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Whole-genome sequencing (WGS) provides a comprehensive tool to analyze the bacterial
genomes for genotype–phenotype correlations, diversity of single-nucleotide variant (SNV),
and their evolution and transmission. Several online pipelines and standalone tools are
available forWGS analysis ofMycobacterium tuberculosis (Mtb) complex (MTBC).While they
facilitate the processing ofWGS data withminimal user expertise, they are either too general,
providing little insights into bacterium-specific issues such as gene variations, INDEL/
synonymous/PE-PPE (IDP family), and drug resistance from sample data, or are limited
to specific objectives, such as drug resistance. It is understood that drug resistance and
lineage-specific issues require an elaborate prioritization of identified variants to choose the
best target for subsequent therapeutic intervention. Mycobacterium variant pipeline
(MycoVarP) addresses these specific issues with a flexible battery of user-defined and
default filters. It provides an end-to-end solution for WGS analysis of Mtb variants from the
raw reads and performs two quality checks, viz, before trimming and after alignments of
reads to the reference genome. MycoVarP maps the annotated variants to the drug-
susceptible (DS) database and removes the false-positive variants, provides lineage
identification, and predicts potential drug resistance. We have re-analyzed the WGS
data reported by Advani et al. (2019) using MycoVarP and identified some additional
variants not reported so far. We conclude that MycoVarP will help in identifying
nonsynonymous, true-positive, drug resistance–associated variants more effectively and
comprehensively, including those within the IDP of the PE-PPE/PGRS family, than possible
from the currently available pipelines.
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1 INTRODUCTION

The emergence of resistance in Mycobacterium tuberculosis
(Mtb) strains against drugs contributes significantly to high
mortality in tuberculosis patients. According to the global
tuberculosis (TB) report-2020, drug-resistant TB became a
major public threat, and half a million people developed
rifampicin resistance, out of which 78% developed multidrug
resistance to TB (MDR-TB) around the globe (WHO report,
2020; Koegelenberg et al., 2021). The major TB burden
countries are India, with 27%, followed by China (14%)
and the Russian Federation (8%). In 2019, 3.3% of new TB
cases were recorded with previously treated MDR/RR-TB
(17.7% cases) (WHO report, 2020; Koegelenberg et al., 2021;
World Health Organization, 2021). Recent studies have
shown that Mtb acquired resistance against bedaquiline
and delamanid, the two new drugs recently approved for
MDR/extreme drug resistance (XDR) to TB (Bloemberg
et al., 2015; Degiacomi et al., 2020; Yao et al., 2021).
Thus, the main challenge for the treatment of TB is the
ever-evolving mechanism of Mtb to evade existing and
recently approved drugs. Whole-genome sequencing
(WGS) identifies sequence information of variants
responsible for drug susceptibility (DS) and the emergence
of drug resistance (DR) (Dohál et al., 2020; Lam et al., 2021).
WGS helps to understand the evolution, transmission
dynamics, outbreak investigation, and lineage classification
(strain typing) to infer resistance and the distribution of the
bacterial genomes of Mtb (Advani et al., 2019; Gygli et al.,
2019). WGS studies have surged after 2010 to achieve the
goal of the end TB strategy (Cohen et al., 2019)
(Supplementary Figure S1). Computational analysis of
variants and their sequence-level differences are typically
performed by applying a series of well-established
computational tools for different steps involved in variant
calling. Researchers have widely optimized the sequence and
selection of computational tools to develop analysis pipelines
for specialized tasks with best outcomes. However, these
pipelines cannot be used by less technically oriented
scientific communities as the user wants to change some
parameters in the pipeline, but MycoVarP is more focused on
variant prioritization with several output options. The
genomics analysis user can change the script as per the
requirement in the bash script.

There are several preexisting pipelines and web servers to
identify/predict single-nucleotide variants (SNVs) in Mtb,
for example, WGS-TB-RESISTANCE (Cingolani et al.,
2012). However, most of the WGS analysis pipelines are
based on a rigid and standardized protocol for SNV
identification and drug resistance prediction (Meehan
et al., 2019. Currently, the WGS data can be analyzed by
TB Profiler (Phelan et al., 2019), PhyResSE (Feuerriegel et al.,
2015), MUBII-TB-DB (Flandrois et al., 2014), MTBseq (Kohl
et al., 2018), CASTB (Comprehensive Analysis Server for the
Mycobacterium tuberculosis complex) (Iwai et al., 2015),
unified analysis variant pipeline (UVP) Relational
Sequencing Tuberculosis Data Platform (ReSeqTB), and

other standalone tools such as Mykrobe predictor (Bradley
et al., 2015; Hunt et al., 2019) and KvarQ (Steiner et al., 2014;
Dohál et al., 2020), etc (Supplementary Tables S1, S2). As
Meehen et al., 2019 stated that not only more standardization
is required but also pipelines should have a flexible and
dynamic framework in which the rapidly changing status of
drugs can be effectively incorporated. As new MTB cases with
new lineages and novel mutations are being constantly
reported and became an issue of more concern around the
globe, DR to MDR/XDR cases are also growing rapidly, leaving
the static and highly “standardized” protocols inadequate. In
view of this, the MTB pipelines need to be standardized by
keeping them sufficiently flexible for updates at the level of
databases and analytics.

Next-generation sequencing (NGS) of Mtb has been
utilized to reveal their relationship between its genome,
transcriptome, methylome, identification of subspecies,
associated lineages, transmission inference, and possible
transmission within the host and interspecies. The
molecular clock of Mtb has been delineated using WGS,
which gives insights for deciphering the accurate
phylogenetic relationship among different mycobacterial
strains (Menardo et al., 2019). This approach has proved
invaluable to understand the evolution of extensively drug-
resistant (XDR) tuberculosis variants over a long period and
understand the genes and intergenic regions which lead to
DR (Rancoita et al., 2018; Brown et al., 2019; Gomez-
Gonzalez et al., 2019). Several studies have involved
machine learning (ML) and statistical models to predict
DR and uncover putative phenotype-associated mutations
(Chen et al., 2019; Deelder et al., 2019). WGS has explained
the transmission dynamics of Mtb within the patient and its
transfer to secondary cases (Séraphin et al., 2019). The
epidemiological, evolutionary, and relapse/reinfection of
Mtb has been unraveled using WGS (Folkvardsen et al.,
2017; Brown et al., 2019). ML-based methods of WGS data
analysis remain the backbone of modern variant
identification and DR. ML methods such as Shanmugam’s
classification tree and gradient-boosted tree have been
applied to the WGS data to predict existing and novel DR
variants (Chen et al., 2019; Deelder et al., 2019). In summary,
WGS studies, particularly with the help of various ML
models, have helped to understand the DR, XDR, and
MDR; genetic heterogeneity; and region-specific variations
including those in the Indian population (Advani et al., 2019;
Shanmugam et al., 2019). One caveat observed from the
analysis of these studies is that they often produce
inconsistent outcomes. For example, studies focusing on
the comparative analysis of WGS data sets and drug
susceptibility have shown that there is variability in the
detection of the level of resistance. For example, resistance
predictions based on different databases such as PhyResSE
and TB-Profiler (Faksri et al., 2019) have produced different
and, sometimes, contradictory annotations of novel XDR
variations. Substantial progress has been made in
Mycobacterium spp., genome analysis, and the issues
addressed in the available literature range from the GC-
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enrichment, repetitive genes, mobile genetic elements, and
intrinsically disordered region containing proteins such as
PE/PPE-PGRS and ESAT-6. PE/PPE-PGRS constitute 10% of
theMtb genome and have repetitive regions that belong to the
intrinsically disordered region (IDP) protein family (Naz
et al., 2019). Many of these properties remain difficult to
analyze using the readily available software or by the use of
web-based public resources (Meehan et al., 2019). Realizing
this, there has been an effort to develop a worldwide
consortium of resistance databases such as ReSeqTB and
Comprehensive Resistance Prediction for Tuberculosis: an
International Consortium (CRyPTIC) project (CRyPTIC
Consortium et al., 2018; Rancoita et al., 2018). These
consortia and platforms have focused on specific issues of
drug resistance and variants, for example, CRyPTIC deals with
the minimum inhibitory concentrations for the drugs and
genetic variants. From the practical point of view, there is
no consensus on a method to measure a pathogen’s genomic
variation, and studies frequently use different sequence quality
control measures, mapping algorithms, and variant calling as
per the ploidy of the organism and apply variant filters to
remove false positives and other irrelevant variants. Such
parameterization is critical to producing reliable targets for
drug discovery in the case of resistant variations in Mtb.
Considering these shortcomes, we have incorporated the
state-of-the-art knowledge about Mtb, best practices of
variant calling, and DR quantification into a comprehensive

pipeline for WGS data analysis, which can address the
limitations of all the available computational tools and draw
upon their best use-case scenario. The primary advance
introduced in this study, therefore, is by way of integrating
multiple filters that help to prioritize and select SNVs based on
minor allele frequency (MAF), removal of the IDP family of
PE/PPE genes, and removing the false-positive variants. PE-
PPE (IDP family) and repetitive regions have a high rate of
mutation due to disordered regions. Therefore, it is difficult to
sequence using short-read sequencing. The technical and use-
case discussion of this tool MycoVarP, Mycobacterium
Variant and Drug Resistance Prediction, are provided in the
following sections. As stated, these methods rely on pipeline-
specific constant parameters for analysis and do not provide the
flexibility to tune them according to user requirements in view
of the quality of the raw sequencing data and diversity in the
strains of Mycobacterial isolates from different geographical
regions. In the following sections, we review these issues
specifically and present a novel pipeline to analyze lineage
and DR patterns of clinical strains from WGS data. In the
proposed pipeline, called MycoVarP, a number of steps have
been automated based on best clinical outcomes, for example,
SNVs related to repetitive regions have been excluded and
rigorous downstream filtering after variant calling is included
(more details in Supplementary Table S1). This tool is
developed for short-read sequencing of WGS of Mtb. These
automation steps, together with clinically supported outcome

FIGURE 1 | Step-by-step procedure of the MycoVarP pipeline forMtb whole-genome approach. The text represented in the workflow shows the steps which are
not included in any other existing WGS Mtb pipelines. The box present in orange shows the steps involved in variant prioritization such as mapping the query sample
against the drug-susceptible database and removal of intrinsically disordered region (IDP) protein family-like PE/PPE genes and false-positive variants.
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analysis, are likely to help in the lineage-specific drug discovery
of Mtb strains.

2 MATERIALS AND METHODS

2.1 Description of MycoVarP for WGS
Analysis
The detailed steps of WGS analysis as used in MycoVarP have
been given in Figure 1, and its critical comparison with
alternatives has been discussed in detail in the following sections.

2.1.1 Quality Check (QC) and Trimming of Raw Reads
It is important to filter out the low-quality data files that would
impact the downstream results by introducing noise or systematic
bias to the analyzed dataset. In MycoVarP, we provide a quality
check at two stages, viz., 1) for the selection of raw reads by quality
check (QC) and 2) at the sequence alignment level. Quality is
checked for G + C content, INDELs/repetitive regions, duplicates
adapters, overrepresented sequences, genome coverage, and
depth of coverage (Dohál et al., 2020).

The most popular tool for quality control is Fastqc (Andrews,
2012). It is faster than other QC tools, such as PRINSEQ,
FASTXToolkit, and NGS QC Toolkit. Although a new
version of QC tool Fastp is also available, a number of
limitations have been reported (Liu et al., 2020). We have,
therefore, selected FastQC as a primary tool for quality check
in our pipelines. FastQC analysis includes base quality, GC
content, sequence length distribution, duplication levels,
overrepresented sequences, adapters, and K-mer content.
Before submitting the data to this pipeline, a user has to
check the quality of samples manually by using FastQC for
better results (MycoVarP_Documentation file). The quality
checks of some of the parameters such as adapter
contamination, overrepresented sequences, and per-base
sequence contents can be improved by trimming. In our
pipeline, the raw reads are trimmed using Trimmomatic
(Bolger et al., 2014). The parameters in Trimmomatic can be
adjusted by the user according to the quality of the data to obtain
better results. The minimum read length for all samples is kept
at 25 bases. The overrepresented sequences present in the raw
reads in addition to adapters are added to the adapter library of
Trimmomatic so that they can be removed from reads while
trimming. A total of 6,750 adapter sequences are added to the
Trimmomatic adapter library which are defined as TruSeq
Adapter (Index 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12,13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 25, and 27), Illumina PCR Primer
(Index 9 and 10), and no-hit adapters. Since there is noise in the
samples, CROP and HEADCROP can be used for trimming
(Available in Supplementary Material as
MycoVarP_Documentation file). The reads with a low
survival rate after trimming will yield poor results. Therefore,
it is better to discard samples with low survival rates (Del Fabbro
et al., 2013). In this pipeline, raw reads which showed a survival
rate of less than 60% are automatically excluded. The remaining
trimmed reads can be rechecked for their quality and then
considered for variant calling.

2.1.2 Variant Calling
Variant calling is the identification of SNV from the WGS data,
which confers a disease predisposition and potentially DR. SNVs
obtained from WGS may be the same as reported in earlier
studies, or novel variants may be obtained depending on the type
of the study and sample. Variant calling involves alignment of
each of the trimmed reads to the reference genome and marking
duplicates and variant identification is depicted in the flow chart
(Figure 1). In the present pipeline analysis, the trimmed reads are
mapped with the Mtb H37Rv reference genome (GenBank
GCA_000195955.2) using BWA (Li et al., 2009) to obtain an
alignment file. Genome coverage and average read depth were
calculated with SAMTools which are important parameters for
the quality of the reads. When sample reads mapped with the
reference genome, it covered the genome <90%; then, the sample
will be excluded from the study. If the average depth for the
sample is < 100, then the samples with low genome coverage and
average depth were automatically discarded. After the alignment,
GATK (Van der Auwera and O’Connor, 2020) suite was used to
identify variants (De Summa et al., 2017) by defining the
haplotype caller module of GATK in the haploid mode as Mtb
is a prokaryote.

To know the functional importance of genomic variants, it is
used for annotating and prioritizing. It is the most important
component of any NGS pipeline that needs to be
developed. Variants need to be annotated as per their
genomic position for functional information, population
frequency, and allele affect. We then included standard
methods and most reliable tools, such as SnpEff (Cingolani
et al., 2012) and ANNOVAR (Wang et al., 2010), to annotate the
variants in the pipeline.

2.1.3 Variant Prioritization
The criteria for SNV prioritization from raw data are based on
their effect on the encoded protein and their ability to narrow
down to only the most relevant variants (SefidDashti and
Gamieldien, 2017). The allele frequency of certain SNVs
among the samples may play a role in the development of
DS and DR. Therefore, variants are filtered based on their allele
frequency against the in-house prepared WGS-based allele
frequency DS database which is constructed using the
samples reported to be susceptible and contains the allele
information from ReSeqTB, PhyResSE database, and review
of the literature (Feuerriegel et al., 2015; Ezewudo et al.,
2020) (Provided in the Pipeline supporting files:
AFF_MTB.vcf) for mapping. Minor allele frequency is
calculated for the DS variant file (drug susceptible file
contains 2,832 samples that constitute 118,869 variants) and
variants having frequency ≤0.01 are filtered. This filtration
provides the variants which are present in the population in
low frequency and maybe the precursors that lead from DS to
DR strains. This will scrutinize the number of variants and the
variants in which higher frequency in the DS strains has been
removed. Furthermore, silent mutations are screened from the
variant files as these mutations do not lead to any change in the
bacteria, but the user can be kept as per the requirement to
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understand the impact of these mutations during the analysis.
The mapping of SNVs obtained after variant calling may have
false-positive variants which need to be excluded from the data.
The FPfilter tool has better accuracy to remove false-positive
variants which is better than its alternative, namely, GATK-
Hard Filters (Tan et al., 2020). This pipeline also takes care of
repetitive and IDP regions of PE/PPE/PGRS proteins. These
proteins cover up to 10% of theMtb proteome and may interfere
in analysis. Therefore, we have made prioritizing in the pipeline
to identify these regions and also remove variants found in these
regions. The variants which code for the repetitive and
intrinsically disordered regions of PE/PPE proteins are
segregated as these may interfere with the analysis (Zeng
et al., 2018). The filtered variant file is further checked for
the minimum sequencing depth (DP) supporting a genotype
with the threshold value for DP as 10 (Lee and Pai, 2017). After
obtaining the most relevant variants, the samples are analyzed
using ANNOVAR to obtain the variants which are present in
high frequency and distributed among most of the samples
(Wang et al., 2010). The variant distribution across the dataset is
graphically presented by Maftools (Mayakonda et al., 2018)
utility of the R package.

2.1.4 DR and Lineage Prediction
In our pipeline, the Resistance Sniffer program (Muzondiwa et al.,
2020) was used for DR and lineage prediction. It allows the analysis
of sequence datasets in multiple file formats such as gb, .gbk, .gbf,
.gbff, .fasta, .fas, .fna, .fst, .fa, .fnn, .faa, and .vcf files obtained at
different stages of genome sequence completion (Muzondiwa et al.,
2020). It has included information on DR trials concerning the
following antibiotics: amikacin (AMK), capreomycin (CM),
cycloserin (CS), ethambutol (EMB), ethionamide (ETH), isoniazid
(INH), fluoroquinolones (FLQ), kanamycin (KAN), ofloxacin
(OFL), para-amino salicylic acid (PAS), pyrazinamide (PZA),
rifampicin (RIF), and streptomycin (SM). The SNPs were
processed using the diagnosis key, which consists of a catalog of
clade-specific polymorphisms and genetic determinants of antibiotic
resistance and genes. A resistance R-value greater than 0.75 predicts
the strain to be resistant against the given antibiotic with a likelihood
of 55% or higher. If the R-value is less than 0.3, the strain is deemed
sensitive to the antibiotic with a likelihood of 55% or higher. The
entire flowchart of the pipeline is illustrated in Figure 1.

3 RESULTS AND DISCUSSION

3.1 Case Study
In order to demonstrate and assess the proposed pipeline on a real
data set, we carried out the comparative analysis of WGS data
from the EBI project ID PRJNA379070 (https://www.ebi.ac.uk/
ena/browser/home). This project contains clinical samples of M.
tb from India that showed genetic heterogeneity and variation
specificity based on the geographical region (Advani et al., 2019).
The dataset has been analyzed using the MycoVarP pipeline and
for comparison with a similar tool Mykrobe to know variants and
resistance of the samples against the antibiotics. The following
steps were involved in this analysis.

3.2 QC and Trimming of Raw Reads
To generate a quality report, 200 samples were submitted to the
FastQC tool and six samples were discarded due to errors such as
per-base sequence quality (lower quartile for base <5 ormedian for
base <20), per-sequence quality score (mean quality is <20 with 1%
error rate), per-base sequence content (difference of A and T or G
and C is >20% in any position), per-base GC content: (GC content
of base >10% with mean of total GC), per-sequence GC content:
(normal distribution >30% of the reads), per-base N Content: (N
content >20% of the reads), sequence length distribution: (if any
have zero length), duplicate sequences (if non-unique sequences
make up >50% of the total sequence), overrepresented sequences
(>1% of the total sequence reads), and overrepresented
K-mers(enrichment of k-mer >10 fold at any individual base
position). Trimming of the 194 samples was carried out using
Trimmomatic-0.39, and 36 samples were discarded due to low
survival score <60. For each read, the survival rate was checked so
that the samples with good quality were considered for further
variant calling analysis.

3.3 Variant Calling and Filter Analysis
The 164 samples are submitted to the MycoVarP pipeline using
an in-house developed shell script which is given in an
additional file.

3.4 Results of MycoVarP and Comparison
With Existing Data and Pipeline
In variant calling analysis, 136 samples passed all the filters,
whereas 28 samples are discarded due to low average depth
<10, genome coverage <90%, and other stringent filters applied
in MycoVarP. Advani et al. (2019) reported 18,970
nonsynonymous SNPs and 3,052 insertions and 2,739
deletions were identified in 161 samples when compared
with the H37Rv genome (Table 1).

After mapping the annotated vcf file with the drug-
susceptible database, we obtained 25,919 variants, out of
which 18,435 are missense variants and 7,484 are INDELs
(Supplementary Tables S3, S4). After the removal of the low
DP (for each variant), false-positive filter, alternative allele
frequency and removal of PE/PPE of the IDP protein family,
the total number of variants remaining in the samples was
2,480, out of which the missense variants were 931 and 1,549
variants belonging to INDEL SNPs (Supplementary Tables
S5, S6).

Advani et al. (2019) had evaluated the prevalence of
fluoroquinolone resistance among isolates sequenced in their
study by looking at gyrA and gyrB gene mutation frequencies.
They identified 26 SNVs in the gyrA gene (45% of the samples),
out of which 10 are known to cause resistance to
fluoroquinolones. In addition to this, S95T in gyrA was also
reported. However, when we carried out the analysis by
MycoVarP, we found 15 sites for the SNVs of gyrA. These
variants were present in all the 136 samples (100% samples).
Furthermore, the variants for KatG and rpoB genes were also
observed in the analysis carried out by Advani et al., that is,
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Mykrobe and MycoVarP. Both the mutations were present in all
the samples in our analysis. In addition, we found one more
mutation in rpoB protein at the 170th position which is V170F
(Table 2). In this variation, Val is replaced by Phe which is
having a long side chain, and this may interfere with the overall
structural stability of the protein (Capriotti et al., 2005); we have
observed this change in one of the clinical samples of Advani
et al., 2019, and this mutation was not reported by them.

The variants which are reported to be resistant against BDQ
were also found in the analysis (Battaglia et al., 2020). In
addition, we have analyzed the variants which were more
frequently observed among most samples (Table 3). Most of
the proteins in which these variants were observed are
transporter proteins, involved in cell envelope synthesis,
fatty acid biosynthesis, amino acid metabolism,
methyltransferase, glycoside hydrolase enzyme, and

TABLE 1 | Number of variants observed in the published data of Advani et al. (2019) and the MycoVarP pipeline.

MycoVarP pipeline

Type of variant Advani et al. (2019) Variants after removing
synonymous variants

Variants after filtration

Nonsynonymous variants 18,970 18,435 931
INDELs 5,791 7,484 1,549

TABLE 2 | SNVs with a high mutation rate in katG and rpoB were reported by Advani et al., 2019. The same mutations were observed and correlated using Mykrobe and
MycoVarP pipelines. The results obtained by MycoVarP are supported by the existing pipeline and published data.

Resistance gene Advani et al., 2019
(BWA, GATK, pINDEL,

and in-house .py
script)

Mykrobe pipeline MycoVarP pipeline

katG S315T (45% samples) S315T S315T (100% samples)
rpoB S450L (28% samples) S450L S450L, V170F (100% samples)

TABLE 3 | Additional list of proteins identified using MycoVarP compared to those identified by Advani et al. (2019).

Category of protein Gene ID Gene name Protein name Number
of altered
samples

Miscellaneous Rv 2081c Rv 2081c MTCY49.20c Uncharacterized protein Rv 2081c 112
Miscellaneous Rv0071 Rv0071 Possible maturase 92
Miscellaneous Rv2264c Rv2264c Conserved hypothetical proline-rich protein 86
Miscellaneous Rv0021c Rv0021c Uncharacterized protein 65
Cell signaling Rv0592 mce2D Rv0592 Mce-family protein Mce2D 55
Methyltransferase Rv3919c rsmG gidB Rv3919c

MTV028.10c
Ribosomal RNA small subunit methyltransferase G 50

Fatty acid biosynthesis Rv1527c pks5 Rv1527c
LH57_08,370

Mycocerosic acid synthase–like polyketide synthase (MAS-like PKS) 37

Fatty acid biosynthesis Rv1661 pks7 Rv1661 Probable polyketide synthase Pks7 35
Fatty acid biosynthesis Rv3800c pks13 Rv3800c Polyketide synthase Pks13 33
Cell wall biosynthesis Rv3795 embB Rv3795

MTCY13D12.29
Probable arabinosyltransferase B 31

Miscellaneous Rv0395 Rv0395 Uncharacterized protein 30
Fatty acid biosynthesis Rv1662 pks8 Rv1662 Probable polyketide synthase Pks8 30
Miscellaneous Rv1233c Rv1233c Conserved hypothetical membrane protein 29
Amino acid metabolism Rv2531c Rv2531c Probable amino acid decarboxylase 29
Glycoside hydrolase enzyme Rv3401 Rv3401 MTCY78.27c Uncharacterized glycosyl hydrolase Rv3401 29
Intermediary metabolism and
respiration

Rv2918c glnD Rv2918c
MTCY338.07c

Bifunctional uridylyltransferase/uridylyl-removing enzyme (UTase/UR)
(bifunctional [protein-PII] modification enzyme) (bifunctional nitrogen sensor
protein) [includes: [protein-PII] uridylyltransferase (PII uridylyltransferase)
(UTase)

29

DNA synthesis Rv0570 nrdZ Rv0570 Vitamin B12-dependent ribonucleoside-diphosphate reductase (B12-
dependent RNR)

28

Secretory system Rv3876 espI Rv3876 ESX-1 secretion-associated protein EspI 28
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uncharacterized proteins. Therefore, these are the possible
driving forces that lead to the development of MDR in Mtb.
By targeting these proteins, we may be able to design effective
drugs against the MDR strains of Mtb.

3.5 Drug Resistance Results From the
Proposed Pipeline
DR analysis results were similar to those reported earlier by
Advani et al. However, in our lineage analysis, we found that
specific lineages, that is, Beijing (0.95), Lineage 1.2, EAI (1.0),
CAS (0.86) || Beijing (0.82), Haarlem (1.0), CAS (0.85) || Beijing
(0.81), Ural (0.95), and Lineage 4.1 and 4.3 are different from
those in the previous reports (Figure 2) (Supplementary Table
S7). Lineage analysis of 137 samples revealed mostly 69% of the
samples belong to the Beijing strain (100 samples), and then
13% are Lineage 3 (18 samples) and 7% are Lineage 4 (10
samples) and other lineages (Figure 2). We conclude that the
proposed pipeline has been able to identify variations and
lineages previously missed or misunderstood by previous
reports aiming to perform similar tasks.

3.6 Discussion and Challenges in Variant
Analysis
WGS pipelines in the public domain have so far helped us
to identify the variants, predict their lineage, and DR association
of the variant. However, there is a need to apply variant filters
and prioritization steps to narrow down the most relevant
variants from the raw data . vcf file (De Summa et al., 2017).
These filters may include a cutoff for the allele frequency in
the samples; application of hard filters such as Base-
QRankSum, ClippingRankSum, DP, MQ, GQ, MQRank-Sum,
and ReadPosRankSum; removal of false-positive variants
present in the vcf file; and removal of synonymous variants
(De Summa et al., 2017).

3.6.1 Selection of the Reference Genome for
Alignment
There is a need to select the reference genome according to the
geographical region of the isolate. In most of the WGS analysis
pipelines, the Mtb strain H37Rv genome has been used as the
reference genome. However, there are other completeMtb genome
sequences available that can be explored to analyze different strains
having diverse lineages and accordingly, the most appropriate
lineage reference genome can be defined.

The variants obtained fromWGS analysis of human sequences
have well-defined Rsid (reference SNP cluster ID) which is
present in the single-nucleotide polymorphism database
(dbSNP) and accession numbers for variations observed in
human diseases available in the ClinVar database. However, in
the case ofMtb, there is largeWGS data available, still the SNPs of
its WGS data do not have ID like the human genome. Therefore,
there are no standardized databases of SNPs that can be used to
recalibrate and annotate variants while variant calling. Variant
recalibrator takes the overlap of the training/reference/truth
resource sets and query call set. The VQSLOD (for variant
quality score log-odds) score is added to the INFO field of
each SNP and checks whether the obtained SNP is true or
false under the trained Gaussian mixture model. Therefore,
there is a need for a standardized Mtb_reference.vcf file for
the recalibration step.

3.6.2 Need of the Standardized File Containing
Importance of Repetitive Regions
The Mtb H37Rv genome consists of 99 PE, 69 PPE, and 61 PE-
PGRS (polymorphic GC-rich) genes which have a variety of
functions (Akhter et al., 2012; Zumbo et al., 2013; Grover et al.,
2018; Sharma et al., 2020) The homologous recombination between
the genetic material evidenced and shaped the evolution of these
genes (Gey van Pittius et al., 2006) with the long regions of ESX.
There is a need for in-depth studies to understand the difference

FIGURE 2 | Lineage distribution of 137 samples where Lineage 1 (Indo-Oceanic) found in the Indian Ocean; Lineage 2: East Asia, including Beijing; Lineage 3 East
Africa and India (Central Asian (CAS)/Delhi); Lineage 4 (Euro-American) Africa, Europe, and America, American–Mediterranean (LAM), Haarlem, X type, and T families.
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between genetic polymorphism within several clinical isolates
compared to antigenic variance. McEvoy et al. (2012) stated that
nonsynonymous SNP mutations occurred more in the PE/PPE
genomic regions than other regions which lead to genome
plasticity; this property of PE/PPE proteins can be attributed to
the intrinsically disordered region present in these proteins. Studies
explained the importance of the IDP family of PE/PPE protein in
pathogenicity and should be considered potential drug targets, but a
better understanding of these proteins is required in the genomic-
level studies. There is a need to focus on understanding the
duplication levels in the genomes with similar genes; repetitive
gene families; next-generation sequencing data analysis with
alignment algorithms that discard the genes automatically;
mapping with the reference genome and clinical strain genome
pattern; and restricting the reliable PE/PPE sequence data size.

To overcome this, we need well-defined and standardized
sequencing platforms that yield long-length reads with
advanced alignment based on mathematical algorithms.
Detection of the single PE/PPE overexpression is very difficult
using conventional methods because of functional redundancy.

3.6.3 Standardization of the Tools According to the
Genome Diversity
The NGS techniques revealed a heterogenous collection of
phylogeographical data. How this genomic diversity contributes
to research-based clinical findings is relatively unexplored. There
are seven lineages reported for Mtb. Ngabonziza et al. (2020)
reported the lineage L8 sister clade by genome-based
phylogenetic reconstruction to the known MTBC lineages. This
lineage has diverged by the loss of the cobF genome region that
encodes Precorrin-6A synthase which is required for the
biosynthesis of cobalamin/vitamin B12 (Ngabonziza et al., 2020).
A clear understanding of TB infection and its evolution is possible by
exploring the molecular clock of the genome by finding the genetic
variants which are involved in the DRmechanism and divergence of
strains/lineages (Veyrier et al., 2011; Reva et al., 2015). Previous
studies revealed that DR is majorly linked with the Beijing strain
with lineage-specific mechanisms (Toungoussova et al., 2002; Liu
et al., 2020). Earlier studies reported a lot of diversity in the DR
mechanism pattern when compared with non-Beijing isolates (Lari
et al., 2006). Phylodynamic analyses need to be carried for a better
understanding of the evolutionary trend of SNPs that unravel the
mechanism involved in DR. There is a need to reconsider the
reference genome and analyze the available complete genome
available on the NCBI. Furthermore, there is a need to define
parameters as per the strains and lineage of Mtb.

WGS data can be used to detect the phylogenetic distance
among the diverse isolates which will give a clear understanding of
the potential impacts of mutations. Whole-genome sequencing
(WGS) analysis ofMtb is in its initial stages. In the Indian context,
the population is diverse andTB burden is high. However, there are
few studies on the North and South Indian groups. Therefore, there
is a need to explore the clinical data ofWGS from different parts of
India. The TORCH consortium is one of the capacity-building
initiatives for TB research in low-income countries such as
Ethiopia. Such initiatives are required to be implemented in India.

4 CONCLUSION

In the present work, WGS analysis steps have been carried out
with stringent quality parameters to obtain significant results.
The steps involved in the WGS analysis have been explained in
detail in the abovementioned text, and additional information
has been added to the adapter library of Trimmomatic. Our
results on a case study indicate that the proposed pipeline can
detect many variants that are missed from current public
reports, and thereby a better treatment strategy informed by
accurate identification of DS can be developed. Being a user-
friendly and mostly fully automated pipeline, we believe that
MycoVarP can be used to carry out WGS studies on the clinical
data of Mtb by researchers less familiar with computational
nuances.
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