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Abstract

Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly
heterogeneous HIV-1 subtype C (HIV-1C) viruses. One of the best ways to reduce the bur-
den of this disease is the development of an affordable and effective prophylactic vaccine.
Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity
by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG
ApanCD auxotroph and modified vaccinia Ankara (MVA) vaccines expressing HIV-1C
mosaic Gag (Gag") were tested in a prime-boost regimen to demonstrate immunogenicity
in a mouse study. The BCG-Gag" vaccine was stable and persisted 11.5 weeks post vacci-
nation in BALB/c mice. Priming with BCG-Gag" and boosting with MVA-Gag" elicited
higher Gag-specific IFN-y ELISPOT responses than the BCG-Gag™ only and MVA-GagM
only homologous vaccination regimens. The heterologous vaccination also generated a
more balanced and persistent CD4* and CD8* T cell Gag-specific IFN-y ELISPOT
response with a predominant effector memory phenotype. A Th1 bias was induced by the
vaccines as determined by the predominant secretion of IFN-y, TNF-a, and IL-2. This study
shows that a low dose of MVA (10* pfu) can effectively boost a BCG prime expressing the
same mosaic immunogen, generating strong, cellular immune responses against Gag in
mice. Our data warrants further evaluation in non-human primates. A low dose vaccine
would be an advantage in the resource limited countries of sub-Saharan Africa and India
(where the predominating virus is HIV-1 subtype C).

Introduction

HIV-1 subtype C (HIV-1C) is the most prevalent subtype in the world, accounting for over
50% of all global infections [1,2]. It is the dominant subtype in southern Africa where it
accounts for more than 95% of all HIV-1 infections in the region [3-6] and in India (which
accounts for 6% of the HIV-1 global prevalence of HIV-1C) [2,7]. In addition, HIV-1C infec-
tions have been shown to be on the increase in Wales, England [8], and South America [9,10].
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A prophylactic HIV-1 vaccine is thought to be the most effective means of controlling the
spread of this epidemic. Furthermore, there is general agreement that a successful vaccine will
need to induce strong humoral and cellular immune responses [11-13]. Developing such a vac-
cine is particularly challenging in the face of the diversity of HIV-1. In HIV-infected elite control-
lers and long-term non-progressors lower viral loads are significantly correlated with Gag-
specific CD4" and CD8" T cell responses [14-16]. Therefore HIV-1 Gag is a critical immunogen
for inclusion in the T-cell inducing component of an HIV-1 vaccine. One of the methods used to
address the diversity of HIV-1, is the generation of mosaic and conserved immunogens which
can be designed computationally (reviewed in [17,18]). Mosaic immunogens are optimised in sil-
ico to increase the coverage of both CD8" and CD4" T cell epitopes from natural sequences with
the hope of reducing the HIV-1 escape pathways [19-26]. This strategy provides a higher level of
diversity coverage when compared to natural sequence vaccine candidates.

In this paper Mycobacterium bovis bacillus Calmette-Guérin (BCG) and modified vaccinia
Ankara (MVA) are investigated as HIV vaccine vectors to deliver an HIV-1C Gag mosaic anti-
gen targeted at inducing T cell responses. Since its development as a safe tuberculosis vaccine,
BCG has been administered to over 4 billion infants and is accessible to 80% of infants globally
[27-29]. The results from animal model studies indicate that recombinant BCG (rBCG) can be
used as a vaccine vector that can induce both humoral and antigen-specific cellular immune
responses to HIV-1 (reviewed in [30,31]). In the event that HIV-1-infected and immunocom-
promised individuals unintentionally get enrolled in future BCG-vectored HIV-1 vaccine cam-
paigns, it is essential to use the safer BCG strains as vectors [32]. Strategies have been
developed for the production of safer BCG strains, in particular auxotrophic BCG strains.
These strains have mutations in genes required for the production of essential growth com-
pounds, and so cannot replicate unless supplemented with the necessary growth compounds
[33-36]. We used a ApanCD auxotroph which is unable to synthesize pantothenic acid, a key
precursor of coenzyme A, which is essential for several mycobacterial intracellular processes
[32,37,38]. Furthermore, since safer strains of BCG are being developed against childhood TB,
it is important to use these strains as HIV-1 vaccine vectors for use as dual vaccines.

The only effective HIV vaccine trial (RV144) tested a combination of a canary poxvirus vec-
tor and protein as candidate vaccines encouraging further exploration of poxviruses as HIV
vaccine vectors. MVA is a highly attenuated strain of the smallpox virus vaccine, vaccinia virus
(VACV), that is unable to complete its replication cycle in human cells due to large deletions
[39]. Furthermore, deletion of immune-modulatory genes results in a rapid local immune
response at the point of infection [39,40]. MV A has adjuvant properties and potential to induce
long-lasting immunity. However, viral and foreign genes can still be efficiently expressed. Since
smallpox was eradicated and vaccination ceased in 1979, people up to 37 years of age would
not have been exposed to either Variola virus or VACV and therefore would not have been
immunized with MVA. MV A provides the safety of an attenuated or killed virus vaccine, yet
provides the immunogenicity of a live virus vaccine with its ability to express foreign antigen.
Added to their safety, both rBCG and rMV A are affordable to produce [41-43].

In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we
developed stable HIV-1 vaccines—based on BCG and MV A vectors—expressing an HIV-1C
mosaic Gag immunogen and assessed the vaccine immunogenicity in mice.

Materials and Methods
Construction of rBCG

The pantothenic acid auxotroph strain derived from BCG Pasteur, BCGApanCD, was kindly
provided by Professor William R Jacobs and cultured as previously described [37].
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The BCG shuttle vector pTJBCG3 was constructed as follows: the full length HIV-1C
mosaic gag gene (gag"' [19]) was codon optimised for use in BCG and cloned into the Clal and
Hpal sites of pHS400 [37]. A control plasmid that had no insert in it (pEM19) was included in
the study. To generate plasmid pEM19, pHS400 was digested with SnaBI and Hpal, to remove
gag™, and religated.

Recombinant BCGApanCD vaccine stocks resuspended in 8.5% w/v NaCl; 10%glycerol;
10% Tyloxapol were made as previously described [37] and stored at -80°C until required.

In Vitro and In Vivo Genetic Integrity of rBCG Vaccine Stocks

Crude cell lysates prepared from BCGApanCD vaccine stocks were electroporated into E. coli
DHb5a electro-competent cells which were plated on Luria agar [44]. To determine the in vitro
plasmid stability, single colonies from the electroporated E. coli cells were used to inoculate lig-
uid media, plasmid DNA was isolated and mapped using restriction enzyme digestion. In vivo
shuttle vector integrity was determined on spleens and lymph nodes isolated from mice 11.5
weeks after vaccination by polymerase chain reaction (PCR) using crude cell lysates of BCG
colonies obtained after plating homogenised splenocytes and lymph nodes from previously
vaccinated mice on Middlebrook 7H10 agar. The PCR components were 5 pl of BCG crude cell
lysate, 25u1 PCR ImmoMix Red (Bioline, USA), 10uM each primer (pCB119F: 5'-CAT ATG
AAG CGT GGA CTG AC- 3'and pEMRev: 5-AGC AGA CAG TTT TAT TGT TC—3') and
10yl distilled water. The PCR reaction conditions were initial denaturation at 95°C for 10 min-
utes, followed by 30 cycles of DNA denaturation at 95°C for 30 seconds, annealing of primers
at 56°C for 30 seconds, and DNA extension at 72°C for one minute with a 5 second increment
per cycle. A final extension step at 72°C for 4 minutes completed the reaction. PCR products
were confirmed for lack of mutations by sequence analysis.

Construction of Recombinant MVA (rMVA)

The transfer vector, pTJMVA2, was designed to insert the gag"' gene, under the control of the
VACV mH5 promoter, between the A11R and A12L transcriptionally convergent open reading
frames (ORFs) (Fig 1). The genes for green fluorescent protein (gfp) and blasticidin resistance
(bsd) were used as marker and selection genes respectively and expressed as a fusion protein
under the transcriptional control of the pSS promoter. The gfp-bsd ORF was placed outside of
the A12L flank, so that it could be recombined out at a later stage and non-fluorescing foci could
be screened for the final recombinant containing gag™" alone between the A11R and A12L ORFs.
Adherent BHK cell monolayers were infected with wild type (wt) MVA (multiplicity of
infection (MOI) = 0.1) diluted in DMEM-0 (DMEM supplemented with 1000U/ml penicillin
(Lonza, Belgium), 1000U/ml streptomycin (Lonza, Belgium), and 10ug/ml fungin (Invivogen,
USA)) and transfected 2 hours later with a 1:1 ratio of 4ug of the recombinant plasmid DNA,
PTIMVA2: 4ul X-treme Gene HP®) transfection reagent (Roche, Switzerland) according to the
manufacturer’s instructions. Cells were incubated at 37°C in a 5% CO, humidified incubator
for 48 hours. Total virus was harvested and used to re-infect a fresh BHK monolayer. Virus
was passaged 4 times in the presence of blasticidin and an intermediate rMV A expressing GFP
was purified. Virus was then passaged in the absence of blasticidin and non-fluorescing foci
were plaque purified 7 times. PCR was carried out to screen for the presence of the intermedi-
ate and final MV A recombinants using cell lysates of infected cells as template. The presence of
the intermediate recombinant MV A was confirmed by PCR amplification using the primers
Al1Rfor (5-ACAAACACCATCCTTGGGAGTA-3') and gfprev (5-AAAGTTCTTCACCCTT
AGACGCC-3') that bind to A11R and gfp respectively, or colE1for (5-GCGTGAGCTATGAG
AAAGCGCCAAAT-3") and Al12Lrev (5'-CGGTGGAGATGCAGCCGTCAA-3) that bind to
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Fig 1. Recombinant MVA construction. The transfer vector pTJMVA2 was designed to insert the gag"
gene under the transcriptional control of the mH5 promoter, between the MVA A11R and A12L ORFs. The
selection (bsd) and marker (gfp) genes were expressed as a fused protein under the transcriptional control of
the pSS MVA synthetic promoter.

doi:10.1371/journal.pone.0159141.g001

the E. coli ORI and A12L respectively. The presence of the final recombinant was confirmed
using a gag-specific primer in combination with a primer which bound on either side of the
A12L or A11R flanking site in the MVA genome (gagfor: 5'-CCCTAGAAAGAAAGGCTG
CTGGAA-3"and Al2Lrev: 5-AATCGGTGGAGATGCAGCCGTCAA-3' or A11Rfor: 5'-
ACAAACACCATCCTTGGGAGTATTC-3' and gagrev: 5-TTTCCGCCAGGCCTCAGT-3")
and using primers A11Rfor and A12Lrev alone. Cell lysates for PCR were obtained using a
method described by David Tscharke (personal communication). Briefly, when plaques were vis-
ible, the cells were gently washed with 1ml PBS/well. A volume of 250ul 1 X PCR buffer (10mM
TrisCl, 2.5mM MgCl,, 50mM KCI, pH 8.3) with proteinase K (10ug/ml; Sigma- Aldrich, USA)
was added to the cells, incubated at -80°C until frozen, and then thawed at 37°C. Cell lysates were
incubated at 56°C for 20 minutes, and then at 85°C for 10 minutes. Cell debris was removed by
centrifugation for 10 minutes at 2000rpm (Eppendorf Centrifuge 5417C, Germany). A 5-10pl
aliquot of the supernatant was used for PCR using an ImmoMix Red PCR mix (Bioline, USA)
according to the manufacturer’s instructions. The PCR product for the final recombinant was
confirmed by sequencing using the ABI Prism®) BigDye™ Terminator Cycle Sequencing kit
(Applied Biosystems, USA) according to the manufacturer’s instructions. This was done as a ser-
vice offered by the Central Analytical Facilities laboratory (Stellenbosch University, South
Africa). MVA-Gag virus stock was grown in BHK cells and purified on a 36% sucrose cushion
(36% in PBS) at 4°C and 15 000rpm (Sorvall RCSC Plus, USA) for an hour. The virus stock was
further purified on a sucrose-dextran gradient (36% sucrose; 10% dextran) under the same condi-
tions described above, and stored in PBS at —80°C until required. MVA-GagM virus titration was
done on BHK-21 cells as previously described by Chapman et al., 2012 [37]. Western blot analy-
sis to determine Gag"' protein expression was carried out as previously described [42,45].

Mice Vaccinations

Groups of four to five 6-8 weeks old female BALB/c mice were used for each experiment. The
BCG vaccine was administered intraperitoneally at a dose of 2 x 10”cfu per mouse. MV A vac-
cines were administered bilaterally into the tibialis muscle of each hind leg (50ul each) at a total
dose of 10%, 10* or 10° pfu MVA. Mice were sacrificed by cervical dislocation. The vaccination
schedule (see Table 1) and all the animal procedures were approved by the University of Cape
Town Animal Research Ethics Committee (reference UCT AEC 12-059) and performed by a
trained animal technologist.

Isolation of Splenocytes and Lymph Nodes

At the experimental endpoint, spleens and mesenteric lymph nodes were harvested. Organs of
the same type in each group were pooled before processing. A single cell suspension from the
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Table 1. Mouse immunization regimen.

Group Prime Boost Sacrifice
1 Day 0: 2x107 cfu BCG-Gag" Day 70: 10? pfu MVA-Gag" Day 82
2 Day 0: 2x107 cfu BCG-Gag" Day 70: 10* pfu MVA-Gag" Day 82
3 Day 0: 2x107 cfu BCG-Gag" Day 70: 10° pfu MVA-Gag" Day 82
4 Day 0: 2x107 cfu BCGE Day 70: 102 pfu MVA-Gag™ Day 82
5 Day 0: 2x107 cfu BCGE Day 70: 10* pfu MVA-Gag" Day 82
6 Day 0: 2x107 cfu BCGE Day 70: 10° pfu MVA-GagM Day 82
16 Day 0: 2x107 cfu BCG-GagM Day 70: 2x107 cfu BCG-Gag"' Day 82
17 Day 0: 10* pfu MVA-Gag" Day 12
18 Day 0: 10* pfu MVA-Gag" Day 28: 10* pfu MVA-GagM Day 40

doi:10.1371/journal.pone.0159141.t1001

spleens was prepared as previously described [37,46] for use in the IFN-y ELISPOT assay,
intracellular cytokine staining and for the cytometric bead array assay. Mesenteric lymph
nodes and left over splenocytes from the BCG vaccinations were stored at -80°C in BCG resus-
pension buffer (8.5% w/v NaCl, 10% glycerol, 10% tyloxapol) until required for evaluating the
integrity of the shuttle vectors.

Immunogenicity Assays to Evaluate Mosaic Vaccines

IFN-y ELISPOT and cytometric bead array (CBA) assays were carried out as previously
described [37] and intracellular cytokine staining and staining of cell surface molecules was
carried out as previously described by Burgers et al., 2006 [47]. The following antibodies were
used; anti-CD3" Alexa 700, anti-CD4" PE-Cy7, anti-CD8" APC-Cy?7, anti-CD62L APC, and
anti-CD44 FITC). The cytokine antibodies were all PE-conjugated (0.2ug anti-TNF-PE,

0.06 pg anti-IL-2-PE, 0.06 pug anti-IFN-y-PE) and were obtained from BD biosciences. The
anti-CD4" PE-Cy?7, anti-CD8" APC-Cy7 were obtained from BD biosciences. All the other
antibodies were obtained from eBioscience.

Statistical Analysis

Data was statistically analysed using Prism version 5.0 (Graphpad Software, San Diego, CA).
The t test for independent unpaired parametric comparisons was applied to assess the level of
significance of comparisons between means. All tests were two-tailed. P values < 0.05 were
considered significant. The false discovery rate (FDR) step-down procedure described in the
paper by Columb & Sagadai [48] was used to correct for multiple comparisons.

Results
Determination of rBCG Vaccine Stability

As the stability of rBCG can be compromised in vitro and in vivo (reviewed by Chapman et al.,
2010; [49]), the genetic integrity of the rBCGApanCD vaccine stocks was assessed by restriction
enzyme mapping of the shuttle vectors using Xhol (pTJBCG3) and Smal (pEM19) (Fig 2A-
2D). A single batch of each vaccine stock was tested and the same batch was then used to inoc-
ulate mice. pTJBCG3 and pEM19 plasmid DNA isolated from vaccine stocks of BCG-Gag"'
and BCG" respectively gave DNA fragments of the expected sizes (Fig 2C and 2D).

The genetic integrity of the BCG shuttle vectors in vivo was determined by PCR analysis of
plasmid DNA extracted from rBCG isolated from the spleens and lymph nodes of mice 11.5
weeks post vaccination. PCR products of the expected sizes of 1869bp and 344bp were obtained
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Fig 2. Schematic representation of the BCG shuttle vectors and the determination of their genetic integrity before and after
vaccination. Schematic representation of (A) pTJBCG3, which was used to make the BCG-Gag" vaccine, (B) pEM19 which was used to
make the BCGE vaccine. Restriction sites used for cloning and restriction mapping analysis are indicated in black bold type. OHE—E. coli
origin of replication; OriM—mycobacterial origin of replication, 19kD ss— 19kD signal sequence; KanR—kanamycin resistance gene. (C)
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pTJBCG3 digested with Xhol. Lane 1 is a positive control of pTJBCG3 DNA prior to transformation into BCGApanCD. Lanes 2-21 contain
pTJBCG3 DNA obtained from recombinant BCG-Gag"' vaccine stocks. (D) pEM19 digested with Smal. Lanes 1-15 contain pEM19 plasmid
DNA isolated from recombinant BCGE vaccine stocks, and lane 16 pEM19 plasmid DNA isolated prior to transformation into BCGApanCD
(positive control). PCR amplification of DNA from rBCG obtained from the spleens and lymph nodes of mice vaccinated with BCG-Gag"
(Group 2) (E) or BCGE (Group 5) (F) 11.5 weeks post vaccination. Lane 1 —negative control; Lane 2 —positive control; Lane 3-12 are PCR
products from rBCG isolated from homogenised spleen (3-7) or lymph nodes (8—12). Lanes M in C—F contain the molecular weight marker
O’GeneRuler™ 1kb DNA ladder.

doi:10.1371/journal.pone.0159141.9002

from pTJBCG3 and pEM19 respectively (Fig 2E and 2F). Eight of the PCR products were also
sequenced to confirm genetic integrity and no mutations were observed (data not shown).

Generation of a Recombinant MVA Expressing GagM

A recombinant MV A was constructed with HIV-1C gag"" inserted between ORFs A11R and
A12L and under the control of the vaccinia virus mH5 promoter. Gag™' expression was con-
firmed by immunostaining using anti-HIV-1 p24 Gag antibody (ARP432) (Fig 3A). Uninfected
cells and cells infected with wtMV A were used as negative controls. In vitro expression of the
Gag™ protein in the vaccine stocks was also confirmed by Western blot analysis following SDS
PAGE. Cell lysates derived from BHK-21 cells infected with MV A-Gag"', when probed with a
Gag-specific antibody, showed expression of a protein of the correct size of 55kD (Fig 3B; Lane
4). Lysates from uninfected cells were used as a negative control and a BHK cell lysate trans-
fected with a plasmid known to express full length Gag was used as a positive control (Fig 3B;
Lane 1) [47].

Determination of the Optimal Dose of MVA-Gag" to Boost a BCG-Gag"!
Prime

To determine the optimal MV A dose required to effectively boost the BCG prime, mice were
primed with 2 x 107 cfu of either the recombinant BCG-Gag" or the control BCG" and boosted
on day 70 with 10%, 10% or 10° pfu of MVA-Gag™ (see table insert in Fig 4). The BCG vaccine
priming dose of 2 x 10” cfu was previously determined as optimal in our lab (Dr Ros Chapman,
personal communication).

Priming with the BCG-Gag™ or BCG" and boosting with 10° pfu MV A-Gag™ elicited no
detectable Gag-specific IFN-y ELISPOT responses in mice (Fig 4B; Groups 1 and 4 respec-
tively). However, high cumulative HIV-1 Gag-specific IFN-y ELISPOT responses were induced
in mice primed with BCG-Gag™ and boosted with 10* pfu (1273 sfu/10° splenocytes) and 10°
pfu (2023 sfu/10° splenocytes) MV A-Gag™. These responses targeted both Gag CD4 and CD8
peptides in almost equal magnitudes (Fig 4B, Groups 2 and 3 respectively). The magnitudes of
these responses were 3.2 and 4.1 fold higher, than those induced in mice primed with the con-
trol BCG (BCG®) and boosted with a 10* or 10° pfu of MVA-Gag™ respectively (Groups 5 &
6). Thus, MVA-Gag" efficiently boosts a BCG-Gag™ prime at a dose of 10* pfu or 10° pfu but
not at a dose of 10% pfu.

To further characterise the immune responses induced by boosting BALB/c mice with dif-
ferent doses of MVA-Gag™ following a BCG prime, intra-cellular cytokine staining followed
by flow cytometry was carried out to determine the combined frequency of IFN-y-, TNF-a.-,
and IL-2- producing cells (Fig 4C and 4D).

Priming with BCG-Gag™ or with the control BCG¥, and boosting with 10* pfu MVA-Gag™
did not elicit any detectable HIV-1 Gag-specific cytokine-producing CD8" T cells (Fig 4D,
Groups 1 and 4). Mice primed with BCG-Gag™ and boosted with 10* pfu (Group 2) or 10° pfu
MVA-GagM (Group 3) elicited almost double the frequency of HIV-1 Gag-specific cytokine-
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Fig 3. In vitro expression of Gag by BHK-21 cells infected with MVA-Gag". (A) BHK-21 cells were infected with MVA-Gag", wild type MVA
(WtMVA), or left uninfected for 72 hours. HIV-1 Gag was detected with anti-Gag antibody ARP432 (a-Gag; top panels) as well as an anti-VACV
antibody (a-MVA; bottom panels), followed by an anti-rabbit HRP-conjugated antibody. (B) Cell lysates were prepared from BHK-21 cells infected with
MVA-GagM (lane 4), wild type MVA (lane 3), or left uninfected (lane 2). BHK cells transfected with a plasmid known to express full length Gag was used
as a positive control (lane 1). Western blots were probed with a rabbit anti-HIV-1-p24 Gag antibody (ARP432), followed by an anti-rabbit antibody
conjugated to alkaline phosphatase (Sigma-Aldrich, USA). A Precision Plus Protein Kaleidoscope pre-stained standard (lane M; Biorad, USA) was
used and the sizes are indicated on the left.

doi:10.1371/journal.pone.0159141.9003

producing CD8" T cells as compared to control-primed mice that were similarly boosted
(Groups 5 &®6), suggesting an effective BCG-Gag"' prime.

Immune Responses in BALB/c Mice Elicited by BCG Prime-MVA Boost
Vaccines Expressing a Gag" Immunogen

While the greatest cumulative immune response to the Gag peptides was detected from mice
boosted with 10° pfu MVA-Gag™ (Fig 4B; Group 3), the amount of background responses in
the IFN-y ELISPOT assay were unacceptably high (up to 420 sfu/10° splenocytes). An MVA--
Gag™ boost of 10* pfu for rBCGApanCD-primed mice was therefore chosen as the optimal
dose to compare immune responses to different rBCGApanCD prime vaccinations. As con-
trols, mice vaccinated with a single dose of MVA-Gag™ as well as those vaccinated with two
homologous doses of BCG-Gag™ or MV A-Gag™ vaccines were included. The immunisation
schedules were chosen to give the peak immune response for each vaccine vector or combina-
tions of vaccine vectors. Data from our group (unpublished) has indicated immune responses
are improved if the MV A boost is given at 10 weeks rather than 4 weeks post the BCG prime.

Mean cumulative responses for Group 2 mice (BCG-Gag™'/MVA-Gag™) reached a magni-
tude of 1143 + 117 sfu/10° splenocytes with almost equally balanced responses targeted to Gag
CD8 (475 + 55 sfu/10° splenocytes) and Gag CD4 (668 + 32.7 sfu/10° splenocytes; Fig 5B) pep-
tides. There was a 2.8-fold difference between the magnitudes of cumulative responses of mice
primed with BCG-Gag™ (Group 2) and those that received a control BCG" prime (Group 5--
410 + 98 sfu/10° splenocytes). Thus, BCG-Gag"' efficiently primes the adaptive immune
system.

Mean cumulative IFN-y ELISPOT HIV-1 Gag responses of mice vaccinated with the
BCG-Gag"'/MVA-Gag" heterologous prime-boost regimen (Group 2) were 3- and 1.7-fold
greater than the BCG-Gag™'/BCG-Gag"" homologous prime-boost (Group 16; 380 + 64.7 sfu/
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Fig 4. Determination of the optimal dosage of MVA-Gag" to boost a BCG-Gag" prime. (A) Mice were primed on day 0 with 2 x 107 cfu BCG-Gag"
(Group 1-3) or BCGF (Group 4-6) and boosted on day 70 with 10? (Group 1 and 4), 10* (Group 2 and 5), or 10° (Group 3 and 6) pfu MVA-Gag". (B)
Cumulative IFN-y ELISPOT CD8* and CD4* responses of vaccinated mice to HIV-1 Gag peptides. The ELISPOT assay was carried out using three Gag-
specific peptides for stimulation of pooled splenocytes that were isolated 12 days post the MVA-Gag'\’I boost. Bars represent the magnitude of net
responses to individual peptides, expressed as sfu/10° splenocytes after subtracting the background. (C) and (D) Total frequency of T cells producing IFN-
Y, IL-2, and/or TNF-q, after subtracting the background, in response to HIV-1 Gag peptide stimulation following a rBCG prime and an MVA-Gag"’I boost at
different doses. Cells were positive for cytokine production if the proportion was >0.05% after subtracting the background. These results are from a single

experiment using pooled splenocytes.
doi:10.1371/journal.pone.0159141.g004

10° splenocytes) and MVA-Gag™'/MVA-Gag™ homologous prime-boost; 656.7 + 8.5 sfu/10°
(Group 18) mice respectively. The BCG-Gag"'/MVA-Gag™ heterologous prime-boost was
therefore significantly more efficient in generating an immune response than the BCG-Gag"/
BCG-Gag™ (p<0.001) and MVA-Gag"'/MVA-Gag™ (p<0.01) homologous prime-boost vac-
cinations. Interestingly, responses to the CD8 Gag peptide were similar for Groups 17 (MVA--
Gag™) and 18 (MVA-Gag"'/ MVA-Gag™; Fig 5B). The second MV A-Gag"' vaccination,
however boosted CD4" T cell responses to Gag (Fig 5B).

As shown in Fig 5C and 5D, the BCG-Gag™'/MV A-Gag" heterologous prime-boost regi-
men (Group 2) resulted in CD8" T cells with a higher frequency of effector memory phenotype
(91.6%) than those in the control group (Group 5-66.5%). A BCG—GagM homologous prime-
boost resulted in cytokine positive CD8" T cells that were predominantly of a central memory
phenotype (58%; Group 16). There were fewer cytokine-producing CD4" T cells than there
were cytokine-producing CD8" T cells for all vaccination regimens except for the Group 18
mice that received an MVA-Gag™ homologous prime-boost vaccination (Fig 5C and 5D). A
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Fig 5. Evaluation of a BCG-Gag" prime/ MVA-Gag" boost in BALB/c mice. (A) Vaccination schedule used. (B) Cumulative IFN-y ELISPOT CD8*
and CD4" responses of vaccinated mice to HIV-1 Gag peptides. The ELISPOT assay was done in triplicate using pooled spleens on the day of sacrifice
using three Gag-specific peptides for stimulation. Bars are the mean and standard deviation of the mean responses for the indicated individual peptides
from 3 independent experiments. Responses are expressed as sfu/10° splenocytes after background subtraction. Horizontal bars with asterisks
indicate statistical significance of the mean responses between the indicated groups. **p<0.01, ***p<0.001; Student t-test of unpaired data followed by
FDR for multiple comparisons. (C) and (D) Total frequency of T cells producing IFN-y, IL-2, and/or TNF-a in response to HIV-1 Gag peptide stimulation.
Cell surface staining and flow cytometry were carried out in duplicate on pooled spleens per group using three Gag-specific peptides for stimulation. The
memory distribution of the cytokine producing T- cells in the central and effector memory compartment (Tcy and Tgy) are represented as pie charts
above each corresponding bar per group. Cells were positive for cytokine production if the proportion was > 0.05% after subtracting the background.
The cellular phenotype was positive if there were > 10 cells per test. (E) The levels of cytokines in the culture supernatants were quantified usinga Th1/
Th2 cytokine bead array assay followed by flow cytometry. The recorded results were obtained after subtracting the background. The distance from the
centre of the plot indicates a log4-fold change (ranging from 1 to 10 000) and cytokine levels were expressed as pg/ml.

doi:10.1371/journal.pone.0159141.9005
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single MV A-Gag" vaccination resulted in cytokine-positive CD4" T cells with a predominant
effector memory phenotype (Group 17-76%), and a homologous boost increased the propor-
tion of effector memory CD4" T cells to 99% (Group 18). Cytokine-positive CD4" T cells fol-

lowing a BCG-Gag™ homologous prime-boost all had an effector memory phenotype (Group
16).

To assess the Th1/Th2 bias of the immune response to the vaccines used, Th1 and Th2 cyto-
kines were quantified in culture media of splenocytes stimulated with Gag CD4 and CD8 pep-
tides in a cytokine bead array assay (Fig 5E). As anticipated, IFN-y, TNF-o, and IL-2 (Thl
cytokines) had the highest cumulative levels in all groups of mice. IFN-y, TNF-a, and IL-2
were 2.4-, 4.9-, and 4.7-fold higher, respectively, in Group 2 (BCG-Gag"'/MVA-Gag™) com-
pared to Group 5 mice (BCG*/MVA-Gag™) confirming an efficient prime with the BCG-Gag"'
vaccine. The MVA-Gag™ vaccine also potently boosted the BCG-Gag™ prime. Cumulative
IFN-y, TNF-0, and IL-2 levels were higher in mice that received the heterologous BCG-Gag
MVA-Gag™ prime-boost vaccination (Group 2) compared to Group 16 mice that received a
BCG-Gag"'/BCG-Gag"" homologous vaccination. Splenocytes from the heterologous prime-
boost vaccination (Group 2) produced high levels of IFN-y, TNF-q, and IL-2 compared to any
of the homologous prime-boost vaccinations (Group 16 and 18; BCG-Gag"'/BCG-Gag™ and
MVA-GagM/MVA-Gag™ respectively).

M

Discussion

In this study, rBCGApanCD and rMV A vaccines expressing an HIV-1C mosaic Gag
(BCG-Gag™ and MVA-Gag, respectively) were made and evaluated in mice. Studies done by
others have shown HIV-1 Group M mosaic vaccines to induce broader T cell and higher mag-
nitude responses than vaccines expressing antigens derived from natural or consensus HIV-1
sequences [21,26,50-52]. Here we have shown BCG-Gag™ and MV A-Gag™ vaccines express-
ing HIV-1C mosaic Gag to be immunogenic in mice, particularly when administered as a het-
erologous prime-boost regimen. BALB/c mice have a limited number of HIV-1 epitopes that
can be used to evaluate the breadth of candidate vaccines thus this could not be evaluated in
this study. Further studies using bi- and tri-valent HIV-1C mosaic immunogens to increase
breadth, which is essential for clearing diverse strains of HIV-1 in infected individuals, will be
carried out in non-human primates.

The stability and expression of transgenes is critical in recombinant BCG vaccine develop-
ment. This is essential for memory cells to elicit a correct and potent immune response to the
antigen in the event of an infection. The rBCGApanCD vaccines made in this study were stable
in vitro and in vivo. The shuttle vectors in the BCG-Gag" and BCG" vaccines were detectable
in peripheral lymphoid organs (spleen and lymph nodes) of vaccinated mice 11.5 weeks post
vaccination. Furthermore, the gag™ DNA sequence obtained from BCG-Gag" in the periph-
eral lymphoid organs was unaltered as determined by PCR and sequencing. This was encourag-
ing, as these are sites where adaptive immune responses are initiated [53].

In order to make a stable rMV A an insertion site was selected that would be stable. In the
past the del IT and del III regions which lie within the variable terminal regions were used as
sites of insertion in rMV A vaccine development. These regions are often prone to deletions
and other mutational changes. Inserting a foreign gene into the variable terminal region makes
it prone to such deletion mutations. Therefore to increase transgene stability, foreign genes
have been inserted between transcriptionally convergent conserved genes where no possible
transcriptional promoters could be disrupted [54,55]. In this study gag"’ was inserted between
the A11R and A12L genes. A Gag"' protein of the correct size (55kD) was shown to be
expressed from MVA-Gag"! after vaccine scale up confirming the stability of the vaccine.
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Live attenuated SIV and CMV vaccines that elicit persistent CD8" T cell responses, have
been shown to control viral load in macaques [56-58]. In this study, we demonstrated that
BCG-Gag"' persists in the tissues of vaccinated mice as determined by the presence of
BCG-Gag™ colonies in the peripheral lymphoid organs (spleen and lymph nodes) of these
mice 11.5 weeks post vaccination (Fig 2). Our group and others have also shown that rBCG
persists in vivo up to 20 weeks post vaccination [28,59-61]. Future studies of BCG-Gag"'
should include experiments to confirm the long term persistence of HIV-specific T cell
responses.

The replication of BCG in vivo is slow and rBCG persistence subsequently results in low
antigen expression and low levels of antigen presentation [62]. Low T cell immune responses
to the antigen are induced and differentiate into memory phenotype, and get stimulated when
boosted with a matching antigen [63]. Vaccination with a BCG-Gag™ prime MVA-Gag™ boost
generated predominantly effector memory cytokine-positive T cells, a T cell subset shown to
play a role in the control of viral load after vaccination with CMV-based vaccines [56]. Effector
memory cells act as the first line of defence at the site of HIV infection. Hansen and colleagues
have shown that the protection of vaccinated non-human primates from SIV challenge was
due to both CD4" and CD8" effector memory T cell responses [56-58].

Antigens derived from mycobacteria are processed and presented by macrophages. Anti-
gens delivered into the phagolysosome usually get processed by the HLA class II pathway. Such
antigens would induce CD4" T cell responses (reviewed by Hess et al., 2000; [64]. In our study,
the BCG-Gag™ prime and MVA-Gag™ boost resulted in the frequency of cytokine-secreting
CD8" T cells being greater than that of CD4" T cells (Fig 5C and 5D). The Gag™ antigen in our
study was linked to the 19kD signal sequence in the BCG shuttle vector. This targets the anti-
gen to the cell wall, making it accessible for processing by the HLA class I pathway and induc-
ing CD8™ T cell responses [65]. Previous studies carried out by our group also showed that the
BCGApan strain induced predominant CD8" T cell responses to HIV-1 Gag [32,37,60]. CD4"
cells are essential for providing help to CD8" T cells [66-69]. However, CD4" T cells are also
the target of HIV-1 infection (reviewed by Grossman et al., 2006 [70]). There is therefore a fine
balance between inducing enough of a CD4™ response to provide help to CD8" cells and induc-
ing too many CD4" cells, which will increase the pool of target cells for HIV-1 infection.

The Gag"' vaccines in our study induced a Th1 bias when administered in a heterologous or
homologous prime-boost regimen (Fig 5E). A Thl immune response has been shown to be
important for protection against viral challenge in mice and humans as reported by Someya
and colleagues (2004; [71]) and by Betts and colleagues respectively [72,73]. Both IFN-y and
TNF-a are important mediators of antiviral activity by CD8+ T cells in HIV-1 infection whilst
increased production of IL-2 is associated with reduced viral loads in elite controllers [73-75].
It is therefore desirable for candidate vaccines to induce these cytokines as potential correlates
of protection.

This study shows that subtype-specific monovalent HIV-1 Gag"' vaccines are highly immu-
nogenic in mice. Furthermore, a low dose MVA-Gag™ boosted a BCG-Gag™ prime. This is
very attractive for dose sparing and reduced costs for the targeted resource-limited regions
should the vaccine get to clinical trials, licencing, and large scale distribution. This promising
immunogenicity data warrants further evaluation in non-human primates.
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