mice (ET-Ko). In summary, our findings suggest that adenine feeding and UUO activate endothelin signaling in
interstitial cells which is due to upregulated ETA-R expression and enhanced renal ET-1 production Our data also suggest that the
activation of endothelin signaling in interstitial cells has less impact for the development of experimentally induced fibrosis.
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Introduction

Development and progression of renal fibrosis is a character-
istic of chronic kidney disease and is widely believed as the
consequence of an excess accumulation of extracellular matrix
(ECM) proteins such as collagens, fibronectin, or tenascins [7,
27, 46, 55]. Progressive fibrosis results in deterioration of
tubular and glomerular function [63]. It is well established that
myofibroblasts are the key mediators of fibrosis by serving as
the primary matrix/collagen-producing cells. These
myofibroblasts transdifferentiate from several cell types in-
cluding fibroblasts, pericytes, monocytes, tubular, and

endothelial [6, 15, 18, 20, 28, 31, 41, 64]. There is broad
agreement that fibroblasts, pericytes, and bone marrow–
derived cells contribute equally to the myofibroblast popula-
tion [6, 15, 32, 37, 39]. Resident fibroblasts and pericytes
derive from the FoxD1+ stroma progenitor cell population,
and they express the platelet-derived growth factor receptor
β (PDGFR-β) [37]. A recent study showed that in human
kidneys mainly PDGFR-β cells undergo transformation into
myofibroblasts [37].

Among a variety of cytokines and signaling factors in-
volved in myofibroblast formation and the progression of fi-
brosis, the role of ET-1 has been studied in various experi-
mental models [2, 5, 45, 48]. ET-1 binds to either ETA- or
ETB-R which mainly activate the inositol triphosphate signal-
ing cascade intracellularly [26, 50, 52]. In damaged kidneys,
an increase of ET-1 and ETA-R mRNA expression has been
already reported [1, 9, 33, 43, 44, 65]. An important role of
ET-1 in renal fibrosis was elucidated from the finding that
transgenic mice overexpressing human ET-1 develop renal
abnormalities associated with interstitial fibrosis [25] and that
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inhibitors of endothelin receptors can attenuate experimentally
induced fibrosis [5, 45, 48]. Since ET-R are expressed in dif-
ferent cells of the kidney, it is difficult to gain insights into the
cell type-specific roles of ET-R by experiments systematically
inhibiting the ET-1 signaling pathway. This could explain
some of the controversial reports in recent years [2, 5, 35,
45, 48].

In view of the major role of interstitial cells as precursors of
myofibroblasts, we were interested to define the role of
endothelin signaling in this cell population.

To this aim, we generated a mouse model with constitutive
genetic ablation of both ETA- and ETB-R in cells descending
from the stroma progenitor cell population which is character-
ized by the specific expression of the transcription factor
FoxD1. Besides interstitial fibroblasts/pericytes, also vascular
smooth muscle cells, renin-producing cells, and mesangial
cells derive from the FoxD1+ progenitor cell population [40,
57]. ET-Ko mice were studied in two models of experimental
renal fibrosis, unilateral ureter occlusion (UUO) and
adenine-induced nephropathy (AN). AN is a chronic damage
model mediated by precipitation of crystals within the tubular
lumen leading to kidney injury similar to that in human
crystal-induced pathologies [6, 32, 51]. UUO, on the other
hand, represents an acute damage model for mechanical stress
[6, 10]. In these pathological models, the effects of ET-R
deletion in stromal cells on the expression of α-SMA as a
marker for myofibroblast formation were examined.
Furthermore, we investigated the profibrotic and proinflam-
matory gene expression.

Material and methods

Animals

ETA
flfl ETB

flfl FoxD1Cre+ mice were generated by crossbreed-
ing FoxD1Cre+mice (JAX stock #029684) and mice with
loxP-flanked ETA (obtained from Dr. M. Yanagisawa at the
Howard Hughes Institute at University of Texas Southwestern
Medical Center) [30] and loxP-flanked ETB alleles (obtained
fromDr. M. Epstein, University ofWisconsin, Madison) [14].
Genotypingwas performed using the primers listed in Table 1.

Littermates negative for Cre were used as control animals.
Animals were maintained on standard rodent chow (0.6%
NaCl; Ssniff, Soest, Germany) with free access to tap water.
All animal experiments were performed according to the
Guidelines for the Care and Use of Laboratory Animals pub-
lished by the USNational Institutes of Health and approved by
the local ethics committee.

Adenine-induced nephropathy

Adenine-induced fibrosis was generated in adult mice for this
study [6, 29, 32, 51]. Male mice were fed with adenine con-
taining diet (0.2%) continually for 3 weeks. Experiments were
performed after exactly 3 weeks (3-week adenine).

Unilateral ureteral obstruction

Under inhalation anesthesia, a ureteral ligation was placed
close to the right kidney through a small abdominal incision
[15]. Mice were kept under close observation after the opera-
tion for 72h. Five days after the procedure, mice were killed
and perfused for RNAscope, or the kidneys were removed for
mRNA quantification.

In situ hybridization via RNAscope

Localization of mRNA was studied with the RNAscope
Multiplex Fluorescent v2 kit (Advanced Cell Diagnostics
ACD, Hayward, CA, USA), according to the manufacturer’s
instructions. The kidneys were perfusion-fixed with 10% neu-
tral buffered formalin solution, dehydrated in an ethanol se-
ries, and embedded in paraffin. Hybridization signals were
detected on 5μm tissue sections using the TSA® Plus
fluorophores Cy3 and Cy5 (PerkinElmer, Waltham, MA).
Slices were mounted with ProLong Gold Antifade Mountant
(Thermo Fisher Scientific,Waltham,MA) and viewed with an
Axio Observer.Z1 Microscope (Zeiss, Jena, Germany).
Positive and negative controls were routinely enclosed.
RNAscope® probes are listed in Table 2.

Determination of mRNA expression by real-time PCR

Total RNA was isolated from kidneys as described by
Chomczynski and Sacchi [11] and quantified by a photometer.
Of the resulting RNA, 1μg was used for reverse transcription.
cDNA was synthesized by Moloney murine leukemia virus
RT (Thermo Fisher Scientific, Waltham, MA). For quantifi-
cation of mRNA expression, real-time PCR was performed
using a LightCycler Instrument and the LightCycler 480
SYBR Green I Master Kit (Roche Diagnostics, Mannheim,
Germany). mRNA expression data were normalized to glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH).

Table 1 Primer sequences used for genotyping of mice.

舃Genotype 舃Sequence (5′to 3′), fwd 舃Sequence rev (5′to 3′), rev

舃FoxD1Cre 舃gaactgtcaccggcagga 舃aggcaaattttggtgtacgg

舃ETB KO 舃tggaatgtgtgcgaggcc 舃cagccagaaccacagagaccaccc

舃ETB wt 舃ctgaggagagcctgattgtgccac 舃cgactccaagaagcaacagctcg

舃ETA flox 舃gggtggcatttaccaccaga 舃gcgtagcctcacaagcacat

Pflugers Arch - Eur J Physiol (2021) 473:1667–16831668



Sequences of the primers for the real-Time PCR are shown in
Table 3.

Immunohistochemistry

For immunoreactivity 5-μm sections of the kidneys fixed in
3% PFA were blocked with 10% horse serum/1% BSA in
PBS and were incubated either with rabbit anti ET-1
(ab117757, Abcam, Cambridge, UK), mouse anti-αSMA
(ab7817, Abcam, Cambridge, UK), or rabbit anti-col1a1
(ab34710-100, Abcam) in different experimental approaches
at 4°C overnight. After washing with BSA/PBS, sections were
incubated with Cy3 and Cy5 secondary antibodies (Dianova,
Hamburg, Germany), mounted with Glycergel (Agilent,
Waldbronn, Germany), and viewed with an Axio Observer.
Z1 Microscope.

Systolic blood pressure measurement

Systolic blood pressure of conscious mice was determined by
tail-cuff manometry (TSE Systems). Animals were placed into
the holding device for 5 consecutive days before the first mea-
surement. Blood pressure was measured daily for 10 days in a
row, and the average of these measurements was used for
analysis.

Determination of glomerular filtration rate

For glomerular filtration rate (GFR) measurement,
FITC-labeled sinistrin (3.74 μl/g body wt) was injected
retro-orbitally in a single bolus. Approximately 5 μl of blood
was collected from the tail vein of conscious mice at 3, 7, 10,
15, 35, 55, and 75 min after injection. After centrifugation,
0.5 μl of the plasma samples were diluted in HEPES (0.5 M,
pH 7.4), and FITC fluorescence was measured by Invitrogen
Qubit 3.0 Fluorometer (Thermo Fisher Scientific).

Urine analysis

Urine osmolality was determined by freezing point measure-
ments of the urine samples (Osmomat 030, Gonotec). Urine
sodium and potassium concentrations were determined
by flame photometer (XP flame photometer; BWB
Technologies).

The determination of ET-1 in urine was carried out with an
ET-1 ELISA from R&D Systems (Minneapolis, MN, USA)
according to the manufacturer’s instructions. Measurements
of the urine albumin concentration were determined with an
albumin ELISA (ICL, E-90AL, Portland, OR, USA) accord-
ing to the manufacturer’s instructions.

Determination of hematocrit values, plasma renin,
and plasma erythropoietin concentration

Blood samples were taken from tail vein into EDTA-coated
capillary tubes to prevent clotting. Hematocrit values were
determined after centrifugation (8 min, 8,000 rpm). The eryth-
ropoietin (EPO) concentration was determined in plasma sam-
ples using the Quantikine Mouse EPO ELISA kit (R&D
Systems, Minneapolis, MN) according to the manufacturer’s
protocol. Plasma renin concentration was determined by mea-
suring the capacity of plasma samples to generate ANG I in
the presence of excess renin substrate. Therefore, plasma sam-
ples were incubated for 90 min at 37°C with plasma from
bilaterally nephrectomized male rats. The generated ANGI
(in ng·ml−1·h−1) was determined by ELISA (IBL
International, Hamburg) according to manufacturer’s
protocol.

Table 3 Primer sequences used for real time PCR

舃Genes 舃Sequence (5′-3′) 舃Sequence (3′-5′)

舃Col1a1 舃ctgacgcatggccaagaaga 舃atacctcgggtttccacgtc

舃Col3a1 舃ggtggttttcagttcagctatgg 舃ctggaaagaagtctgaggaatg

舃ET1 舃ccacagaccaggcagttagat 舃tgaatggtactttgggccctga

舃ETA 舃aggaacggcagcttgcggat 舃agcaacagaggcaggactga

舃ETB 舃ggagagcggtatgcagattg 舃tattgctggaccggaagttg

舃Fibronectin 舃tccagccccaccctacaagt 舃ccagaccaaaccataagaac

舃Tenascin C 舃tgaaccacaagaaataaccctc 舃gttgctatggcactgactgg

舃CX3CR1 舃aagttcccttcccatctgct 舃caaaattctctagatccagttcagg

舃CX3CL1 舃cacctcggcatgacgaaat 舃ttgtccacccgcttctcaa

舃GAPDH 舃caccagggctgccatttgca 舃gctccacccttcaagtgg

舃α-SMA 舃actgggacgacatggaaaag 舃catctccagagtccagcaca

Table 2 RNAscope probes used for in situ hybridization

舃RNAscope® probe 舃Cat no.

舃Mm-ET1 舃435221

舃Mm-ETA 舃486351

舃Mm-ETB 舃473801

舃Mm-Pdgfrb-C2 舃411381-C2

舃Mm-CD31-C2 舃316721-C2

舃Mm-Col1a1 舃319371

舃Mm-F4/80 舃460651

舃Mm-asma 舃319531

舃2.5 Duplex Positive Control Probe-Mm 舃321651

舃2-plex Negative Control Probe 舃320751
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Determination of plasma urea and creatinine
concentrations

Plasma urea concentration was determined in plasma samples
using the QuantiChrom™ Urea Assay Kit ( Bioassay
Systems, CA, USA) according to manufacturer’s protocol.
Plasma creatinine concentration was determined by
Creatinine Serum Detection Kit (Arbor Assays, MI, USA)
according to manufacturer’s protocol.

Statistical analyses

All data are presented as mean ± SEM. Statistical significance
was determined by ANOVA. p < 0.05 was considered statis-
tically significant. The data were analyzed using GraphPad
Prism8.

Results

The endothelin system is activated during
experimental kidney disease

Endothelin 1

ET-1 mRNA expression was localized by RNAscope on kid-
ney sections of healthy control mice. ET-1 mRNAwas detect-
ed in endothelial cells of glomeruli and endothelial cells lining
intrarenal blood vessels (Fig.1). ET-1 mRNA hybridization
signals were the strongest in the cortical zone but more faint
in the outer and inner medulla where they appear in the endo-
thelium of capillary renal vessels (Fig 1). Adenine feeding for
3 weeks and unilateral ureter occlusion (UUO) for 5 days led
to a 15- and 8-fold increase in ET-1 mRNA abundance,

Fig. 1 Basal expression of ET-1
mRNA on kidney sections of
control mice. Details showing
RNAscope for ET-1 mRNA (red)
in cortex (A), outer (B), and inner
medulla (C) on a control kidney
section. ET-1 mRNA was detect-
ed within glomeruli (glom) and
renal vessels (arrows). Merged
details of the co-hybridization of
ET-1 with the endothelial marker
CD31 (green) (D, E, F) revealed
endothelial cells as the only ex-
pression site of ET-1 synthesis in
the healthy kidney. Scale bars =
50μm
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respectively (Fig. 2). Upregulated ET-1 expression was ob-
served in endothelial cells and de novo in tubular cells
(Fig. 3).

ET receptors

RNAscope for ETA mRNA showed clear hybridization sig-
nals in vascular smooth muscle cells, mesangial cells, and
mesenchymal interstitial cells of the healthy kidney (Fig. 4).
The lat ter two cell types could be identif ied by
co-hybridization with PDGFR-β (Fig. 4, upper panel) while
ETA-R expression in vascular muscle cells was confirmed by
co-hybridization with α-SMA (Fig.4, lower panel). All
ETA-R mRNA expressing cells have their origin in the
FoxD1-positive stroma precursor compartment. During ade-
nine feeding and UUO, ETA mRNA expression increased
about 5-fold (Fig. 5A, B), whereas ETB-R mRNA remained
unchanged (Fig. 5C).

Co-RNAscope for ETB-R mRNA and the endothelial
marker CD31 showed expression of ETB-R in glomerular,
perivascular, and vascular endothelial cells (Fig. 6). In addi-
tion, ETB-R mRNA was found in different tubular segments
(Fig. 6) and also showed weak expression in the medial layer
of renal vessels ( Fig. 6, lower panel).

Upregulation of ETA-RmRNA in experimental kidney dis-
ease mainly occurred in renal interstitial cells which are sub-
stantiated by co-hybridization of ETA-R and PDGFR-β in
renal interstitial fibroblasts that showed an enhanced

expression of both genes (Fig. 7). During adenine treatment
andUUO, renal ETB-RmRNA abundance remained unaltered
as already shown in Figure 5C.

The upregulation of ETA-R gene expression in the stromal
compartment in conjunction with the enhanced endothelial
and tubular expression of the ligand ET-1 during experimen-
tally induced kidney fibrosis raised the question about the role
of enhanced endothelin signaling in stromal cells for the de-
velopment of interstitial fibrosis. Since, in addition to the
dominant ETA-R expression in the FoxD1 compartment, vas-
cular smooth muscle cells show a weak abundance of ETB-R,
we addressed this question by generating mice with deletions
of both endothelin receptors in the stroma cell compartment
(ETA

flfl ETB
flfl FoxD1Cre+ mice).

Renal function of ETA
flfl ETB

flflFoxD1Cre+ mice is
apparently normal

Endothelin receptor knockout mice developed normally. They
had no significant difference in body weight nor showed a
different kidney to body weight ratio compared to control
littermates (Table 4).

Gross renal histology revealed no apparent abnormality in
ET-Ko mice. In line, renal functional parameters in ET-Ko
mice were not changed compared to controls (Table 5). This
suggests that deletion of both endothelin receptors in renal
stromal progenitors and their descendants does not disturb
normal kidney function.

Fig. 2 ET-1 mRNA abundance in
control mice under basal and
pathological conditions. A
RNAscope for ET-1 mRNA ex-
pression on whole kidney sec-
tions of control mice under basal
conditions, after adenine feeding
for 3 weeks and UUO for 5 days.
Scale bars = 500μm. B ET-1
mRNA abundance of control
mice under basal condition, after
adenine feeding and after UUO
for 5 days. Renal ET-1 mRNA
levels increased 15-fold due to
adenine nephropathy and 8-fold
after UUO for 5 days. All data are
means ± SEM of at least 5–8 an-
imals per condition. Single aster-
isk is p<0.05 compared to un-
treated animals
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Endothelin system in ET-Komice in health and disease

In endothelin receptor knockout mice, renal endothelin-1
mRNA expression under basal conditions was similar to con-
trol animals. Accordingly, also adenine feeding and UUO led
to similar increases of ET-1mRNA expression in ET-Komice
as observed in controls (Fig. 8). The comparison of the ET-1
protein expression in healthy and fibrotic kidneys of control
and ET-Ko mice yielded a comparable result (Suppl-Fig.1).

Basal ETA mRNA expression in endothelin receptor
knockout kidneys was significantly reduced by around 90%
compared to the kidneys of control mice. (Fig. 9A). The
marked increase in ETA mRNA observed in control kidneys
during adenine feeding or UUOwas also greatly attenuated in
the ET-Ko kidneys (Fig. 9B), which suggests that the increase
in ETA-R gene expression during the experimental fibrosis
probably took place mainly in the stromal FoxD1
compartment.

The basal ETB mRNA abundance was reduced by about
25% in the endothelin receptor knockout kidneys (Fig. 10A),
indicating that ETB is mainly expressed outside the FoxD1
compartment with the exception of its expression in vascular
smooth muscle cells. This could explain the moderate de-
crease in its expression in the knockout model. Adenine treat-
ment and UUO did not change the ETB-R mRNA ex-
pression in control and endothelin receptor knockout
kidneys (Fig. 10B).

Disruption of the ET signaling in stromal cells does
not influence myofibroblast development in
experimental kidney disease

Development of fibrosis is typically characterized by the for-
mation of myofibroblasts that express α-SMA. In the healthy
kidney, expression of α-SMA mRNA was mainly seen in the
medial layer of renal vessels (Fig. 11A). Adenine treatment

Fig. 3 ET-1 mRNA localization
in the control kidney under basal
and pathological conditions. ET-1
mRNA localization in the mouse
kidney under basal conditions
(upper panel), after 3 weeks of
adenine feeding (middle panel)
and 5-day UUO (lower panel).
Asterisks indicate ET-1 expres-
sion (red) in tubular segments, the
finely dotted line indicates ET-1
within renal vessels, the coarser
dashed line surrounds glomeruli.
Co-hybridization with the endo-
thelial marker CD31 (green) re-
vealed ET-1 production in endo-
thelial cells of glomeruli, in the
endothelium of renal vessels and
peritubular capillaries. Scale bars
= 50μm
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and UUO for 5 days led to a strong upregulation of α-SMA
expression (Fig. 11) and appeared in intersti t ial,
fibroblast-like cells mainly in the outer and inner medulla
of the kidney, whereas no significant difference could be
observed between control and knockout mice. (Fig 11A,
B). Immunohistochemical analysis of α-SMA protein ex-
pression in basal and fibrotic kidneys of the two genotypes
gave the same result (Suppl.Fig.2).

Disruption of the ET signaling in stromal cells does
not influence profibrotic gene expression in
experimental kidney disease

To examine a potential role of ETA-R and ETB-R expression
in FoxD1-derived cells for deposition of extracellular matrix,
we compared the expression of the key fibrotic marker
collagen1a1 (Col1a1), fibronectin, and tenascin C between
control and ET-Ko mice. Experimental renal fibrosis led to
20- and 10-fold upregulation of Col1a1 mRNA with no sig-
nificant differences between genotypes (Fig. 12). Again, the
analysis of the protein expression by immunohistochemistry
showed no differences in Col1a1 expression between the two
genotypes (Suppl. Fig.3).

Adenine feeding and UUO also led to strong increases of
fibronectin and tenascin C mRNA expressions which were
also not different between control and endothelin receptor
knockout mice (Fig. 12B).

Disruption of the ET signaling in stromal cells does
not affect proinflammatory gene expression in
experimental kidney disease

The influx of monocytes/macrophages and lymphocytes into
the kidney in states of experimental renal disease leads to
chronic interstitial inflammation and subsequent interstitial
fibrosis [60, 66] . We evaluated macrophage infiltration in
fibrotic kidneys by analysis of F4/80 expression using
RNAscope and real-time PCR. F4/80 is a well-known and
widely used marker of murine macrophage populations.
Both adenine treatment and UUO markedly elevated F4/80
mRNA expression in control and ET-Ko mice without any
difference between genotypes (Fig. 13A,B). Additionally,
we studied the expression of the chemokine fractalkine
(Cx3CL1) and its receptor Cx3CR1 as a marker for inflam-
mation which again did not show any difference between
control and ET-Ko mice (Fig. 13B).

Disruption of the ET signaling in stromal cells does
not affect urinary ET-1 and albumin secretion in ex-
perimental kidney disease

Urinary ET-1 excretion showed no difference between con-
trols and ET-Ko mice under basal conditions. Adenine treat-
ment increased ET-1 excretion 2-fold in controls and 1.8-fold
in ET-Ko mice, whereas UUO does not lead to a significant

Fig. 4 Details of an RNAscope
for ETA mRNA localization on
kidney sections of control mice.
RNAscope for ETA (red) with co-
hybridization of the mesenchymal
cell marker PDGFR-β (green) in
the upper panel showed ETA in
mesangial cells within glomeruli
(dotted line) and in renal intersti-
tial cells (arrowheads). ETA

mRNA is also synthesized in
vascular smooth muscle cells of
renal vessels (arrows), clarified by
a-SMA co-localization. Scale bars
= 50μm
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increase in ET-1 concentrations in both genotypes (Table 6).
No difference was observed between controls and ET-Ko
mice with regard to urinary albumin excretion. Furthermore,
neither adenine treatment nor UUO led to an increase in albu-
min excretion (Table 6).

Discussion

The aim of this study was to clarify the role of ET-1 signaling
in stromal cells for the progression of renal fibrosis in two
models of experimental renal disease. We found that
adenine-induced nephropathy and unilateral ureter occlusion
led to an upregulation of mainly tubular ET-1 expression and
to an upregulation of ETA gene expression in the stromal cell
compartment which includes also interstitial cells. Genetic
ablation of endothelin receptors from the stromal cell compart-
ment, however, did not change the upregulated expressions of
profibrotic and proinflammatory markers during experimen-
tally induced kidney fibrosis.

Our findings of an activation of the endothelin system in
fibrotic kidney disease is in accordance with previous reports,
which demonstrated either an enhanced ET-1 gene expression
[1, 16, 43, 44] or an increased ETA gene expression [9, 16] in
experimentally induced kidney fibrosis. We now extend these
findings by showing the localization of increased ET-1 and
ETA gene expression. Our data suggest that the enhanced
expression of ET-1 mainly occurs in tubuli, while the expres-
sion of ETA almost exclusively occurs in the stromal cell
compartment , which includes vascular smooth muscle cells,
renin producing cells, mesangial cells, and resident interstitial
cells. From these findings, we conclude that in states of kidney
fibrosis, endothelin signaling in the stromal cell compartment
and also in interstitial cells was enhanced. Our findings further
show that genetic constitutive deletion of ET-R from the stro-
ma cell population did not change the characteristic increases
of profibrotic and proinflammatory gene expression during
fibrotic disease, suggesting that endothelin signaling in stro-
mal cells has less impact for the development of kidney fibro-
sis. On the first glance, this finding contrasts with a number of

Fig. 5 ET receptor mRNA abundance in control mice under basal and
pathological conditions. A RNAscope for ETA mRNA expression on
whole kidney sections of control mice under basal conditions, after
adenine feeding for 3 weeks and UUO for 5 days. Scale bars = 500μm.
B ETAmRNA abundance of untreated mice (basal), after adenine feeding

and after UUO for 5 days. Renal ETA mRNA levels increased about 5-
fold in both experimental models. C ETB mRNA abundance did not
change in the pathological models. All data are means ± SEM of 5–8
animals per condition. Single asterisk is p<0,05 compared to untreated
animals. Note the different scales between data for ETA and ETB mRNAs
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reports suggesting a profibrotic and proinflammatory role of
endothelin during kidney disease. Our findings, moreover,
appear to be in contrast with studies showing an attenuating
effect of ETA antagonists in diabetes-related kidney damage
[13, 23, 53, 58]. Since in these latter studies endothelin antag-
onists were systemically administered and since the
patho-mechanisms of diabetes-related kidney fibrosis may
differ from those of tubulointerstitial fibrosis as examined
in this study, the comparability of our results with those
of the aforementioned studies is limited.

In this context, clinical trials should also be mentioned that
show the therapeutic potential of ETA antagonists in kidney
diseases and provide data that contradict our findings.

These trials performed with various ETA antagonists show
reno-protective effects by reducing proteinuria in patients with
chronic kidney disease and type 2 diabetes [12, 21, 22, 34, 36,
42, 54, 61] which shows us that the results from a selective,
cell-specific deletion of the ET receptors in the animal model
are hardly transferable to human kidney diseases.

An obvious explanation of the divergent findings could be
a relevant role of the ETB for kidney fibrosis, whichwemainly

localized in endothelial and tubular cells, what is in good
accordance with previous findings [3, 38, 49, 67]. Although
the expression of ETB mRNA did not change during kidney
fibrosis, the increased expression of ET-1mRNA in tubuli and
endothelial cells could lead to an activation of endothelin sig-
naling through ETB, because ET-1 is known to exert para- and
autocrine effects. Indications to the relevance of ETB in fibro-
sis came from studies in which ETB-specific antagonists
prevented renal damage in experimental models of renal fibro-
sis [56]. It is conceivable therefore that tubular ETB signaling
initiates or contributes to renal fibrosis such as epithelial to
mesenchymal transformation [8, 56, 59, 68]. Increased

Fig. 6 Details of an RNAscope for ETB and CD31 mRNA on kidney
sections of a control mouse. RNAscope for ETB (red) and CD31 (green)
on kidney sections of control mice under basal conditions in the cortex.
(upper panel). Asterisks indicate expression in tubular segments, arrow-
heads ETB expression in endothelial cells. Scale bar = 50μm. The detailed
view (lower panel) shows ETB expression in vascular smooth muscle
cells. Arrows indicate expression in vascular smooth muscle cells, arrow-
heads in the endothelial layer. Scale bar = 50µm

Fig. 7 Expression of ETA mRNA before and after induction of
experimental renal fibrosis on control kidneys. RNAscope for ETA

mRNA (red) on kidney sections of control kidneys with co-
hybridization of PDGFR-β (green), under basal conditions, after 3-
week adenine treatment and 5-day UUO. Arrows indicate renal vessels,
arrowheads ETA expression in interstitial mesenchymal cells. Scale bars =
50μm
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Table 4 Kidney developmental
parameters under basal conditions
in control and ETA

flfl ETB
flfl

FoxD1Cre+ mice. Value are means
± SEM; n=11–15 mice

舃Kidney developmental parameters 舃ETA
flflETB

flf
舃ETA

flflETB
flflFoxD1 Cre+

舃Body weight (g) 舃23.6 ± 0.69 舃23.06 ± 0.90

舃Two kidney-to-body weight ratio (%) 舃1.13 ± 0.02 舃1.11 ± 0.02

Table 5 Renal functional
parameter under basal conditions
in control and ETA

flfl ETB
flfl

FoxD1Cre+ mice. Value are means
± SEM; n=11–15 mice.

舃Renal functional parameters 舃ETA
flflETB

flfl
舃ETA

flflETB
flflFoxD1 Cre+

舃Systolic blood pressure (mmHg) 舃128.5 ± 1.10 舃126.4 ± 1.15

舃Glomerular filtration rate/100g bw) (μl/min) 舃1249.8 ± 170.2 舃1219.3 ± 230.6

舃Urine sodium (mmol/l) 舃129.1 ± 34.7 舃153.8 ± 63.1

舃Urine potassium (mmol/l) 舃232.4 ± 63.5 舃236.2 ± 45,8

舃Urine osmolality (mosmol/kg) 舃1940.0 ± 237.9 舃1785.0 ± 207.8

舃Plasma urea concentration (mg/dl) 舃73.08 ± 1.99 舃75.91 ± 3.07

舃Plasma creatinine concentration (mg/dl) 舃0.75 ± 0.02 舃0.76 ± 0.02

舃Hematocrit (%) 舃54.9 ± 1.4 舃54.8 ± 0.3

舃Plasma erythropoietin (pg/ml) 舃284.7 ± 40.4 舃316.7 ± 72.7

舃Plasma renin concentration (ng ANGI/ml*h) 舃106.45 ± 14.3 舃80.60 ± 7.11

Fig. 8 ET-1 mRNA abundance in control and ET-Ko kidneys under
basal and pathological conditions. A RNAscope showing ET-1 mRNA
expression on whole kidney sections of both genotypes under basal con-
ditions, after adenine feeding for 3 weeks and UUO for 5 days. There was
no difference between the genotypes under any of the conditions ana-
lyzed. Scale bars = 500μm. B Expression levels of ET-1 mRNA in

adenine-induced nephropathy and after 5-day UUO of control and ET-
Ko mice. ET-1 mRNA showed a steep increase after 3-week adenine
treatment and 5-day UUOwith no difference between genotypes. All data
are means ± SEM of 5–8 animals per condition. # is p < 0.05 compared to
the respective basal kidneys
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activation of ETB-R in tubuli or endothelial cells could also
induce the production and release of cytokines, such as
TGFß1, that induce matrix production in interstitial cells [4,
19, 47], or cytokines, like Cx3CL1 attracting inflammatory
cell [69].

An interesting point to mention is that overexpression of
ET-1 leads to inflammation of the kidney. Hocher et al. [24]

showed an increase in iNOS expression and an infiltration of
CD4-positive lymphocytes and macrophages in the kidneys of
ET-1 transgenic mice with overexpression of ET-1. Several
studies have confirmed that renal inflammation is closely re-
lated to the formation of fibrosis, and it is assumed that mac-
rophages promote inflammation in the early stages of kidney
damage [17]. Therefore, when interpreting our results, we
must also consider a connection between inflammation and
fibrosis.

Another interesting aspect is provided by a work of
Tsuprykov et al. in which ET-1 even shows antifibrotic effects
in renal interstitial fibrosis and glomerulosclerosis [62]. This

Fig. 9 ETA mRNA abundance in control and ET-Ko kidneys under basal
and pathological conditions. A Expression levels of ETA mRNA in con-
trol and ET-Ko mice. ETA mRNA decreased about 90% in knockout
mice. All data are means ± SEM of 10–12 mice per condition. Single
asterisk is p<0.05 compared to untreated controls. B Expression levels of
ETA mRNA in adenine-induced nephropathy (above) and after 5-day
UUO (below) of control and ET-Ko mice. ETA mRNA showed a steep
increase in kidneys of controls in both experimental models. In ET-Ko
mice, ETA mRNAwas not upregulated after adenine treatment and 5-day
UUO. All data are means ± SEM of 5–8 animals per condition. Single
asterisk is p < 0.05 compared to the respective controls. Number sign is p
< 0.05 compared to the respective basal kidneys

Fig. 10 ETB mRNA abundance in control and ET-Ko kidneys under
basal and pathological conditions. A Expression levels of ETB mRNA
in control and ET-Ko mice. ETB mRNA decreased about 25% in knock-
out mice. All data are means ± SEM of 10–12 mice per condition. B
Expression levels of ETB mRNA in adenine-induced nephropathy
(above) and after 5-day UUO (below) of control and ET-Ko mice. ETB
mRNA remained unchanged in both experimental models. All data are
means ± SEM of 5–8 animals per condition
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work shows that in eNOS -/- mice that develop renal intersti-
tial and glomerular damage, the increase in expression of
genes involved in renal fibrosis is markedly reduced by over-
expression of ET-1.

Certainly, we cannot exclude that a minor residual expres-
sion of ET-R was sufficient to maintain an enhanced
endothelin signaling in stromal cells, because Cre-lox recom-
bination does normally not produce complete gene disrup-
tions. However, in view of the marked changes of ETA

mRNA in combination with unaffected mRNAs for
profibrotic and proinflammatory markers, we consider this
scenario as a less likely explanation.

Our data show the activation of the ET-system during the
development of kidney fibrosis that includes an upregulation
of ET-1 synthesis in endothelial and tubular cells but also the
enhanced expression of ETA in FoxD1-derived mesenchymal
progenitor cell population. Our findings further demonstrate
that genetic deletion of ET-R in this compartment had no
effect on development and progression of renal fibrosis. We
now suspect that cellular processes other than the activation of
fibroblasts play an essential role in renal fibrosis.

�Fig. 11 α-SMA mRNA abundance in control and ET-Ko mice under
basal and pathological conditions. A RNAscope showing α-SMA
mRNA on whole kidney sections of both genotypes under basal condi-
tions, after adenine feeding for 3 weeks and UUO for 5 days. Scale bars =
500μm. B Expression levels of α-SMA mRNA in adenine-induced ne-
phropathy (left) and after 5-day UUO (right) of control and ET-Ko mice.
α-SMAmRNA showed a steep increase in the kidneys of control mice in
both experimental models without difference between genotypes. All data
are means ± SEM of 5–8 animals per condition. Number sign is p < 0.05
compared to the respective basal kidneys

Fig. 12 mRNA abundance of profibrotic markers in control and ET-Ko
mice under basal and pathological conditions. A RNAscope for Col1a1
mRNA on whole kidney sections of both genotypes under basal condi-
tions, after adenine feeding for 3 weeks and UUO for 5 days. Scale bars =
500μm. B Expression levels of the fibrotic marker Col1a1, fibronectin,

and tenascin C mRNA in adenine-induced nephropathy and after 5-day
UUO of both genotypes. All markers showed a steep increase in the
kidneys of both genotypes for each experimental model. All data are
means ± SEM of 5–8 animals per condition. Number sign is p < 0.05
compared to the respective basal kidneys
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types for each experimental model. All data are means ± SEM of 5–8
animals per condition. Number sign is p < 0.05 compared to the respec-
tive basal kidneys

Table 6 Urinary ET-1 and albumin concentration in control and ETA
flfl ETB

flfl FoxD1Cre+ mice after adenine treatment and 5d UUO. Value are means
± SEM; n=4-7 mice. Single asterisk is p < 0.05 compared to the respective controls

舃ETA
flfl ETB

flfl
舃ETA

flfl ETB
flfl FoxD1 Cre+

舃basal 舃3 wks adenine 舃5-d UUO 舃Basal 舃3 wks adenine 舃5-d UUO

舃ET-1 (pg/ml) 舃0.66 ± 0.07 舃1.37 ± 0.19* 舃0.77 ± 0.11 舃1.00 ± 0.18 舃1.79 ± 0.29* 舃1.14 ± 0.18

舃albumin (μg/ml) 舃14.52 ± 1.45 舃12.47 ± 1.71 舃11.16 ± 1.96 舃12.59 ± 1.67 舃16.03 ± 2.46 舃10.97 ± 1.82
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