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This paper is devoted to the problem of uncertainty in fractional-order Chaotic systems implemented by
means of standard electronic components. The fractional order element (FOE) is typically substituted by
one complex impedance network containing a huge number of discrete resistors and capacitors. In order
to balance the complexity and accuracy of the circuit, a sparse optimization based parameter selection
method is proposed. The random error and the uncertainty of system implementation are analyzed
through numerical simulations. The effectiveness of the method is verified by numerical and circuit sim-
ulations, tested experimentally with electronic circuit implementations. The simulations and experi-
ments show that the proposed method reduces the order of circuit systems and finds a minimum
number for the combination of commercially available standard components.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Fractional order calculus (FOC) is a generalization of the classi-
cal integer-order calculus arbitrary order [1]. The FOC offers a new
view of modeling and understanding of the physical processes
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since the fractional models can provide more adjustable parame-
ters. The fractional-order PID controller, often denoted as PIkDl

[2] and CRONE (Commande Robuste d’Ordre Non Entier) [3,4]
algorithms, demonstrated to lead to control strategies more flex-
ible than standard ones. In the area of electronics the fractional
models describe dynamic characteristics of the semiconductors
that are overlooked by integer models [5]. In recent decades,
due to its powerful modeling capabilities, a variety of fractional
models have been proposed and are widely used in electrical
engineering [6], signal processing [7], neural network [8] and
other fields.

Chaotic systems are a special type of nonlinear systems, that
are highly unpredictable. Fractional-order chaotic systems exhi-
bit even more complex behavior and play an important role in
the encryption and decryption of secure communications [9,10].
Since Leon Chua introduced the celebrated Chua’s circuit for the
first time [11], the implementation of chaotic systems became a
key topic. Following these ideas, V. Pham et al. [12] implemented
a three-dimensional fractional-order chaotic system without
equilibrium, P. Zhou et al. [13] designed an electronic circuit to
obtain a 4-D fractional-order chaotic system. A. Akgul created a
fractional order memcapacitor based chaotic oscillator with off
the shelf components [14]. The system was capable of imple-
menting Random Number Generators (RNG) using digital circuits
based on integer and fractional-order chaotic systems [15]. The
approximation problem of fractional-order systems with rational
functions of low order have been raised and tried to be solved
using optimization methods [16–18]. However, the complexity
coupled with the uncertainty of chaos makes the realization of
fractional-order chaotic systems hard to implement in engineer-
ing scenarios. In particular, complexity comes also from the
fractional-order circuit units that are formed by a large number
of electronic components. Indeed, the uncertainty is a conse-
quence of two main aspects: (1) the highly unpredictability and
non-linearity of the chaotic system, and (2) the errors between
the nominal and the real values exhibited in electronic compo-
nents in circuits.

The extra degree of freedom in fractional-order chaotic systems
increases the difficulty when handling chaotic electronic circuits.
The approaches for fractional-order circuit implementation can
be roughly classified into three categories:

(1) Traditional circuits with fractional components Compared
with the traditional integer-order calculus circuits, the frac-
tional order elements (FOE) [19] are implemented by frac-
tance capacitors [20,21], switched capacitors [22] or
fractional coils [23].

(2) Fractional behavior circuits with fractances or filter sec-
tions The fractional-order circuit transfer functions can be
realized by cascading a series of self-similar two-port net-
works [24–26], such as RC Ladder [27], Chain [28–30], and
Table 1
The zeros, poles and gain of bH� sð Þ with d ¼ 2dB.

q N Z P

0.1 2 16.681, 2782.5594 10, 1668
0.2 4 5.6234, 100, 1778.2794, 31622.7766 3.1623,
0.3 5 4.1596, 37.2759, 334.0485, 2993.5773, 26826.958 2.1544,
0.4 6 3.8312, 26.1016, 177.8279, 1211.5277, 8254.0419, 56234.1325 1.7783,
0.5 6 3.9811, 25.1189, 158.4893, 1000, 6309.5734, 39810.7171 1.5849,
0.6 6 4.6416, 31.6228, 215.4435, 1467.7993, 10000, 68129.2069 1.4678,
0.7 6 6.4495, 57.7969, 517.9475, 4641.5888, 41595.6216, 372759.372 1.3895,
0.8 4 13.3352, 237.1374, 4216.965, 74989.4209 1.3335,
0.9 3 129.155, 21544.3469, 3593813.6638 1.2915,
Tree [31] networks. Alternatively, the fractional-order
Laplace operator sa can be implemented using a weighted
sum of first-order high-pass filter sections [32].

(3) Digital circuits with discrete-time transformation The
fractional-order system is discretized by means of the Z-
transform [33], following various schemes of discretization
such as the trapezoidal (Tustin), Euler [34] and Al-Alaoui
[35] rules, and have been widely used to implement chaotic
systems using the Field Programmable Gate Array (FPGA)
[36,37].

The first approach is a priori the most reasonable implementa-
tion method, but the fractional-order capacitors, inductors or coils
are not easily obtained. Due to the inherent discretization error
and narrow bandwidth of the implementation by the discrete-
time system, in this paper we focus on the analog circuit imple-
mentation with fractances given their relatively wide bandwidth
and high accuracy.

For approximating the fractional-order system with rational
transfer function using fractances, a variety algorithms have been
proposed [38,39] that can be classified into two categories:

(1) Expansion A fractional-order irrational function is expanded
into a rational function with multiple poles and zeros by
using the continued fraction expansions (CFE) [29], namely
the Carlson’s [26] and Matsuda’s [40] methods.

(2) Identification The approximated rational function is
obtained by fitting the frequency response of the theoretical
irrational transfer function, such as the Oustaloup’s [41] and
Charef’s [42] methods.

These methods lead to a transfer function approximation of the
fractance that is implemented by a number of components. How-
ever, the uncertainty and circuit complexity that occur with the
implementation procedure using real electronic components are
not considered. Furthermore, the random errors caused by this
uncertainty is detrimental for the performance of fractional-order
chaotic systems with complex dynamics. The main motivation of
this paper is to (i) analyze and model the influence of uncertainty
on the circuits, and to (ii) develop a parameter optimization
method to reduce the number of standard components and the
overall uncertainty.

The remainder of this paper is organized as follows. In Section 2,
the fraction calculus approximation methods and three typical
structure of fractances are presented. In Section 3, the circuit
implementation problem is formulated as an parameter optimiza-
tion problem with sparsity and uncertainty constraints. Moreover,
a fast numerical algorithm is proposed for this special nonlinear
integer optimization problem. In Section 4, the influence in the
chaotic system caused by the randomness of electronic component
values is analyzed and modeled. In Section 5, the effectiveness of
K

.1005, 278255.9402 100000
56.2341, 1000, 17782.7941, 316227.766 31622.7766
19.307, 173.0196, 1550.5158, 13894.9549, 124519.7085 4641.5888
12.1153, 82.5404, 562.3413, 3831.1868, 26101.5722, 177827.941 1778.2794
10, 63.0957, 398.1072, 2511.8864, 15848.9319, 100000 398.1072
10, 68.1292, 464.1589, 3162.2777, 21544.3469, 146779.9268 146.7799
12.452, 111.5884, 1000, 8961.505, 80308.5722, 719685.673 71.9686
23.7137, 421.6965, 7498.9421, 133352.1432 13.3352
215.4435, 35938.1366, 5994842.5032 5.9948



Fig. 1. The RC chain structure.

Fig. 2. The RC binary tree structure.

Fig. 3. The RC domino ladder structure.
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the proposed method is analyzed and verified by simulations and
experiments hardware. In Section 6, the paper is concluded.

Preliminaries

In the Laplace domain, the transfer function of the linear frac-
tional integrator of order 0 < q < 1 can be written as H sð Þ ¼ 1=sq,
and s ¼ jx refers to the complex frequency. From the point of view
of engineering the implementation can be represented as [42]:

H sð Þ ¼ 1
1þ s0sð Þq ; ð1Þ

where the positive real number s0 is a relaxation time constant, and
q is the fractional-order.

Fractional order integrator approximation

In the Laplace domain, the fractional slope of �20a dB=decade
of H sð Þ in a log–log plot can be approximated by a series of asymp-
totic lines with alternate slopes of �20 dB=decade and 0 dB=decade
[42]. For the convenience of description, we call it as ‘‘pole/zero”
method. Then, the transfer function can rewritten as:

H sð Þ ¼ lim
N!1

YN�1

i¼0

1þ s
zi

� �
YN�1

i¼0

1þ s
pi

� � �

YN�1

i¼0

1þ s
zi

� �
YN
i¼0

1þ s
pi

� � ð2Þ

where (N þ 1) denotes the total number of singularities (poles) that
are associated with the maximum frequency xmax, so that:

N ¼
log xmax

p0

� �
log abð Þ

6664 7775þ 1; ð3Þ

where b�c denotes the floor function, p0 ¼ pT10
d=20qð Þ is the first polar

of the transfer function, and xc ¼ pT ¼ 1
s0

is the corner frequency

also be called as �3q dB=decade point. Besides, zi ¼ pi�1a and
pi ¼ zi�1b denote the i’th zero and pole of the transfer function,

respectively, and a ¼ 10 d=10 1�qð Þ½ �; b ¼ 10d=10q. The value of d (in dB)
is a positive number that stands for the maximum discrepancy
between the desired transfer function H sð Þ and the approximated

transfer function bH sð Þ given by:

bH sð Þ ¼

YN�1

i¼0

1þ s
abð Þiap0

� �
YN
i¼0

1þ s
abð Þip0

� � : ð4Þ

Clearly, the smaller d, the more accurate the approximation, but
the complexity of the transfer function rises significantly. In addi-

tion, the frequency range of bH sð Þ is x 2 xc;xmax½ Þ;xmax ¼

pT10
N d

10qþ d
10 1�qð Þ

� �
þ d
20q. To maintain the balance between complexity

and accuracy, the discrepancy can be set to value such as
d ¼ 2 dB. Based on this assumption, we set
xc ¼ pT ¼ 1=s0 ¼ 100 rad=s;xmax ¼ 105 rad=s, the zeros (Z), poles

(P) and gains (K) of bH sð Þ are given in Table 1.

The structure of fractances

Integer calculus can be realized with electric circuits, using
standard components such as contain Operational Amplifiers
(OPA), resistors and capacitors. However, for fractional calculus,
the realization depends on a specific RC circuit network with frac-
tal characteristics.

Fractal circuits have self-similarity and are formed by several
topologically similar layers with resistors and capacitors. The num-
ber of layers is related to the number of poles and zeros of the
approximated transfer function. The most common used approxi-
mations of fractances consist of the chain, RC domino ladder and
RC binary tree structures [43].

The chain structure
As shown in Fig. 1, the basic unit is the parallel association of

resistor and capacitor circuits, that can be regarded as layers of
the fractance. According to the two-port network theory, the trans-
fer function of this fractance in the Laplace domain is:

HRC sð Þ ¼ 1
C1sþ 1

R1

þ 1
C2sþ 1

R2

þ � � � þ 1
Cnsþ 1

Rn

: ð5Þ
The tree structure
As shown in Fig. 2, the fractance is organized according to bin-

ary tree structure. Each layer’s resistor and capacitor connects to
another parallel circuit unit to form a new layer. In the Laplace
domain the transfer function of this fractance is:

HRC sð Þ ¼ 1
1

R1þ 1
1

R2þ���þ
1

1
C2 s

þ���

þ 1
1

C1 s
þ 1

1
R3þ���þ

1
1

C3 s
þ���

: ð6Þ
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The ladder structure
As shown in Fig. 3, each layer is in series with one resistor and

then includes a parallel connection to one capacitor to form
another layer. In the Laplace domain the transfer function of this
tree network is:

HRC sð Þ ¼ 1
1

1
1

1
R1

þsC1
þR2

þsC2
þ R3

þ sC3 þ � � � : ð7Þ
Parameter selection with sparse optimization

As mentioned in Section 2, the fractional-order calculus can be
approximated by integer transfer function with multiple poles and
zeros and the approximated transfer function can be realized with
fractance circuits. Due to the sensitiveness to initial conditions and
system parameters exhibited by chaotic system, the circuit imple-
mentation requires an high accuracy. However, especially in ana-
logue circuits, the tolerances of the electronic components and
the background noise bring the system to errors and uncertainties.
Furthermore, the error introduced by the process of approximation
can not be neglected and, consequently, the circuit implementa-
tion of chaotic systems poses severe problems.

The circuit implementation of fractional-order calculus rely on
fractance circuits consisting of Kr 2 N resistors and Kc 2 N capaci-
ties. Let the transfer function HRC sð Þ equal the approximated trans-

fer function bH sð Þ, so that:

Cr � HRC sð Þ ¼ bH sð Þ; ð8Þ
where Cr 2 R> is a gain adjustment factor, R> ¼ x 2 Rjx > 0f g rep-
resents the set of positive real numbers. The analytically solution

of r ¼ R1;R2; . . . ;RKrð ÞT and c ¼ C1;C2; . . . ; CKcð ÞT is not always
achievable by solving a homogeneous equation that is build by
equating the corresponding coefficients when the system order is
larger than 3. Moreover, components with the calculated values
may not be commercially available. By other words, the calculated
value of resistors and capacitors may not be the standard values of
electronic components. For overcoming this problem, there are two
solutions:

� Ordering special manufacturing for values of non-standard
capacitors and resistors.

� Combining the standard electronic components to approximate
the non-standard theoretical value.

The first solution leads to a simpler circuit design and higher pre-
cision, but with high cost and long manufacturing cycle problems.
The second solution is a more economic and time-saving way of
implementation, but the number of electronic components used
in the circuit may eventually be very large. According to the discus-
sion above, the amount of standard electronic components used for
substitution needs to be controlled to further limit the accumulative
error and to increase the stability of the whole circuit system.

For this purpose, a sparse optimization method is developed in
the follow-up. Commercially unavailable resistors or capacitors
can always be approximated by the combination of available E-

series electronic resistors a ¼ a1;a2; . . . ;aMrð ÞT and capacitors

b ¼ b1; b2; . . . ; bMc

� �T:
r
c

� �
|ffl{zffl}y ¼

A
B

� �
|fflfflfflfflffl{zfflfflfflfflffl}X � a

b

� �
|ffl{zffl}w þ u

v

� �
|ffl{zffl}g; ð9Þ

where ai and bi denote the values of standard resistors and capaci-
tors respectively. The symbols Mr and Mc stand for the number of
the E-series commercially available standard resistors and
capacitors, respectively. Moreover, A 2 ZKr�Mr

P and B 2 ZKc�Mc
P are

coefficient matrices, ZP ¼ x 2 Zjx P 0f g represents the set of non-
negative integers, u 2 RKr

P and v 2 RKc
P are the corresponding resid-

ual vectors, RP ¼ x 2 Rjx P 0f g represents the set of non-negative
real numbers, y 2 RK

> is the theoretical component values,
X 2 ZK�M

P , so that K ¼ Kr þ Kc and M ¼ Mc þMr .
The potential value of the m’th electronic component wm is a

random variable wm 	 N lm;r2
m

� �
that follows the normal distribu-

tion. However, the actual situation is that a value falling outside
the limits are scrapped or reworked in the manufacturing process
and so the inspected electronic component follows a truncated
normal distribution. Its value lies within the interval wm 2 a; b½ �
[44], with a ¼ lm � 3rm; b ¼ lm þ 3rm;m ¼ 1;2; . . . ;M, where lm

and em are the nominal value and the tolerance of the component,
respectively. According to the definition of international standard
IEC-60063 [45], we have 3rm ¼ em � wm. The probability density
function (PDF) of wm can be given by:

f wm;lm;rm; a; b
� � ¼ /

wm�lm
rmð Þ

rm � U b�lm
rm

� �
�U a�lm

rmð Þ
� � ; a 6 wm 6 b

0; otherwise

8<: : ð10Þ

Let us consider / nð Þ ¼ 1ffiffiffiffi
2p

p exp �n2=2
� �

and U nð Þ ¼
1
2 1þ erf n=

ffiffiffi
2

p� �� �
for the PDF and cumulative distribution function

of the standard normal distribution, respectively, with

erf nð Þ ¼ 2ffiffiffi
p

p
R n
0 e

�t2 dt standing for the Gauss error function.

Then the mean and variance of truncated random variable wm

can be written as [46]:

l̂m ¼ lm þ rm
/ að Þ � / bð Þ
U bð Þ �U að Þ ; r̂

2
m

¼ r2
m 1þ a/ að Þ � b/ bð Þ

U bð Þ �U að Þ � / að Þ � / bð Þ
U bð Þ �U að Þ


 �2
" #

; ð11Þ

where a ¼ a� lm

� �
=rm and b ¼ b� lm

� �
=rm.

Since erf nð Þ is an odd function and a ¼ �b ¼ �3, we
have erf �nð Þ ¼ �erf nð Þ;/ að Þ ¼ / bð Þ ¼ exp �9=2ð Þ=

ffiffiffiffiffiffiffi
2p

p
and U bð Þ�

U að Þ ¼ erf 3=
ffiffiffi
2

p� �
. Finally, the mean and variance of wm can be

simplified as:

l̂m ¼ lm; r̂
2
m ¼ r2

m 1� 6 � exp �9=2ð Þffiffiffiffiffiffiffi
2p

p
� erf 3=

ffiffiffi
2

p� �
0@ 1A � 0:97 � r2

m: ð12Þ

Then the k’th element gk of residual vector g 2 RK ; k ¼ 1;2; . . . ;K,
is a random variable with the mean and variance given by:

lgk
¼ yk � xk;� � w;r2

gk
/ xk;� � r2

w; ð13Þ
where yk is the theoretical value of k’th component,

rw ¼ r̂1; r̂2; . . . ; r̂Mð ÞT is the standard deviation vector of all the
standard electronic components, and xk;� refers to the k’th row of
X. Here we take the ratio of the sum of the standard deviation
xk;�rw and the k’th component value yk ¼ xk;�w:

ck ¼ xk;�rw

xk;�w
; ð14Þ

as the indication of uncertainty in the circuit implementation pro-
cedure. Generally speaking, the larger the value of ck, the higher
the variability of yk, and the greater the probability of failure. To
simplify, the sum of ratio ck can be obtained by:

kck1 ¼ Xrw

� �T � Xwð Þ�1
; ð15Þ
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where c ¼ c1; c2; . . . ; cKð ÞT denotes the ratio vector, and k � k1 refers
to the ‘‘entry-wise” ‘1-norm.

Definition 1. The complexity of the circuit is defined by the
average number of standard electronic components used in each
circuit parameter implementation, that is:

CM :¼ k
1
Mr

jjAjj1 þ 1� kð Þ 1
Mc

jjBjj1 ¼ kXWk1; ð16Þ

where W is the corresponding weight matrix, and jjAjj1 and jjBjj1
denote the total number of resistors and capacitors usage in imple-
mentation of the analytical solution of circuit parameters r and c,
respectively. The parameter 0 < k < 1 is a trade-off between the dif-
ferent types of parameters.

Given a suitable initial values y0 of the components used, the
gain factor Cr ¼ Cr0, and the frequency bandx 2 xc;xmax½ Þ, the cir-
cuit parameter matrix X can be derived by a sparse optimization
problem defined as:

min
Cr ;y

Xrw

� �T � Xwð Þ�1 þ k1 � kXWk1; ð17aÞ

s:t:Cr 2 R>; y 2 RK
>; ð17bÞ

sup D xð Þjx 2 xc;xmax½ Þ;Xf g 6 d

and the parameter matrix X 2 ZK�M
P can be deduced from y by:

xi;j ¼ ei;j=wj

� 
; for ei;j P fi;j

0; otherwise

(
; ð18Þ

where ei;j ¼ yi �
Pj�1

m¼1xi;m � wm represents the j’th residual of

yi; fi;j ¼
Pj�1

m¼1xi;m � rm is defined as the uncertainty within one stan-
dard deviation of yi; i ¼ 1;2; . . . ;K; j ¼ 1;2; . . . ;M, and b�c denotes
the floor function. The first term of Eq. (17a) gives the uncertainty
in the circuit implementation of the transfer function H sð Þ, and
the regularization term kXWk1stands for the average number of
standard electronics components used in the fractance implemen-
tation. The positive parameter k1 introduces a trade-off between
implementation uncertainty and sparsity. Moreover,

D xð Þ ¼ jbAvdB xð Þ � AvdB xð Þj measures the magnitude discrepancy

between H sð Þ and bH sð Þ, where AvdB xð Þ ¼ 20 � log jH jxð Þj andbAvdB xð Þ ¼ 20 � log jCr � bH jxð Þj are the magnitude of the transfer

functions H sð Þ and bH sð Þ, respectively, having in mind that the
inequality constraint in Eq. (17b) limits the maximum discrepancy
between them.

The objective function in Eq. (17a) is a linear function to be min-
imized. Nonetheless, the constraints involve integer variables, real-
valued variables and nonlinear functions. Thus, the minimization
problem of Eq. (17) is a mixed integer nonlinear program (MINLP).
The problem refers to nonlinear programming with discrete and
continuous variables, and has been used in various fields, such as
in engineering, finance and manufacturing. It is challenging to
solve theoretically this NP-hard combinational problem that in
general is not feasible [47]. We can introduce a barrier function
to remove the inequality constraint, and then the optimization
problem of Eq. (17) can be re-formulated as:

min
Cr ;y

Xrw

� �T � Xwð Þ�1 þ k1 � kXWk1 þ l � g Xð Þ; s:t:Cr 2 R>0; y 2 RK

ð19Þ
where the barrier function g Xð Þ is defined as:

g Xð Þ ¼ logp Ddð Þ þ 1; for Dd > 1

D2
d ; otherwise

(
; ð20Þ

the ratio Dd ¼ sup D xð Þ=djx 2 xc;xmax½ Þ;Xf g denotes the relative
maximum discrepancy, p 2 1;þ1ð Þ, and l 2 R> is a free parameter.
In the discrete domain, Dd can be obtained by
Dd ¼ argmax
x;X

D xið Þ=df g; ð21Þ

where x ¼ x1;x2; . . . ;xNxð ÞT 2 RNx
> consists of Nx frequency

points sampling from the frequency band xi 2 xc;xmax½ Þ. This opti-
mization problem is not equivalent to Eq. (17), but as l! 0 it can
be seen as an approximation. In this paper we set p ¼ 1:01 and
l ¼ 1.

The initial values y0 and Cr0 can be estimated by minimizing the
following objective function which given by:

J Cr ; yð Þ ¼
XNx

i¼1

jCr � bH jxið Þj � jH jxið Þj
� �2

�
þ k2 � Im Cr � bH jxið Þ

� �
� Im H jxið Þð Þ2

� o
; ð22Þ

where k2 2 R> is a parameter to trade-off between the error of mag-
nitude and phase. Then, according to Eq. (18), for y0 � X0 � w, we
deduce an approximate solution of the initial parameter matrix X0.

To minimize the objective function (17) with nonlinear and
discrete constrains, a Genetic Algorithm (GA) [48,49] is used.
GAs have achieved some success in the fractional calculus field
to optimize fractional controllers [50], approximate fractional
derivatives [51] and implement fractional-order inductive ele-
ments [52]. The circuit parameter matrix X and the gain adjust-
ment factor Cr are encoded as genomes, with every genome
being interpreted as a potential solution for the sparse optimiza-
tion problem.

Uncertainty measurement in chaotic circuit system
implementation

As mentioned previously, the uncertainty in the circuit

implementation of bH sð Þ will significantly influence the quality
of chaotic system and, in most cases, the circuit complexity is
the main cause of uncertainty. In order to accurately evaluate
the impact of the circuit complexity and component tolerance
on the uncertainty, we now define performance criteria of chao-
tic circuit system implementation. The failure of the circuit
implementation is mainly reflected in two aspects: (1) the
approximation error of fractional order operators is larger than
the set range, and (2) chaos degenerates or chaotic behavior dis-
appears. The uncertainty will be defined in terms of these two
aspects, respectively.

Approximation error of fractional order operators

Definition 2. The uncertainty is defined as the failure probabil-
ity of the circuit implementation with a given parameter X,

UC Xð Þ :¼ p Dd > 1jXð Þ; ð23Þ
where Dd denotes the maximum magnitude discrepancy relative to

d between H sð Þ and bH sð Þ.
In order to calculate the probability in Eq. (23), we need to first

derive the amplitude probability distribution p jbH jxð Þj
� �

of bH sð Þ
defined in Eqs. (5)–(7) by a given circuit parameter matrix X. Tak-
ing an implementation of a second order system of Eq. (5) for
example:

bH sð Þ ¼ 1
C1sþ 1

R1

þ 1
C2sþ 1

R2

¼ R1R2 C1 þ C2ð Þsþ R1 þ R2

R1R2C1C2s2 þ R1C1 þ R2C2ð Þsþ 1
; ð24Þ

as mentioned above, the random variables R and C are truncated
normal distributions, and their probability density function are
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given by Eq. (10). However, the distribution of product and ratio of
more than two independent, continuous random truncated normal
variables (e.g., p R1R2 C1 þ C2ð Þð Þ and p R1R2C1C2ð Þ), becomes compli-
cated with cascading operations [53,54] and, therefore, the proba-
bility of uncertainty cannot be directly calculated for a given
circuit parameter matrix X. However, it can be approximately calcu-
lated by sampling from a series truncated normal distribution. We
give an estimation algorithm of the uncertainty probability using
the Monte Carlo simulation method as shown in Table 2.

A truncated normal random variable wm that follows the distri-
bution truncated to the range a; b½ � is defined as:

wm ¼ U�1 U að Þ þ U � U bð Þ �U að Þð Þð Þ � rm þ lm

¼ U�1 1=2þ U � erf 3=
ffiffiffi
2

p� �� �
� rm þ lm; ð25Þ

where U�1 �ð Þ is the inverse of the cumulative distribution function
U �ð Þ, and U is a uniform random variable in range �1=2;1=2½ �. The
classic inverse transform method for generating a random variable fol-
lowing the density function of Eq. (10) may fail in the sampling at the
tail of distribution [55], or may be much too slow [56]. In order to
accelerate the sampling of multiple truncated normal distribution vari-
ables, we use a table-based fast sampling algorithm that proposed by
Chopin [57].

The relative maximum magnitude discrepancy Dd can be calcu-
lated using the random variates w ¼ w1; . . . ;wMð ÞT and the circuit
parameter matrix X. The k’th component’s value yk of the transfer

function bH sð Þ can be determined by yk ¼ xk;�w, and the implemen-
tation uncertainty of system can be redefined as:

UCi Xð Þ :¼ 1; Dd > 1
0; otherwise

�
: ð26Þ
Chaos degenerates or chaotic behavior disappears

From the perspective of whether chaotic behavior can be main-
tained in the process of chaotic system realization, according to
[58], a necessary condition for the fractional system to remain
chaotic can be adopted to indicate the uncertainty.

Definition 3. For a given fractional-order system dqx
dtq ¼ f xð Þ, the

uncertainty in the circuit implementation of this system with a
given parameter X can be defined as follows
Table 2
Monte Carlo based uncertainty estimation algorithm.

Initialization:
1: INIT system order q, maximum discrepancy d, number of the
singularities N, parameter matrix X, Gain factor Cr , tolerance of
standard components e, maximum iteration steps n.

2: SET iteration count i to zero.

Iteration:
3: WHILE i < n THEN
4: Generate all the random variate wm;0 6 m 6 M of standard

electronic components w by Eq. (25).

5: Calculate the value of components used in transfer function bH sð Þ by
y ¼ Xw.

6: Update Dd ¼ argmax
x;X

D xið Þ=df g or qsup by using bH sð Þ.
7: IF Dd > 1 OR q 6 qsup THEN

UCi Xð Þ ¼ 1.
ELSE IF Dd 6 1 OR q > qsup THEN
UCi Xð Þ ¼ 0.

END IF
8: i :¼ iþ 1.
9: ENDWHILE
10: Compute the estimated value of implementation uncertainty:cUC ¼ 1

n

Pn
i¼1UCi Xð Þ.
UC Xð Þ :¼ p q 6 qsupjX
� �

; ð27Þ

where qsup ¼ 2
p actan

jIm kuð Þj
Re kuð Þ

� �
, and ku is an unstable eigenvalue of one

of the saddle points of index 2.
Similarly, the unstable eigenvalue ku can be evaluated by ran-

domly sampling from parameter matrix X, and then Eq. (27) can
be rewritten as:

UCi Xð Þ :¼ 1; q 6 qsup

0; otherwise

�
: ð28Þ

Finally, the estimated value of implementation uncertainty can be
obtained by taking UCi Xð Þ as a statistic after n times direct
simulations:

cUC ¼ 1
n

Xn
i¼1

UCi Xð Þ: ð29Þ
Experiments and analysis

To verify the effectiveness of the proposed method, a number of
numerical and circuit simulations followed by experiments with
electronic circuit implementations are conducted on arbitrary frac-
tional order and three types of fractance structure. Both perfor-
mance criteria of circuit complexity and uncertainty are compared
with the ‘‘pole/zero” approximation method defined in Eq. (4). The
source code is available at: https://github.com/msp-lab/sofocs.

Given the same fractional order q, the numerical simulations in
this section can be divided into three categories: minimum system
order N requirement, circuit complexity comparison, and circuit
uncertainty comparison in the implementation procedure. In the
circuit simulation and electronic circuit implementation experi-
ments, a fractional-order chaotic circuit for multi-scroll attractor
is obtained by means of the ‘‘pole/zero” approximation and the
proposed sparse optimization methods.

Minimum system order requirement comparison

For a given pair of fractional order q and maximum discrepancy
d, we compare the approximation ability of the proposed and the
‘‘pole/zero” methods. A comparative experiment is conducted to
test the minimum number of fractance orders required by the
two methods for 1 dB;2 dB and 3 dB maximum discrepancy error
tolerance. In general, we set the frequency range as

x 2 10�2;102
h �

and s0 ¼ 100.

As shown in Fig. 4, the proposed method requires fewer orders
of fractances than the ‘‘pole/zero” method. In other words, the
method can always find a potential low-order circuit system to
achieve the same fractional order, and has the advantage of reduc-
ing circuit complexity. In addition, lower system order require-
ments mean a more parsimonious use of topologically similar
layers in fractal circuit. Indeed, the proposed method can reduce
to about half number of layers and that is more evident as the
accuracy of implementation increases.

Circuit complexity comparison

The complexity of the circuit is related to the order of the frac-
tance system N and the number of standard components used to
implement each ideal component. Here, we evaluate the circuit
complexity with the total amount and the average number of com-
ponents usage for the same fractional order.

As shown in Fig. 5a, the proposed method has the smallest
usage of ideal component implementation, and can save about
60% of components in most cases. This result means not only that

https://github.com/msp-lab/sofocs
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the circuit complexity is reduced and is easier to implement, but
also that lower circuit noise is obtained and that the accuracy
and reliability of the circuit are improved. Meanwhile, as shown
in Fig. 5b, for an actual implementation of an ideal resistor or
capacitor, the proposed method uses quantities inferior to those
required by the ‘‘pole/zero” method, for most cases.

Circuit implementation uncertainty comparison

Since the value of the components actually used in the fractance
circuit realization is a random variable obeying the truncated nor-
mal distribution, the change of the zero-pole position of the trans-
fer function is unavoidable, and thus the quality of the circuit
cannot be completely guaranteed. We use the uncertainty mea-
surement method given in Section 4 (Definition 2) to investigate
the uncertainty in the implementation procedure of the transform
function derived by the proposed sparse optimization and the
‘‘pole/zero” methods.

Fig. 6 shows that the proposed method leads to less uncertainty
in the implementation procedure than the ‘‘pole/zero” method.

Circuit implementation of fractional-order Jerk chaotic system

We consider the fractional-order Jerk system [59], described as

dqx
dtq ¼ y;
dqy
dtq ¼ z;
dqz
dtq ¼ �x� y� bzþ F xð Þ;

8>><>>: ð30Þ

where the nonlinear function F xð Þ ¼ A
PNJ

n¼1sgn x� 2n� 1ð ÞA½ �þ
A
PMJ

m¼1sgn x� 2m� 1ð ÞA½ �;NJ ¼ MJ ¼ 4;A ¼ 1 and sgn �ð Þ is the
signum function.

When b ¼ 0:3, a necessary condition for the fractional system to

remain chaotic is keeping q > 2
p arctan c

g

� �
¼ 0:876, where

g ¼ Re k2;3ð Þ; c ¼ Im k2;3ð Þ. We choose q ¼ 0:87 (non-chaotic behav-
ior) and q ¼ 0:88 (chaotic behavior) to demonstrate the effective-
ness of the proposed method.

The main circuit implementation of the Jerk system is depicted
in Fig. 7 using OPAs and RC chain type fractances. In order to gen-
erate the sgn �ð Þ function in F xð Þ, the OPAs in the circuit are required
to have high slew rates. Here, choosing TL081/TL084 (slew rate is
16 V=ls, output voltage swing is 
13:5 V when load resistance
RL ¼ 10 kX and supply voltage is 
15 V), and R0 ¼ 1 kX, thus
R6¼R0=b�3:3kX;R5¼R0¼1kX;R8¼13:5kX, and R7¼RL¼10kX.

In the approximation of 1=sq, we set the maximum discrepancy

d ¼ 2 dB and bandwidth of systemx 2 100;105
h �

rad=s. In order to
maintain the consistency of stability between the original system
and the approximation system, we introduce a scale factor G into
the implementation, then the chaotic system can be rewritten as

G � dqxdtq ¼ y;

G � dqydtq ¼ z;

G � dqzdtq ¼ �x� y� bzþ F xð Þ:

8>><>>: ð31Þ

where sxr ¼ Cr � R0 ¼ jbH jxrð Þj � G can be regarded as the integration
time constant at frequency point xr . Obviously, the stability condi-
tion of system (31) have not changed because all the eigenvalues
are consistent with system (30) at the corresponding equilibrium
point (xi;0; 0).

Approximation using the ‘‘pole/zero” method
The integer-order approximation of 1

s0:87 and
1

s0:88 with frequency

range x 2 100;105
h �

rad=s; d ¼ 2 dB are given as follows:

1
s0:87

� 6:3767 sþ45:0199ð Þ sþ 2640:8921ð Þ sþ 154916:3511ð Þ
sþ1:3030ð Þ sþ76:4344ð Þ sþ4483:6915ð Þ sþ263016:0896ð Þ ; ð32aÞ

1
s0:88

� 6:2439 sþ60:298ð Þ sþ4723:2662ð Þ sþ369983:0414ð Þ
sþ1:2991ð Þ sþ101:7597ð Þ sþ7971:043ð Þ sþ624387:9966ð Þ : ð32bÞ

Therefore, the inter-order dynamical equations of them at equi-
librium points can be derived by.

d4x
dt4

¼� a1 d3x
dt3

þa2 d2x
dt2

þa3 dx
dtþ a4x

� �
þGK d3y

dt3
þb1

d2y
dt2

þb2
dy
dt þb3y

� �
;

d4y
dt4

¼� a1
d3y
dt3

þa2
d2y
dt2

þa3
dy
dt þa4y

� �
þGK d3z

dt3
þb1

d2z
dt2

þb2
dz
dtþb3z

� �
;

d4z
dt4

¼�GK d3x
dt3

þb1
d2x
dt2

þb2
dx
dtþb3x

� �
�GK d3y

dt3
þb1

d2y
dt2

þb2
dy
dt þb3y

� �
� a1 þGKbð Þ d3z

dt3
� a2 þGKbb1ð Þ d2z

dt2
� a3 þGKbb2ð Þ dzdt

� a4 þGKbb3ð Þz;

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð33Þ

where a1 ¼ PN
i¼0pi; a2 ¼ P

06i<j6Npipj; a3 ¼X
06i<j<k6N

pipjpk; a4 ¼
YN

i¼0
pi; b1 ¼

XN�1

i¼0
zi; b2 ¼

X
06i<j6N�1

zizj; b3

¼
YN�1

i¼0
zi;N ¼ 3

.
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Then the corresponding eigenvalues of the equilibrium point
xi;0;0ð Þ for q ¼ 0:88 and q ¼ 0:87 are calculated as follows:

q ¼ 0:87

k1 ¼ �76:40; k2 ¼ �76:47; k3 ¼ �263016:07; k4
¼ �263016:11; k5;6 ¼ 0:44
 j2:24;
k7;8 ¼ �2:41
 j1:15; k9;10 ¼ �4483:69
 j0:01; k11;12
¼ �133789:98
 j229683:40

8>>><>>>:
q ¼ 0:88

k1 ¼ �101:73; k2 ¼ �101:79; k3 ¼ �624387:97; k4
¼ �624388:02; k5;6 ¼ 0:44
 j2:22;
k7;8 ¼ �2:40
 j1:15; k9;10 ¼ �7971:04
 j0:01; k11;12
¼ �316232:21
 j538928:37

8>>><>>>:
ð34Þ
According to Tavazoei [58], a necessary condition for fractional sys-

tem to remain chaotic is keeping q > 2
p arctan jIm kð Þj

Re kð Þ

� �
. For the eigen-

values k9;10; q ¼ 0:87 < 2
p arctan 2:24

0:44

� � � 0:876, and
q ¼ 0:88 > 2

p arctan 2:22
0:44

� � � 0:876, when G ¼ 1:97 and 1:95, respec-
tively, they are consistent with the stability of the original system
Eqs. (32a) and (32b).

Then, choosing available E24 (5% tolerance) electronic resistors
and E12 (10% tolerance) capacitors, the component values required
to implement the chaotic systems of q ¼ 0:87 and q ¼ 0:88 are
summarized in Table 3.

As shown in Fig. 8, the circuit experiments show results in
agreement with the theoretical design and numerical simulations
for q ¼ 0:88, but are not consistent with the circuit simulation



Fig. 6. The minimum system order requirement: comparison between the three types of fractances structure using the proposed and the ‘‘pole/zero” methods.

Fig. 7. Complete circuit of Jerk chaotic system with 9-scroll attractors.

Table 3
The component values required to implement the chaotic systems using the ‘‘pole/zero” method.

q xr (rad/s) G N R1 (MX) R2 (kX) R3 (kX) R4 (X) C1 (nF) C2 (nF) C3 (nF) C4 (nF) Result

0:87 2:63� 105 1:97 3 49:64
47 + 2:4

600:79
560 + 39

17:22
16 + 1:2

504:48
470 + 33

15:46
15

21:78
18 // 3:3

12:95
12// 0:82

7:54
6:8 // 0:68

Fake chaotic behavior (simulation)
Non-chaotic behavior (hardware)

0:88 5� 104 1:95 3 13:42
10 + 3:3

119:35
110 + 9:1

2:55
2:4 + 0:15

55:48
51

57:35
56

82:34
82

49:15
47 // 1:8

28:87
27 // 1:8

Chaotic behavior
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for q ¼ 0:87. The inconsistency between the simulation results and
the theoretical design is most likely caused by amplitude and
phase errors and can be improved by increasing the order of the
approximation system. However, the actual circuit is consistent
with the theoretical design, which may be caused by the limited
bandwidth of the circuit. Choose the circuit output ’x’ as the hori-
zontal axis input and the circuit output ’z’ as the vertical axis input,
then the observation of simulations by using NI Multisim software
and experiments by using oscilloscope (Tektronix MDO3054
500 MHz) are shown in Figs. 9 (a, b) and Figs. 8 (c,d), respectively.
Approximation using the proposed method
Now we choose the same fractional order and frequency range

as the ‘‘pole/zero” method and we substitute the uncertainty crite-
ria by Definition 3. The component values required to implement



Fig. 8. Hardware circuit implementation using the ‘‘pole/zero” method.

Fig. 9. Simulation observations of Jerk chaotic system with q ¼ 0:87 and 0:88.

Table 4
The component values required to implement the chaotic systems using the proposed method.

q Cr N R1 (MX) R2 (kX) R3 (kX) R4 (X) C1 (nF) C2 (nF) C3 (nF) C4 (nF) Result

0:87 1:88� 10�8 3 100
100

1200
1200

34:5
33 + 1:5

1000
1000

7:67
6:8// 0:82

10
10

6:8
6:8

3:9
3:9

Non-chaotic behavior

0:88 1:797� 10�7 3 20
20

180
180

3:82
3:6 + 0:22

83
82

39
39

53:8
47// 6:8

33
33

19:2
18 //1:2

Chaotic behavior
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Fig. 10. Hardware circuit implementation using the proposed method.

Fig. 11. Simulation observations of Jerk chaotic system with q ¼ 0:87 and 0:88.
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the chaotic systems of q ¼ 0:87 and q ¼ 0:88 with d ¼ 2 dB are
summarized in Table 4.

As shown in Figs. 10 and 11, the circuit experiments show
results in agreement with the theoretical designs and numerical
simulations both for q ¼ 0:87 and 0:88. The proposed method
can achieve the same approximation accuracy with fewer compo-
nents. Since the necessary condition (Definition 3) of chaotic sys-
tem are considered in the optimization process, the problem of
inconsistency with the theoretical design can be avoided. In gen-
eral, once the estimated value of implementation uncertainty is
calculated, the uncertainty in the realization process can be
reduced to improve the circuit behavior by the following strategy:
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(1) Select standard components with relative higher precision
level, such as E96;E192;

(2) Adjust the scaling factor Cr to meet the condition of chaos in
fractional order system;

(3) Adjust the value of R0 to affect the integration time constant.

Conclusion and discussion

This paper described a novel parameter selection method based
on sparse optimization for chaotic circuit system implementation.
Furthermore, an uncertainty measurement method of the imple-
mentation procedure was formulated. To the authors best knowl-
edge, this is the first work that considers the uncertainty in the
circuit implementation when using standard electronic compo-
nents. Indeed, the method gives a feasible circuit parameter opti-
mization method. The new approach is very helpful for
implementing arbitrary fractional chaotic systems with commer-
cially available components while the system accuracy and com-
plexity can be analyzed assertively.

The experiments comparing three types of fractances structure
demonstrated that the proposed selection method for the parame-
ters can find a low-order circuit system and a minimum number
for the combination of standard components when representing
a given fractional order fractance.

This paper focused on the implementation of fractional order
fractance circuits. Nonetheless, it can be easily used and integrated
into specific chaotic circuit design and has great potential to dis-
cover more structures of high-complexity chaotic circuits using
optimization algorithms. It is also possible to introduce other crite-
ria in the objective function Eq. (17) for system level optimization,
such as, for example, the criteria of quantitative determination of
chaotic behavior, synchronization and stabilization.
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