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ABSTRACT 44 
 45 
Sleep is essential for optimal functioning and health. Interconnected to multiple biological, 46 
psychological and socio-environmental factors (i.e., biopsychosocial factors), the multidimensional 47 
nature of sleep is rarely capitalized on in research. Here, we deployed a data-driven approach to identify 48 
sleep-biopsychosocial profiles that linked self-reported sleep patterns to inter-individual variability in 49 
health, cognition, and lifestyle factors in 770 healthy young adults. We uncovered five profiles, including 50 
two profiles reflecting general psychopathology associated with either reports of general poor sleep or 51 
an absence of sleep complaints (i.e., sleep resilience) respectively. The three other profiles were driven 52 
by sedative-hypnotics-use and social satisfaction, sleep duration and cognitive performance, and sleep 53 
disturbance linked to cognition and mental health. Furthermore, identified sleep-biopsychosocial 54 
profiles displayed unique patterns of brain network organization. In particular, somatomotor network 55 
connectivity alterations were involved in the relationships between sleep and biopsychosocial factors. 56 
These profiles can potentially untangle the interplay between individuals' variability in sleep, health, 57 
cognition and lifestyle — equipping research and clinical settings to better support individual’s well-58 
being. 59 

 60 

 61 
 62 

 63 
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INTRODUCTION 70 

 71 
Decades of research have established that sleep is interconnected to multiple biological, psychological 72 
and socio-environmental factors1,2 (i.e., biopsychosocial factors)3,4. Importantly, sleep difficulties are 73 
among the most common comorbidities of mental and physical disorders5–8, highlighting the central 74 
role of sleep in health. Despite the recognition that sleep is a unique marker for optimal health9,10 and 75 
a potential transdiagnostic therapeutic target, its multidimensional and transdisciplinary nature is rarely 76 
capitalized on in research. Traditionally, single association studies have investigated the relationship 77 
between a single dimension of sleep (e.g., duration, quality, onset latency) and/or a single outcome of 78 
interest. Such uni-dimensional studies have demonstrated links between insufficient or poor sleep with 79 
a multitude of negative outcomes separately, including cognitive difficulties11,12, brain connectivity 80 
changes13–15, decreased physical health7,16, mental health and well-being8,17, as well as increased risks 81 
for cardiovascular disease7,18,19, neurodegenerative disease20,21 and psychiatric disorders8,22. However, 82 
by treating sleep as a binary domain (e.g., good vs. poor sleep, short vs. long), these studies fail to 83 
capture the multidimensional nature of sleep and the multiple intricate links with biological, 84 
psychological, and socio-environmental (i.e., biopsychosocial) factors.  Therefore, it remains unclear 85 
which biopsychosocial factors are most robustly associated with sleep traits and whether these factors 86 
are supported by similar mechanisms.  87 
 88 
Adding to the complexity of these relationships is how sleep and good sleep health are defined. 89 
Characterizing sleep is a challenging task because of its multidimensional nature23. Sleep can be 90 
characterized by quantity (i.e., sleep duration) and quality (i.e., satisfaction, efficiency), as well as in 91 
terms of regularity, timing, and alertness. These dimensions are deemed particularly relevant when 92 
defining sleep health9, as they each have been related to biopsychosocial outcomes. Different sleep 93 
dimensions can also be described as either “good” or “bad” sleep, without necessarily affecting one 94 
another, e.g., short sleep duration is not systematically associated with poor sleep quality. Another 95 
important aspect of sleep is how it is subjectively characterized. For instance, our perception of sleep 96 
can influence daytime functioning24 and can be ascribed to certain behaviors that differ from objective 97 
reports25,26. 98 
 99 
Reconciling the multiple components of sleep and the complex connections to a myriad of 100 
biopsychosocial factors requires frameworks grounded in a multidimensional approach. The 101 
biopsychosocial model has long been used to assert that biological (e.g., genetics and intermediate brain 102 
phenotypes), psychological (e.g., mood and behaviors), and social factors (e.g., social relationships, 103 
economic status), are all significant contributors to health and disease3,4. Indeed, the biopsychosocial 104 
model has been used to establish current diagnostic and clinical guidelines, such as the World Health 105 
Organization’s International Classification of Functioning, Disability and Health, and is considered 106 
central to person-centered care27. Hence, statistical methods that enable us to interrogate the complex 107 
interconnected relationships within and between sleep and biopsychosocial factors can advance our 108 
understanding of optimal health and functioning across the lifespan. Multivariate data-driven 109 
techniques can help disentangle these complex interrelations, by deriving latent components that 110 
optimally relate multidimensional data sets in a single integrated analysis. A few studies have used such 111 
techniques to account for the multidimensional components of sleep and biopsychosocial factors 112 
separately15,28–32. However, no study has integrated both multidimensional components of sleep and 113 
biopsychosocial factors to derive profiles that can account for the dynamic interplay among 114 
biopsychosocial factors.  115 
 116 
Deploying multivariate data-driven techniques requires a large sample size to identify latent 117 
components that can generalize well33–35. One such optimal dataset is the Human Connectome Project 118 
dataset (HCP)36 as it comprises a wide range of self-reported questionnaires about lifestyle, mental and 119 
physical health, personality and affect, as well as objective measures of physical health and cognition 120 
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from over a thousand healthy young adults. Moreover, the HCP dataset stands out as one of the rare 121 
large-scale datasets that implemented a detailed assessment of sleep health, i.e., the Pittsburg Sleep 122 
Quality Index (PSQI)37. This standardized sleep questionnaire, used both by clinicians and researchers, 123 
assesses different dimensions of sleep health in 19 individual items, creating 7 sub-components, 124 
including sleep duration, satisfaction, and disturbances.  125 
 126 
Beyond sleep-biopsychosocial profiling, the HCP dataset also provides the opportunity to explore the 127 
neural signatures of these sleep-biopsychosocial profiles using in vivo imaging. Magnetic resonance 128 
imaging (MRI) is widely used to probe brain network organization at the functional level. Moreover, 129 
multiple studies have shown that signal fluctuation patterns during task or rest (i.e., resting-state 130 
functional connectivity; RSFC) are sensitive to sleep14,15,32,38, but also predictive of psychopathology39,40 131 
and cognitive performance14,38. By investigating patterns of brain network organization associated with 132 
the different sleep-biopsychosocial profiles, we have a chance to untangle the interplay between 133 
individuals’ variability in sleep, psychopathology, cognition, and brain connectivity. Such holistic 134 
biopsychosocial approaches are not only in line with established diagnostic frameworks, but also with 135 
initiatives such as the NIMH’s Research Domain Criteria (RDoC) that encourage investigating mental 136 
disorders as continuous dimensions rather than distinct categories by integrating data from genomics, 137 
neural circuitry and behavior41–43. 138 
 139 
Identifying vulnerability markers constitutes a first step towards forecasting disease trajectories and 140 
designing multimodal multidimensional targeted therapies. Given the increasing recognition that sleep 141 
has a central role in health and well-being, we believe that sleep profiles should be included as a core 142 
aspect of these markers. Hence, in this study, we sought to take a multidimensional data-driven 143 
approach to identify sleep-biopsychosocial profiles that simultaneously relate self-reported sleep 144 
patterns to biopsychosocial factors of health, cognition, and lifestyle in the HCP cohort of healthy young 145 
adults36. We further explored patterns of brain network organization associated with each profile and 146 
hypothesized that whole-brain RSFC will be differently associated with distinct sleep-biopsychosocial 147 
profiles.  148 
 149 
  150 
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RESULTS 151 

We applied canonical correlation analysis (CCA) to derive latent components (LCs) linking the 7 sub-152 
components of the PSQI to 118 biopsychosocial measures (spanning cognitive performance, physical 153 
and mental health, personality traits, affects, substance use, and demographics; Table S1) in 770 154 
healthy adults from the S1200 release of the HCP dataset36 (Figure 1A). Participants were young adults 155 
between 22 and 36 years old (mean 28.86 ± 3.61 years old, 53.76% female), were generally employed 156 
full time (70.7%) and mostly white (78%; see Table 1 for Demographics). 157 

 158 

 159 
Figure 1 - Canonical correlation analysis reveals five sleep-biopsychosocial profiles (LCs). 160 
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(A) Canonical correlation analysis (CCA) flowchart and RSFC signatures; (B) Scatter plots showing correlations 161 
between biopsychosocial and sleep canonical scores. Each dot represents a different participant. Inset shows the 162 
null distribution of canonical correlations obtained by permutation testing; note that the null distribution is not 163 
centered at zero. The dashed line indicates the actual canonical correlation computed for each LC. The distribution 164 
of sleep (top) and biopsychosocial (right) canonical scores is shown on rain cloud plots. 165 
 166 
 167 

Five latent components (LCs) linking sleep and biopsychosocial factors. 168 
Out of the seven significant LCs that were derived, 5 were interpretable LCs delineating multivariate 169 
relationships between sleep and biopsychosocial factors (Figure 1B). While LC1 and LC2 were defined 170 
by general patterns of sleep (either general poor sleep or sleep resilience), LCs 3-5 reflected more 171 
specific sub-components of the PSQI, all associated with specific patterns of biopsychosocial factors. 172 
The 5 LCs respectively explained 88%, 4%, 3%, 2%, 1% of covariance between the sleep and 173 
biopsychosocial data.  174 
 175 

 176 
Figure 2 – First latent component (LC1) reflects poor sleep and psychopathology. 177 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC1. Greater loadings on 178 
LC1 were associated with higher measures of poor sleep and psychopathology. Higher values on sleep (blue) and 179 
biopsychosocial (green, purple, pink) loadings indicate worse outcomes. Error bars indicate bootstrapped-180 
estimated confidence intervals (i.e., standard deviation) and measures in bold indicate statistical significance (after 181 
FDR correction q<0.05); (B) Unthresholded edge-wise beta coefficients obtained from generalized linear models 182 
(GLM) between participants’ LC1 canonical scores (i.e., averaged sleep and behavior canonical scores) and their 183 
RSFC data; (C) FDR-corrected network-wise beta coefficients computed with GLMs within and between 17 Yeo 184 
networks44 and subcortical regions45. (D) Distribution of the integration/segregation ratio in each of the 7 Yeo 185 
networks and subcortical regions associated with LC1 (left). The dashed line indicates the median of all parcels, and 186 
the bold black lines represent the median for each network. The integration/segregation ratio values for the 400 187 
Schaeffer parcellation46 and 7 subcortical regions are projected on cortical and subcortical surfaces (right). 188 

B. RSFC edge-wise (uncorrected) D. Segregation/Integration RatioC. RSFC network-wise (FDR corrected)
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 189 
LC1 was characterized by a general pattern of poor sleep, including decreased sleep satisfaction, longer 190 
time to fall asleep, greater complaints of sleep disturbances and daytime impairment, as well as greater 191 
(i.e., worse) psychopathology (e.g., depression, anxiety, somatic complaints, internalizing behavior) and 192 
negative affect (e.g., fear, anger, stress – Figure 2A).  193 
Similarly, LC2 was also driven by greater psychopathology, especially attentional problems (e.g., 194 
inattention, ADHD), low conscientiousness, and negative affect (Figure 3A). In terms of sleep however 195 
and in contrast to the first LC, greater psychopathology was only related to higher complaints in daytime 196 
impairment without sleep difficulties, suggesting sleep resilience.  197 
 198 

 199 
Figure 3 – Second latent component (LC2) reflects sleep resilience and psychopathology. 200 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC2. Greater loadings on 201 
LC2 were associated with higher measures of complaints of daytime dysfunction and psychopathology. Positive 202 
values on sleep (blue) loadings indicate worse outcomes while positive values on biopsychosocial (green, purple, 203 
pink) loadings reflect higher magnitude on these measures. Error bars indicate bootstrapped-estimated confidence 204 
intervals (i.e., standard deviation) and measures in bold indicate statistical significance. (B) Unthresholded edge-205 
wise beta coefficients obtained from generalized linear models (GLM) between participants’ LC1 canonical scores 206 
(i.e., averaged sleep and behavior canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta 207 
coefficients computed with GLMs within and between 17 Yeo networks44 and subcortical regions45. (D) Distribution 208 
of the integration/segregation ratio in each of the 7 Yeo networks and subcortical regions associated with LC2 209 
(left). The dashed line indicates the median of all parcels, and the bold black lines represent the median for each 210 
network. The integration/segregation ratio values for the 400 Schaeffer parcellation46 and 7 subcortical regions 211 
are projected on cortical and subcortical surfaces (right). 212 
 213 

LC2 - Sleep resilience & Psychopathology
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 214 
Figure 4 – Third latent component (LC3) reflects hypnotics and sociability. 215 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC3. Greater loadings on 216 
LC3 were associated with the use of sedative-hypnotics and measures of positive social relationships, lower body 217 
mass index (BMI) and poor visual episodic memory performance. Positive values on sleep (blue) loadings indicate 218 
worse outcomes while positive values on the mental health (green), affect (pink) and personality (purple) categories 219 
of biopsychosocial loadings reflect higher magnitude on these measures. Positive value in the physical health (olive) 220 
category represents higher value and positive values in the cognition (orange) category indicate either higher 221 
accuracies or slower reaction times (RT). Error bars indicate bootstrapped-estimated confidence intervals (i.e., 222 
standard deviation) and measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta 223 
coefficients obtained from generalized linear models (GLM) between participants’ LC1 canonical scores (i.e., 224 
averaged sleep and behavior canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta 225 
coefficients computed with GLMs within and between 17 Yeo networks44 and subcortical regions45. (D) Distribution 226 
of the integration/segregation ratio in each of the 7 Yeo networks and subcortical regions associated with LC3 227 
(left). The dashed line indicates the median of all parcels, and the bold black lines represent the median for each 228 
network. The integration/segregation ratio values for the 400 Schaeffer parcellation46 and 7 subcortical regions 229 
are projected on cortical and subcortical surfaces (right). 230 
 231 
LC3 was mostly characterized by hypnotic-sedative drugs intake (i.e., sleep meds PSQI sub-component) 232 
and to a lesser extent a lack of daytime functioning complaint. Surprisingly, LC3 was not driven by any 233 
attentional problem but was related to worse performance in visual episodic memory and emotional 234 
recognition. Moreover, hypnotics intake was mainly related to satisfaction in social relationships (Figure 235 
4A). 236 
While LC4 was solely driven by sleep duration (i.e., not sleeping enough - reporting <6-7h per night), 237 
LC5 was mostly characterized by the presence of sleep disturbances that can encompass multiple 238 
awakenings, nocturia and breathing issues as well as pain or temperature imbalance. In LC4, short sleep 239 
duration was associated with worse accuracy and longer reaction time at multiple cognitive tasks 240 
tapping into emotional processing, delayed reward discounting, language, fluid intelligence, and social 241 

LC3 - Hypnotics & Sociability

B. RSFC edge-wise (uncorrected) C. RSFC network-wise (FDR corrected)

A. Sleep & Biopsychosocial loadings

Sleep loadings BPS loadings

Sleep
Demographics
Physical Health
Cognition
Mental Health
Affect
Personality
Substance Use

Sleep Meds

Sleep Latency

Sleep Disturbance

Sleep Ef�ciency

Sleep Duration

Sleep Satisfaction

Daytime Functioning

-1.0 -0.5 0.0 0.5 1.0

Type

-0
.0

08
0.

00
8

Be
ta

s c
oe

f�
ci

en
ts

TPN

DMN

CON
LIM
SAL

DAN

SMN

VIS
SubC

TP
N

D
M

N

CO
N

LI
M

SA
L

D
AN

SM
N VI
S

Su
bC

Social Relationship: Friendship (NIH)
Conscientiousness (NEOFAC)

Social Relationship: Emotional Support (NIH)
Emotion Recognition: Sad - Accuracy (PERT)

Spatial Orientation - RT (VSPLOT)
Thought Problems (ASR)

Fluid Intelligence - RT (PMAT)
Childhood Conduct Problems (SSAGA)

Agoraphobia (SSAGA)
Social Relationship: Perceived Rejection (NIH)

DSM Inattention Problems (ASR)
Visual Episodic Memory (NIH)

Openness to Experience (NEOFAC)
BMI

Attention Problems (ASR)

-0.50 -0.25 0.00 0.25 0.50

more complaintsless complaints

Average betas
-0.01 0.01

C
B

A

C
B

A

A

BB
A

B

A

B
A

B

A

D. Segregation/Integration Ratio

more integrated

TPN

SubC

DMN

CON
LIM
SAL

DAN
SMN

VIS

more segregated

L R

Thalamus

Amygdala
1.5-1

Pallidum
Caudate

Cortical

Subcortical
Hippocampus

Nucleus 
Accumbens

Putamen

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

cognition. LC4 was also characterized by higher aggressive behavior and lower agreeableness (Figure 242 
5A).  243 
Interestingly, sleep disturbances in LC5 were also associated with aggressive behavior and worse 244 
cognitive performance (e.g., in language processing and working memory), but was mostly 245 
characterized by critical items on mental health assessments (i.e., anxiety, thought problems, 246 
internalization) and substance abuse (i.e., alcohol and cigarette use – Figure 6A). 247 
 248 

 249 
Figure 5 – Fourth latent component (LC4) reflects sleep duration and cognition. 250 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC4. Greater loadings on 251 
LC4 were associated with shorter sleep duration and measures of poor cognitive performance. Positive values on 252 
sleep loadings indicate worse outcomes while positive values on the mental health (green), substance use (yellow), 253 
demographics (light blue) and personality (purple) categories of biopsychosocial loadings reflect higher magnitude 254 
on the measures. Positive values in the cognition (orange) category indicate either higher accuracies or slower 255 
reaction times (RT). Error bars indicate bootstrapped-estimated confidence intervals (i.e., standard deviation) and 256 
measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta coefficients obtained from 257 
generalized linear models (GLM) between participants’ LC1 canonical scores (i.e., averaged sleep and behavior 258 
canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta coefficients computed with GLMs 259 
within and between 17 Yeo networks44 and subcortical regions45. (D) Distribution of the integration/segregation 260 
ratio in each of the 7 Yeo networks and subcortical regions associated with LC4 (left). The dashed line indicates the 261 
median of all parcels, and the bold black lines represent the median for each network. The integration/segregation 262 
ratio values for the 400 Schaeffer parcellation46 and 7 subcortical regions are projected on cortical and subcortical 263 
surfaces (right). 264 
 265 
 266 
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 267 
Figure 6 – Fifth latent component (LC5) reflects sleep disturbance, cognition and psychopathology. 268 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC5. Greater loadings on 269 
LC5 were associated with the presence of sleep disturbances, higher measures of psychopathology and lower 270 
cognitive performance. Positive values on sleep loadings indicate worse outcomes while positive values on the 271 
mental health (green), substance use (yellow) and personality (purple) categories of biopsychosocial loadings 272 
reflect higher magnitude on these measures. Positive values in the cognition (orange) category indicate either 273 
higher accuracies or slower reaction times (RT), while positive values in the demographics (light blue) and physical 274 
health (olive) categories represent higher values. Error bars indicate bootstrapped-estimated confidence intervals 275 
(i.e., standard deviation) and measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta 276 
coefficients obtained from generalized linear models (GLM) between participants’ LC1 canonical scores (i.e., 277 
averaged sleep and behavior canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta 278 
coefficients computed with GLMs within and between 17 Yeo networks44 and subcortical regions45. (D) Distribution 279 
of the integration/segregation ratio in each of the 7 Yeo networks and subcortical regions associated with LC5 280 
(left). The dashed line indicates the median of all parcels, and the bold black lines represent the median for each 281 
network. The integration/segregation ratio values for the 400 Schaeffer parcellation46 and 7 subcortical regions 282 
are projected on cortical and subcortical surfaces (right). 283 

 284 

Sleep and biopsychosocial profiles exhibit signatures of resting state brain connectivity. 285 
In terms of brain organization, the 5 LCs revealed distinct patterns of network connectivity. Specifically, 286 
we examined patterns of both within-network and between-network connectivity (see Figure S1 for 287 
subcortical-cortical patterns).  288 
Greater (averaged) biopsychosocial and sleep composite scores on LC1 were associated with increased 289 
RSFC between subcortical areas and the somatomotor and dorsal attention networks (Figures 2B and 290 
2C), and a decreased RSFC between the temporoparietal network and these two networks. The visual 291 
network showed a flattened distribution of segregation/integration ratio (i.e., more variability in 292 
segregation and integration among the parcels of the network). The amygdala and nucleus accumbens 293 
exhibited asymmetrical patterns in the segregation/integration ratio with the left side being more 294 
segregated (Figure 2D). Meanwhile, LC2 was associated with increased RSFC between the dorsal 295 
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attention and control network but decreased RSFC between dorsal attention and the temporoparietal 296 
and limbic networks (Figures 3B and 3C), a higher segregation of nodes within the tempoparietal 297 
network and increased integration within the right thalamus (Figure 3D). Higher composite scores in 298 
LC3 were associated with increased RSFC within the visual and default mode networks (Figures 4B and 299 
4C). The segregation/integration ratio within the default mode exhibited a flattened distribution (i.e., 300 
high variability in segregation and integration among parcels) but there was an increased segregation 301 
in the limbic and visual networks (Figure 4D). While greater composite scores in LC4 were associated 302 
with widespread patterns of hypo- or hyper-connectivity within and between every network the 303 
somatomotor network specifically exhibited an altered pattern of segregation and integration (Figures 304 
5B to 5D). Finally, we found that greater averaged composite scores in LC5 were mainly associated with 305 
reduced within-network connectivity in the somatomotor, dorsal and ventral attention networks 306 
(Figures 6B and 6C) but no strong pattern of segregation/integration ratio change (Figure 6D).   307 
 308 

Post-hoc associations with socio-demographics, health, and family history of mental 309 
health 310 
We found a number of significant associations between LC composite scores and socio-economic (e.g., 311 
education level, household income) and socio-demographic factors (e.g., race, ethnicity; see Table S4 312 
and Supplemental Results). In brief, most profiles (LCs 1,4,5) showed significant associations between 313 
sleep-biopsychosocial composite scores and education level, where lower education level was 314 
associated with a higher composite score in LCs 1,4,5 (all q<0.05). Similarly, lower household income 315 
correlated with a higher composite score in LCs 1-2 (all q<0.05). Race and ethnicity groups revealed 316 
differences in composite sleep and biopsychosocial scores for LCs 1,3-5 (all q<0.05). Finally, while the 317 
presence of a family history of psychopathology was associated with higher biopsychosocial scores in 318 
LCs 1-2, we only found biological sex differences in LC5, with higher sleep and biopsychosocial 319 
composite scores in female participants (q<0.05). 320 
 321 

Control analyses 322 
We summarize several analyses that demonstrate the robustness of our findings. First, LC1 and LC2 323 
successfully generalized in our cross-correlation scheme (mean across 5 folds: r=0.49, p=0.001; r=0.19, 324 
p=0.039 respectively), but not LCs 3-5 (see Table S3), suggesting that LCs 3-5 might not be as robust 325 
and generalizable, possibly due to these LCs being driven by a single sleep dimension. Second, we re-326 
computed the CCA analysis after (i) applying quantile normalization on sleep and behavior measures; 327 
(ii) excluding participants that had tested positive for any substance on the day of the MRI; (iii) excluding 328 
physical health measures (i.e., body mass index, hematocrit, blood pressure) or (iv) sociodemographic 329 
variables (i.e., employment status, household income, school status, relationship status) from the 330 
behavior matrix. The CCA loadings remained mostly unchanged (Table S5). We also assessed the 331 
robustness of our imaging results in several ways. First, we re-computed the GLM analysis using RSFC 332 
data that underwent CompCor47 instead of GSR. The RSFC patterns were not much altered, as shown 333 
by generally high correlations with the main analysis (r=0.75, r=0.76, r=0.78, r=0.51, r=0.77 for LCs 1-5 334 
respectively; Figure S2). Next, excluding subjects that likely fell asleep in the scanner did not impact our 335 
findings (r=0.90, r=0.87, r=0.95, r=0.95, r=0.95 for LCs 1-5 respectively; Figure S2); however, we found 336 
that these participants had higher sleep and biopsychosocial composite scores on LC4 compared to 337 
participants that likely stayed awake during the scan (Figure S3). Finally, we re-computed the GLM 338 
analyses by using sleep and behavior canonical scores instead of averaged scores. We found moderate 339 
to high correlations with the main GLM analysis (r=0.69, r=0.62, r=0.63, r=0.46, r=0.67 for LCs 1-5 340 
respectively; Figure S2).  341 
 342 
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DISCUSSION 343 

Leveraging a multidimensional data-driven approach in a large cohort of healthy young adults, we 344 
uncovered five distinct sleep profiles linked to biopsychosocial factors encompassing health, cognition, 345 
and lifestyle. We found that the first two profiles reflected general psychopathology (or p factor) 346 
associated with either reports of general poor sleep (LC1) or an absence of sleep complaints, which we 347 
defined as sleep resilience (LC2). Meanwhile, the three other profiles were driven by a specific 348 
dimension of sleep such as sedative-hypnotics-use (LC3), sleep duration (LC4), or sleep disturbances 349 
(LC5), which were associated with distinct patterns of health, cognition, and lifestyle factors. 350 
Furthermore, identified sleep-biopsychosocial profiles displayed unique patterns of brain network 351 
organization. Our findings emphasize the crucial interplay between biopsychosocial outcomes and 352 
sleep, and the necessity to integrate sleep history to contextualize research findings and to inform 353 
clinical intake assessments along with subsequent intervention approaches48.  354 
 355 
The dominance of psychopathology markers in most of the profiles is not surprising as the RDoC 356 
framework proposed arousal and regulatory systems (i.e., circadian rhythms and sleep/wakefulness) as 357 
one of the five key domains of human functioning likely to affect mental health49, which is consistent 358 
with a large literature reporting significant disruption of sleep across multiple psychiatric disorders8,50. 359 
Although individuals with a neuropsychiatric diagnosis (e.g., schizophrenia or major depression 360 
disorder) were not included in the HCP dataset36, the presence of the p factor, defined as an individual’s 361 
susceptibility to develop any common form of psychopathology, exists on a continuum of severity and 362 
chronicity within the general population51. Symptoms of psychopathology mirrored each other across 363 
LC1 and LC2 but the paradoxical contrast in sleep loadings suggests that some individuals might have 364 
more resilient sleep (LC2), whereby they might be able to maintain healthy sleep patterns in the face of 365 
psychopathology. However, the cause of such resilience is unclear. Up to 80% of individuals 366 
experiencing an acute phase of mental disorder (e.g., depressive and/or anxiety episode) report sleep 367 
issues8,52,53, leaving a minority of individuals that do not report abnormal sleep during such episodes. 368 
The identification of LC2 supports this and suggests there might be biological or environmental 369 
protective factors in some individuals who would otherwise be considered at risk for sleep issues. 370 
However, our understanding of such protective factors is limited54–56. These findings also highlight the 371 
need to appreciate the complexity of psychopathology, in line with the current view that psychiatric 372 
disorders are typically comorbid and heterogeneously expressed. Nonetheless, whether this profile of 373 
sleep resilience is a stable latent component or a cross-sectional observation of fluctuating symptoms 374 
that may develop into psychopathology-related sleep complaints, needs to be further tested.  375 
 376 
Within the profiles driven by a specific sleep sub-component, LC5 also reflected some dimensions of 377 
psychopathology (i.e., anxiety, critical items and thought problems) that were only associated with the 378 
presence of global sleep disturbances. The sleep disturbance sub-component of the PSQI is broad and 379 
encompasses complaints of sleep-related breathing problems as well as multiple awakenings that could 380 
be due to nycturia, pain, nightmares, or difficulties maintaining optimal body temperature37. Altogether, 381 
the sleep disturbances dimension is thought to represent sleep fragmentation57, and thus, sleep quality. 382 
This is in line with a recent study in a large community-based cohort (i.e., UK Biobank) that found that 383 
lifetime diagnoses of psychopathology and psychiatric polygenic risk scores were more strongly 384 
associated with accelerometer-derived measures of sleep quality (i.e., fragmentation) than with sleep 385 
duration per se58. In a similar manner, we found that sleep duration (driving LC4) was not associated 386 
with measures of psychopathology but rather with cognitive performance. Whether studied in the form 387 
of acute sleep deprivation or chronic sleep restriction, the consequences of lack of sleep on daytime 388 
functioning and health are well-known and substantial11,12,16,59,60. Sleep duration affects, in varying effect 389 
sizes, both accuracy and reaction time in most cognitive tasks11,12,60. In our study, reports of regular 390 
short sleep duration, defined as <6-7h of total sleep time, was associated with reduced accuracy in 391 
working memory, emotional processing, language processing, delay discounting, fluid intelligence as 392 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.02.15.580583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

well as longer reaction times during social cognition and emotional processing, mimicking results found 393 
in the sleep deprivation and sleep restriction literature11,12,14,60–65. 394 
 395 
Finally, beyond sleep measures and sleep-related daytime functioning, the PSQI also evaluates the use 396 
of medication to help sleeping37, whether prescribed or over the counter (e.g., gamma-aminobutyric 397 
acid GABAA receptor modulators, selective melatonin receptor agonists, selective histamine receptor 398 
antagonists, cannabinoid products)66. We found that LC3 was driven by the use of sedative-hypnotics 399 
to aid sleep and was mostly associated with reports of satisfaction in social relationships. Interestingly, 400 
while we would have expected more links between the use of sedative-hypnotics and cognitive 401 
impairment, especially in older adults67,68, we only found an association with visual working memory 402 
deficits but not with attentional problems. This profile specifically highlights a sub-group of young adults 403 
(22-36 years old) who experience sleep complaints and seek pharmacological solutions to manage 404 
them. As such, the associated biopsychosocial factors, in particular high sociability, could result from 405 
the effect of the drug itself on social behavior and positive mood (e.g., via potentiation of GABA 406 
transmission)69,70 or as a consequence of the drugs on sleep complaints71, which may support better 407 
emotional regulation and well-being, and consequently translate to greater satisfaction in social 408 
relationships and support systems71,72. We did not have information on the type nor duration of drug 409 
usage as the PSQI only assesses sleep habits in the past month, which may not be a substantial period 410 
of time to observe robust changes in cognitive functioning as previously documented68,73. 411 
 412 
Such distinctions between profiles were also present in the neural signatures of RSFC, which may assist 413 
in the neurobiological interpretation of the profiles. Directly comparing LC1 and LC2 suggested an 414 
underlying increase in subcortical-cortical connectivity when sleep disturbances are associated with 415 
psychopathology. This is in alignment with the known neurophysiology of the ascending arousal system, 416 
and possibly implies the existence of some level of hyperarousal in these pathways that may contribute 417 
to disturbances in sleep. However, this speculation requires further targeted research to be confirmed. 418 
The profile with the strongest RSFC loadings was LC4, driven by sleep duration and cognition. 419 
Interestingly, this RSFC pattern consisting of a global increase in connectivity, with localized segregation 420 
of part of the somatomotor network, has been previously reported in neuroimaging studies of acute 421 
total sleep deprivation63,74. Hence, this suggests that LC4 may be exposing an underlying level of sleep 422 
deprivation in the general population. Finally, alteration to the segregation/integration ratio of the 423 
somatomotor and visual cortex was common in most profiles. Highly interconnected to the whole brain, 424 
the somatomotor network is crucial for processing external stimuli and producing motor responses but 425 
is also functionally involved in bodily self-consciousness and interoception. Altered dysconnectivity 426 
patterns of the somatomotor network have been linked to variation in several domains, including 427 
general psychopathology75,76, cognitive dysfunction related to sleep deprivation63, as well as the total 428 
PSQI score13,77. Overall, these findings suggest that alterations to RSFC in the somatomotor network are 429 
also involved in the relationships between sleep and biopsychosocial factors and highlight the 430 
importance of understanding the role of this brain network in overall mental health.  431 
 432 
These profiles contribute to a deeper understanding of the current debate that oppose sleep quality 433 
and sleep duration7,78. In line with previous studies11,12,79, we found that cognitive functioning was more 434 
related to sleep duration than subjective sleep quality; in addition, we found that sleep disturbances, 435 
alone (LC5) or in combination with other sleep dimensions (LC1), can be associated with the presence 436 
of psychopathology. Moreover, it is also important to note that complaints of poor sleep quality and/or 437 
short sleep duration have been both associated with increased risks of physical health outcomes and 438 
all-cause mortality6,7. While LC1 and LC2 presented sleep dimensions as being inextricably linked, LC3, 439 
LC4 and LC5 respectively revealed distinct facets of sleep, suggesting that while sleep dimensions are 440 
related, they can also be separable domains with specific connections to biopsychosocial factors. This is 441 
likely reflected in the finding that only LC1 and LC2 were replicable in cross-validation analyses, which 442 
may be due to LC3, LC4 and LC5 being driven by a single sleep dimension and thus, contributing only 443 
marginally to the variance. While unidimensional association studies have been informative, these 444 
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findings reinforce the notion that sleep health is multidimensional and distinct measures of sleep 445 
quantity or quality should be considered together when investigating their influence on biopsychosocial 446 
aspects of health, cognition, and lifestyle. Future work should extend these findings and further explore 447 
the multidimensional nature of sleep health, for instance, taking into consideration the U-shaped 448 
relationship of sleep duration with biopsychosocial measures. Given the design of the PSQI, only short 449 
sleep duration (<5-6h) was considered as a sleep difficulty, neglecting the potential consequences of 450 
long sleep duration (>9h). Long sleep duration is commonly observed in hypersomnia disorders and 451 
psychopathology (e.g., schizophrenia, depression)6,80, as well as being associated with increased risk of 452 
cardiovascular heart disease and mortality7,81,82 and cognitive decline6,20. This U-shape observation, 453 
whereby both short and long sleep durations are associated with negative health and cognitive 454 
consequences as well as increasing markers of cerebrovascular burden (e.g., white matter hyper-455 
intensities)55, may provide a window to identify mechanisms that underlie the interplay between sleep 456 
and biopsychosocial factors.  457 
 458 
Other considerations moving forward include sleep regularity and sleep timing, which are not part of 459 
the computation of the sub-components of PSQI37, hence their association with biopsychosocial 460 
outcomes were not investigated in this study. A final important distinction to be addressed is that sleep 461 
and biopsychosocial outcomes were mostly self-reported through questionnaires. Both objectively 462 
recorded and subjectively perceived estimations provide different yet meaningful information that tend 463 
to positively correlate83. However, it has been shown that when compared to objective estimates (i.e., 464 
polysomnography and/or actigraphy recordings), individuals with sleep complaints (i.e., chronic 465 
insomnia, obstructive sleep apnea) tend to subjectively misperceive their sleep (i.e., duration, sleep 466 
latency)25,26,84,85. The degree of discrepancy between objective and subjective measures (i.e., sleep state 467 
misperception) has been correlated with worse sleep quality86,87 as well as compromised reports of 468 
daytime functioning24. While objective measurements might have exposed divergent associations 469 
between sleep and biopsychosocial factors, the profiles reported here arguably support greater clinical 470 
validity, where the subjective complaints are often what drives an individual to seek out healthcare. Our 471 
study emphasizes that considering individuals’ sleep experience can support clinicians to make more 472 
accurate initial assessments and navigate the course of treatment and interventions. 473 
 474 
The awareness and interest surrounding sleep as a crucial pillar of health is growing rapidly88. However, 475 
the role of sleep in general health is complex and multifaceted, and largely unknown. The 476 
multidimensional approach applied in this large sample of healthy young adults is a first step that we 477 
argue should be implemented in future research incorporating sleep. We highlight the observation of 478 
five distinct sleep patterns associated with specific combinations of biological, psychological and socio-479 
environmental factors. These findings support that sleep is emerging as a distinguishable factor that can 480 
assist in disentangling the complex heterogeneity of human health. As the capacity for large-scale 481 
human research continues to grow, integrating sleep dimensions at such a scale is not only feasible in 482 
terms of evaluation, but presents a unique opportunity for translational application. Sleep is a 483 
modifiable lifestyle factor and can be investigated in model organisms as well as in humans, and as such 484 
is well positioned to identify potential converging mechanisms and intervention pathways or tools. The 485 
current study emphasizes that by using a multidimensional approach to identify distinct sleep-486 
biopsychosocial profiles we can begin to untangle the interplay between individuals’ variability in sleep, 487 
health, cognition, lifestyle, and behaviour—equipping research and clinical settings to better support 488 
individuals’ well-being. 489 
 490 
 491 
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METHODS 492 

Participants 493 
Data for this study were obtained from the S1200 release of the publicly available Human Connectome 494 
Project (HCP) dataset36. The HCP dataset comprises multimodal MRI data, including structural MRI, 495 
diffusion MRI, resting-state and task functional MRI (fMRI) data, as well as a broad range of behavioral 496 
measures collected in young healthy subjects (aged 22-36). Details about imaging acquisition 497 
parameters and data collection36 as well as the list of available behavioral and demographics measures 498 
(HCP S1200 Data Dictionary)89 can be found elsewhere. Of note, the HCP dataset comprises a large 499 
number of related individuals (i.e., siblings and twins). Of the 1,206 total subjects available from the 500 
HCP S1200 release, we excluded 403 participants with missing/incomplete data, and 33 participants 501 
with visual impairment that might have impacted their task performance in the scanner. Our final 502 
sample comprised 770 participants (53.76% female, 28.86 ± 3.61 years old). We decided to keep 503 
participants (N=94) that tested positive for any substance (including alcohol, marijuana, and other 504 
drugs) on the day of the MRI, as substance use has intricate links to sleep, and we did not want to 505 
exclude the possibility of finding potential substance use-related sleep profiles. However, we also re-506 
computed our analyses after excluding these individuals (N=676) and found very similar results (see 507 
Table S5). Out of these 770 participants, 723 passed MRI quality control and were included in the 508 
posthoc RSFC analyses. 509 
 510 

Sleep assessment 511 
Participants were administered the Pittsburgh Sleep Quality Index37 (PSQI) to assess different aspects 512 
of their sleep over the past month. Total PSQI score ranges from 0 to 21 (with higher scores indicating 513 
worse sleep quality). We used the 7 sub-components of the PSQI, namely (i) sleep satisfaction, (ii) sleep 514 
latency, (iii) sleep duration, (iv) sleep efficiency, (v) sleep disturbance, (vi) sleep medication, and (vii) 515 
daytime functioning. Sub-components are calculated through 4 questions on the timing of sleep habits 516 
and 6 Likert-scale questions from 0 to 3, 0 being best and 3 being worst. The mean PSQI total score in 517 
our sample was 5.14 ± 2.17 with 287 participants (37.2%) above the clinical cut-off (>5). We did not find 518 
any effect of age (rho=0.02, p=0.55) or sex (w=70208, p=0.25) on the PSQI score.  519 
 520 

Behavioral assessment 521 
118 behavioral measures were selected from the HCP dataset (see complete list in Table S1). These 522 
behavioral measures included self-reported assessments of current and past mental health and 523 
substance use, questionnaires on personality, affect, lifestyle and demographics, cognitive tasks tapping 524 
on different processes such as working memory or social cognition performed either inside or outside 525 
the MRI, and physical assessments (e.g., blood pressure). Behavioral measures with large amounts of 526 
missing data were excluded, as well as similar measures that were likely to be redundant.  527 
 528 

Canonical correlation analysis 529 
Canonical Correlation Analysis (CCA)90,91, a multivariate data-driven approach, was applied to the sleep 530 
and behavioral measures. CCA derives latent components (LCs, i.e., canonical variates), which are 531 
optimal linear combinations of the original data, by maximizing correlation between two data matrices 532 
(i.e., sleep and behavioral measures). Each sleep-behavior LC is characterized by a pattern of sleep 533 
weights and a corresponding pattern of behavioral weights (i.e., canonical coefficients). Linear 534 
projection of sleep (or behavioral) data onto sleep (or behavioral) weights yielded participant-specific 535 
composite scores for sleep (or behavioral) measures (i.e., canonical scores). The contribution of original 536 
sleep and behavioral loadings to each LC was determined by computing Pearson’s correlations between 537 
sleep (or behavioral) data and participant-specific scores for sleep (or behavior) to obtain sleep and 538 
behavioral loadings (i.e., canonical structure coefficients)92,93. Canonical structure coefficients reflect 539 
the direct contribution of a predictor (e.g., one sleep dimension) to the predictor criterion (e.g., LC1) 540 
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independently of other predictors (e.g., the other sleep dimensions, which can be critical when 541 
predictors are highly correlated between each other (i.e., in presence of multicollinearity)94. Statistical 542 
significance of each of the 7 LCs was determined by permutation testing (10,000 permutations) followed 543 
by FDR correction. Given the high prevalence of related participants in the HCP dataset, family structure 544 
was maintained during permutations (using the PALM package95,96), whereby monozygotic twins, 545 
dizygotic twins, and non-twin siblings were only permuted within their respective groups. Finally, the 546 
loadings’ stability was determined using bootstrap resampling to estimate confidence intervals for the 547 
loadings, by deriving 1,000 samples with replacement from participants’ sleep and behavioral data. 548 
 549 

MRI acquisition and processing 550 
All imaging data were acquired on a customized Siemens 3T Skyra scanner at Washington University (St 551 
Louis, MI). Four runs of resting state fMRI were collected over two sessions across two separate days. 552 
Each run included 1,200 frames using a multi-band sequence at 2-mm isotropic spatial resolution with 553 
a TR of 0.72 s for 14.4 minutes. The structural images were acquired at 0.7-mm isotropic resolution. 554 
Further details of the data collection and HCP preprocessing are available elsewhere36,97,98. Notably, 555 
cortical and subcortical data underwent ICA-FIX99,100 and were saved in the CIFTI grayordinate format. 556 
The surface (fs_LR) data were aligned with MSM-All101. As ICA-FIX does not fully eliminate global motion-557 
related and respiratory-related artifacts102,103, additional censoring and nuisance regression were 558 
performed104,105. In particular, volumes with framewise displacement (FD) > 0.2mm, and root-mean-559 
square of voxel-wise differentiated signal (DVARS) > 75 were marked as outliers and censored, along 560 
with one frame before and two frames after the outlier volume106,107. Any uncensored segment of data 561 
that lasted fewer than five contiguous volumes were also excluded from analysis, as well as runs with 562 
>50% censored frames. Additionally, global signal obtained by averaging signal across all cortical vertices 563 
and its temporal derivatives (ignoring censored frames) were also regressed out from the data because 564 
previous studies have suggested that global signal regression strengthens association between RSFC 565 
and behavioral traits104. As there is ongoing debate on the use of global signal regression (GSR) as a 566 
means of fMRI preprocessing104,108–110, additional reliability analysis was performed on data 567 
preprocessed using a component-based noise correction method (CompCor)47 instead of GSR.  568 
 569 
RSFC was computed among 400 cortical parcels46 and 19 subcortical regions45 using Pearson’s 570 
correlation (excluding the censored volumes). The subcortical regions were in subject-specific 571 
volumetric space as defined by FreeSurfer45, and comprised the left and right cerebellum, thalamus, 572 
caudate, putamen, pallidum, hippocampus, accumbens, amygdala, ventral diencephalon, and 573 
brainstem. For each participant, RSFC was computed for each run, Fisher z-transformed, and then 574 
averaged across runs and sessions, yielding a final 419 x 419 RSFC matrix for each participant.  575 
 576 

RSFC analyses 577 
To investigate whether the sleep-behavioral profiles were associated with distinct RSFC signatures, we 578 
computed generalized linear models (GLM) between participant’s canonical scores (i.e., averaged sleep 579 
and behavior scores) and their RSFC data. Age, sex, and level of education were first regressed out from 580 
the RSFC data.  581 
 582 
To obtain an analysis at the large-scale network level and limit the number of multiple comparisons, we 583 
computed a network-wise GLM, whereby the whole-brain RSFC data was averaged within and between 584 
the 17 Yeo networks46 and subcortical regions45, resulting in 18 x 18 RSFC matrices. Next, we applied a 585 
GLM for each network edge (i.e., average connectivity between two brain networks), with participants’ 586 
component-specific canonical scores as the predictor and RSFC edge as the response. Each GLM yielded 587 
a beta coefficient and associated T statistic, as well as an F statistic and associated p value obtained 588 
from a hypothesis test that all coefficient estimates were equal to zero. Statistical significance for each 589 
RSFC network edge was determined by applying FDR correction (q < 0.05) on all p values (along with 590 
other posthoc analyses). For a more granular view, we also computed a GLM for each RSFC edge (i.e., 591 
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connectivity between two brain regions) using whole-brain RSFC between all 419 brain regions. For a 592 
complete view of the component-specific RSFC signatures, we plotted both the uncorrected region-wise 593 
GLM beta coefficients (e.g., Figure 2C) and FDR-corrected network-wise GLM beta coefficients (e.g., 594 
Figure 2D). 595 
 596 
Measures of integration and segregation were computed on the GLM beta coefficient connectivity 597 
matrix associated with each LC using functions from the Brain Connectivity Toolbox111. Firstly, the input 598 
weighted connection matrix was normalized. Next, each 419 cortical parcel was assigned to one of the 599 
7 Yeo functional networks and subcortical regions 44. Within-network connectivity was estimated by 600 
calculating the module-degree Z score (within-module strength) for each region. The extent to which a 601 
parcel connects across all networks was quantified using the participation coefficient, (between-module 602 
strength). For each cortical parcel, the ratio of normalized within:between module strength values was 603 
calculated and interpreted as a measure for the balance of integration and segregation of functional 604 
brain connectivity112. Nodes with high within- but low between-module strength are likely to facilitate 605 
network segregation, while nodes with higher between-module strength (i.e., connector hubs) are likely 606 
to facilitate global integration111. 607 
 608 

Control analyses 609 
We ran several control analyses to evaluate the robustness of our findings. First, we applied 5-fold cross-610 
validation (accounting for family structure) to assess the generalizability of our sleep-behavior profiles 611 
by training a CCA model on 80% of the data and testing it on the remaining 20% of the data. For each 612 
fold, we projected the sleep and behavior canonical coefficients of the training data on the sleep and 613 
behavior data of the test data, to obtain sleep and behavior scores, and computed Pearson’s 614 
correlations between these scores. Second, we evaluated the impact of the covariates on our profiles 615 
as well as the impact of other potential confounds, including race, ethnicity, and familial psychiatric 616 
history. Third, we re-computed the CCA analysis after excluding participants that had tested positive for 617 
any substance use on the day of the MRI. Fourth, we re-computed the CCA analysis after excluding 618 
physical health (i.e., body mass index, hematocrit, blood pressure) and sociodemographic (i.e., 619 
employment status, household income, in school, relationship status) variables from the behavior 620 
matrix. Fifth, we re-computed the CCA analysis after applying quantile normalization on sleep and 621 
behavior measures. We also assessed the robustness of our imaging results in several ways. As GSR is a 622 
controversial preprocessing step104,109,110, we re-computed the GLM analysis using RSFC data that 623 
underwent CompCor47 instead of GSR. Some subjects were noticed to have likely fallen asleep during 624 
scanning (list not publicly available113). As a first step, we re-computed the GLM after excluding these 625 
subjects (N=100); next, we sought to determine whether these participants scored high on any of the 626 
profiles, by comparing their sleep/behavior composite scores with awake participants using t-tests. We 627 
re-computed the GLM analyses by using sleep and behavior canonical scores instead of averaged scores. 628 
Finally, integration and segregation measures were also computed on the average RSFC matrix of the 629 
whole sample. FDR correction (q < 0.05) was applied to all posthoc tests.  630 
 631 

Data and code availability 632 
Data from the HCP dataset is publicly available (https://www.humanconnectome.org/). The brain 633 
parcellation can be obtained here 634 
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer20635 
18_LocalGlobal), while the code for the CCA analysis and figures can be found here 636 
(https://github.com/valkebets/sleep_biopsychosocial_profiles). Chord diagrams were generated using 637 
previously published code 638 
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/ChenTam639 
2022_TRBPC/figure_utilities/chord).  640 
  641 
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LEGENDS: FIGURES & TABLES 673 

 674 
Table 1 - Demographics 675 
 676 
Figure 1 - Canonical correlation analysis reveals five sleep-biopsychosocial profiles (LCs). 677 
(A) Canonical correlation analysis (CCA) flowchart and RSFC signatures; (B) Scatter plots showing 678 
correlations between biopsychosocial and sleep canonical scores. Each dot represents a different 679 
participant. Inset shows the null distribution of canonical correlations obtained by permutation testing; 680 
note that the null distribution is not centered at zero. The dashed line indicates the actual canonical 681 
correlation computed for each LC. The distribution of sleep (top) and biopsychosocial (right) canonical 682 
scores is shown on rain cloud plots. 683 
 684 
Figure 2 – First latent component (LC1) reflects poor sleep and psychopathology. 685 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC1. Greater 686 
loadings on LC1 were associated with higher measures of poor sleep and psychopathology. Higher 687 
values on sleep (blue) and biopsychosocial (green, purple, pink) loadings indicate worse outcomes. Error 688 
bars indicate bootstrapped-estimated confidence intervals (i.e., standard deviation) and measures in 689 
bold indicate statistical significance (after FDR correction q<0.05); (B) Unthresholded edge-wise beta 690 
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coefficients obtained from generalized linear models (GLM) between participants’ LC1 canonical scores 691 
(i.e., averaged sleep and behavior canonical scores) and their RSFC data; (C) FDR-corrected network-692 
wise beta coefficients computed with GLMs within and between 17 Yeo networks44 and subcortical 693 
regions45. (D) Distribution of the integration/segregation ratio in each of the 7 Yeo networks and 694 
subcortical regions associated with LC1 (left). The dashed line indicates the median of all parcels, and 695 
the bold black lines represent the median for each network. The integration/segregation ratio values 696 
for the 400 Schaeffer parcellation46 and 7 subcortical regions are projected on cortical and subcortical 697 
surfaces (right). 698 
 699 
Figure 3 – Second latent component (LC2) reflects sleep resilience and psychopathology. 700 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC2. Greater 701 
loadings on LC2 were associated with higher measures of complaints of daytime dysfunction and 702 
psychopathology. Positive values on sleep (blue) loadings indicate worse outcomes while positive values 703 
on biopsychosocial (green, purple, pink) loadings reflect higher magnitude on these measures. Error 704 
bars indicate bootstrapped-estimated confidence intervals (i.e., standard deviation) and measures in 705 
bold indicate statistical significance. (B) Unthresholded edge-wise beta coefficients obtained from 706 
generalized linear models (GLM) between participants’ LC1 canonical scores (i.e., averaged sleep and 707 
behavior canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta coefficients 708 
computed with GLMs within and between 17 Yeo networks44 and subcortical regions45. (D) Distribution 709 
of the integration/segregation ratio in each of the 7 Yeo networks and subcortical regions associated 710 
with LC2 (left). The dashed line indicates the median of all parcels, and the bold black lines represent 711 
the median for each network. The integration/segregation ratio values for the 400 Schaeffer 712 
parcellation46 and 7 subcortical regions are projected on cortical and subcortical surfaces (right). 713 
 714 
Figure 4 – Third latent component (LC3) reflects hypnotics and sociability. 715 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC3. Greater 716 
loadings on LC3 were associated with the use of sedative-hypnotics and measures of positive social 717 
relationships, lower body mass index (BMI) and poor visual episodic memory performance. Positive 718 
values on sleep (blue) loadings indicate worse outcomes while positive values on the mental health 719 
(green), affect (pink) and personality (purple) categories of biopsychosocial loadings reflect higher 720 
magnitude on these measures. Positive value in the physical health (olive) category represents higher 721 
value and positive values in the cognition (orange) category indicate either higher accuracies or slower 722 
reaction times (RT). Error bars indicate bootstrapped-estimated confidence intervals (i.e., standard 723 
deviation) and measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta 724 
coefficients obtained from generalized linear models (GLM) between participants’ LC1 canonical scores 725 
(i.e., averaged sleep and behavior canonical scores) and their RSFC data; (C) FDR-corrected network-726 
wise beta coefficients computed with GLMs within and between 17 Yeo networks44 and subcortical 727 
regions45. (D) Distribution of the integration/segregation ratio in each of the 7 Yeo networks and 728 
subcortical regions associated with LC3 (left). The dashed line indicates the median of all parcels, and 729 
the bold black lines represent the median for each network. The integration/segregation ratio values 730 
for the 400 Schaeffer parcellation46 and 7 subcortical regions are projected on cortical and subcortical 731 
surfaces (right). 732 
 733 
Figure 5 – Fourth latent component (LC4) reflects sleep duration and cognition. 734 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC4. Greater 735 
loadings on LC4 were associated with shorter sleep duration and measures of poor cognitive 736 
performance. Positive values on sleep loadings indicate worse outcomes while positive values on the 737 
mental health (green), substance use (yellow), demographics (light blue) and personality (purple) 738 
categories of biopsychosocial loadings reflect higher magnitude on the measures. Positive values in the 739 
cognition (orange) category indicate either higher accuracies or slower reaction times (RT). Error bars 740 
indicate bootstrapped-estimated confidence intervals (i.e., standard deviation) and measures in bold 741 
indicate statistical significance. (B) Unthresholded edge-wise beta coefficients obtained from 742 
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generalized linear models (GLM) between participants’ LC1 canonical scores (i.e., averaged sleep and 743 
behavior canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta coefficients 744 
computed with GLMs within and between 17 Yeo networks44 and subcortical regions45. (D) Distribution 745 
of the integration/segregation ratio in each of the 7 Yeo networks and subcortical regions associated 746 
with LC4 (left). The dashed line indicates the median of all parcels, and the bold black lines represent 747 
the median for each network. The integration/segregation ratio values for the 400 Schaeffer 748 
parcellation46 and 7 subcortical regions are projected on cortical and subcortical surfaces (right). 749 
 750 
 751 
Figure 6 – Fifth latent component (LC5) reflects sleep disturbance, cognition and psychopathology. 752 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC5. Greater 753 
loadings on LC5 were associated with the presence of sleep disturbances, higher measures of 754 
psychopathology and lower cognitive performance. Positive values on sleep loadings indicate worse 755 
outcomes while positive values on the mental health (green), substance use (yellow) and personality 756 
(purple) categories of biopsychosocial loadings reflect higher magnitude on these measures. Positive 757 
values in the cognition (orange) category indicate either higher accuracies or slower reaction times (RT), 758 
while positive values in the demographics (light blue) and physical health (olive) categories represent 759 
higher values. Error bars indicate bootstrapped-estimated confidence intervals (i.e., standard deviation) 760 
and measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta coefficients 761 
obtained from generalized linear models (GLM) between participants’ LC1 canonical scores (i.e., 762 
averaged sleep and behavior canonical scores) and their RSFC data; (C) FDR-corrected network-wise 763 
beta coefficients computed with GLMs within and between 17 Yeo networks44 and subcortical regions45. 764 
(D) Distribution of the integration/segregation ratio in each of the 7 Yeo networks and subcortical 765 
regions associated with LC5 (left). The dashed line indicates the median of all parcels, and the bold black 766 
lines represent the median for each network. The integration/segregation ratio values for the 400 767 
Schaeffer parcellation46 and 7 subcortical regions are projected on cortical and subcortical surfaces 768 
(right). 769 
 770 
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Table 1

Characteristics N = 770
Biological sex (n | %)

Female 414 | 53.76%
Male 356 | 46.23%

Age (years)
mean ± S D 28.86 ± 3.61

range [22 - 36]
Education (years)

mean ± S D 15.02 ± 1.73
range [11 - 17]

Race (n | %)
Am. Indian/Alaskan Nat. 2 | 0.25%

Asian/Nat. Hawaiian/Other Pacific Is. 42 | 5.45%
Black or African Am. 90 | 11.68%

More than one 19 | 2.46%
Unknown or Not Reported 16 | 2.07%

White 601 | 78.05%
Ethnicity (n | %)

Hispanic/Latino 78 | 10.12%
Not Hispanic/Latino 684 | 88.83%

Unknown or Not Reported 8 | 1.03%
Employment status (n | %)

Full-time 545 | 70.77%
Part-time 132 | 17.14%

Not working 93 | 12.07%
S chool status (n | %)

In school 158 | 20.51%
Not in school 612 | 79.48%

Yearly income (n | %)
<10'000 US $ 50 | 6.49%

10'000 - 20'000 US $ 50 | 6.49%
20'000 - 30'000 US $ 94 | 12.20%
30'000 - 40'000 US $ 101 | 13.11%
40'000 - 50'000 US $ 76 | 9.87%
50'000 - 75'000 US $ 165 | 21.42%

75'000 - 100'000 US $ 112 | 14.54%
> 100'00 US $ 122 | 15.84%

Relationship status (n | %)
In a relationship 363 | 47.14%

Not in a relationship 407 | 52.85%

PS QI total score 
mean ± S D 5.14 ± 2.17

range [0 - 19]

PSQI, Pittsburgh sleep quality index
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