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Cell-free DNA(cfDNA) methylation profiling is considered promising and potentially reliable for liquid
biopsy to study progress of diseases and develop reliable and consistent diagnostic and prognostic
biomarkers. There are several different mechanisms responsible for the release of cfDNA in blood plasma,
and henceforth it can provide information regarding dynamic changes in the human body. Due to the
fragmented nature, low concentration of cfDNA, and high background noise, there are several challenges
in its analysis for regular use in diagnosis of cancer. Such challenges in the analysis of the methylation
profile of cfDNA are further aggravated due to heterogeneity, biomarker sensitivity, platform biases,
and batch effects. This review delineates the origin of cfDNA methylation, its profiling, and associated
computational problems in analysis for diagnosis. Here we also contemplate upon the multi-marker
approach to handle the scenario of cancer heterogeneity and explore the utility of markers for 5hmC
based cfDNA methylation pattern. Further, we provide a critical overview of deconvolution and machine
learning methods for cfDNA methylation analysis. Our review of current methods reveals the potential
for further improvement in analysis strategies for detecting early cancer using cfDNA methylation.
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1. Introduction

Traditional clinical diagnostic methods such as bone marrow or
tissue biopsies are invasive in nature and possess sampling bias;
consequently, researchers are looking for alternative molecular
biomarkers. In recent years liquid biopsy-based disease diagnosis
techniques have gained importance due to their safer and faster
approach in contrast to tissue-based studies [1]. One such liquid
biopsy-derived method uses cancer traces obtained from cell-free
DNA (cfDNA). These fragments are called circulating tumor DNA
(ctDNA) and have shown the potential to help in the field of cancer
diagnosis, and prognosis [2].

The hematopoietic system is the major origin of cfDNA in
healthy subjects, while in clinical patients (e.g., cancer), the
affected cells/tissues contribute more to it. The plasma of a healthy
individual contains 0–100 ng/ml of cfDNA, while in the case of late-
stage cancer patients, it can go up to 1000 ng/ml [3]. Following
cfDNA discovery in 1948 in autoimmune diseases, applications of
cfDNA have now been extended to the diagnosis of many types
of abnormalities. Some of the applications include identification
of fetal chromosomal abnormalities (NIPT), early graft rejection,
and detection and monitoring of cancer [4]. Besides genetic alter-
ations, epigenetic changes in cfDNA have also been found to be
useful as diagnostic biomarkers in different types of cancers[5,6].
One of the most robust epigenetic markers is DNA methylation
which is obtained by the addition of a methyl group through
DNA methyltransferases (DNMTs) to the fifth carbon of cytosine
[6]. A high composition of unmethylated CpGs is found in promoter
regions of genes (CpG islands), while 70–80% CpGs are found to be
globally methylated in the case of somatic cells.

One application of cfDNA methylation patterns has been in the
identification of tissue of origin [4]. Moreover, various research
findings show that DNA methylation-based biomarkers are more
consistent in comparison to those based on mutational profiles
[7,8]. Detection of lung cancer with the help of EGFR mutation test
V2 (Roche Molecular Diagnostics) and Epi procolon (Epigenomics
AG) for colorectal cancer are some examples of cfDNA based
FDA-approved tests [9].

A few large-scale prospective clinical trials are underway for the
early detection of multiple types of cancer. The names of some of
such multi-center trial studies are CCGA (Circulating Cell-free Gen-
ome Atlas), STRIVE, SUMMIT, and PATHFINDER by GRAIL Inc. [10].
An early report from these large-scale studies indicates low sensi-
tivity in the detection of stage-I (18%) and stage-II (43%) cancer at a
specificity of 0.7 % [10]. Such low sensitivity for early cancer detec-
tion highlights the importance of reviewing various steps involved
in cfDNA methylation analysis. There have been a few reviews on
profiling and analysis of 5mC based DNA methylation patterns in
cfDNA [6,5,11]. Each review has its own unique aspect in target
disease, description of experimental protocols, and analysis proce-
dures. In our review, besides exploring the cfDNA methylation
27
origin and analysis techniques, we have highlighted the usability
of markers and their sensitivity in light of heterogeneity found in
tumors. We have also provided a new dimension of sensitivity of
5hmC based cfDNA methylation pattern for liquid biopsy. Finally,
we highlight the benefits and limitations of deconvolution and
machine learning methods to analyze cfDNA methylation profiles.
2. Understanding cfDNA sources and features

Despite the extensive available literature on cfDNA, the biolog-
ical insight behind the actual molecular origin of cfDNA is still
poorly understood. Recent research has shown that multiple mech-
anisms work behind the release of cfDNA in the blood such as
apoptosis, necrosis, pyroptosis, autophagy, NETosis, erythroblast
enucleation, and cf-mtDNA [12,13]. Several lines of evidence also
suggest the role of cellular secretions in the release of cfDNA.The
length of such cfDNA fragments lies in a range of 1000–3000 bp,
in contrast to snippets generated via apoptosis (90 bp to 166 bp)
[14]. Moreover, cfDNA in the blood could be present in the naked
form (unbound DNA) or streaming as complex bounded to nucleo-
somes, membrane fragments, or vitrosomes or encased inside
extracellular vesicles (EVs) like exosomes, microvesicles, and apop-
totic bodies [15]. Disease diagnosis can be made based on the sig-
nals derived from cfDNA fragmentation pattern, nucleosome
positioning, binding of transcription factors, transcription start site
regions, cfDNA ended positions, as well as peripheral cellular alter-
ations. The inherent property of information derived from cfDNA
like sensitivity and noise and DNA fragment length affect the pat-
tern inference process in the downstream computational analysis
[16].

Also, in the case of cancer, tumor cells alone are not only the
producers of cfDNA, but other non-cancerous cells also play an
essential role in its release. The release of cfDNA from non-
cancerous cells creates aberration in the signal from cancerous
cells, as a result the data becomes more noisy and heterogeneous
[17]. Among other contributing factors to cfDNA, its clearance rate
from plasma also plays a vital role in its detection [18].
3. Computational problems associated with different cfDNA
methylation profiling techniques

In order to tackle computational challenges associated with
cancer detection using cfDNA methylation, it is crucial to under-
stand different techniques used to profile it. Based on the mecha-
nism to differentiate methylated cytosine from unmethylated
one, the experimental assays for studying cfDNA methylation can
be of three major types, i.e., restriction enzyme-based, bisulfite
conversion-based, and enrichment/immuno-precipitation based
[Fig. 1]. In addition there are many assay-specific pipelines for
computational analysis of cfDNA methylation data as well [19].



Fig. 1. An overview of techniques for profiling DNA methylation which are also useful for detecting cfDNA. The triangular and circular symbols reveal further details of
different methods. The expanded form of abbreviations for different methods are as such:- HELP: HpaII-tiny fragment enrichment by ligation-mediated PCR, CHARM:
comprehensive high-throughput arrays for relative methylation, cfNOMe: cell-free DNA-based Nucleosome Occupancy and Methylation profiling, MSCC: methyl-sensitive cut
counting, qPCR: Quantitative polymerase chain reaction, TAPS: TET-assisted pyridine borane sequencing, MRE-Seq: methylation restriction enzyme sequencing, RSMA:
methylation-sensitive restriction enzyme-based assay, DMH: differential methylation hybridization, ddPCR: droplet digital PCR, EM-Seq: Enzymatic Methyl-seq, MeDip:
methylation DNA immunoprecipitation sequencing, MIRA: methylated CpG island recovery assay, mDIP: methylated DNA immunoprecipitation, oxBs-seq: oxidative
bisulphite sequencing, WGBS: whole-genome bisulphite sequencing, RRBS: reduced representation bisulphite sequencing, BC-Seq: bisulphite conversion followed by capture
and sequencing, BiMP: bisulphite methylation profiling, BSPP: bisulphite padlock probe, TAB-seq: TET-assisted bisulphite sequencing).
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While currently, bisulfite-based conversion methods are more
common, the selection of the method however, should be based
on the proposed hypothesis, required resolution, cost, and nature
of the experiment [20].
3.1. Restriction enzyme based methods

The use of restriction enzymes has been a classical approach for
profiling methylation patterns in cfDNA. Restriction enzymes are
used to cleave DNA strands at the point bearing a particular
nucleotide sequence; conversely, the presence of the methyl group
might prevent digestion. Broadly, two categories of enzymes are
used here: methylation-sensitive restriction enzymes (MSRE) such
as HpaII, McrBC, AciI, and Hin6I, which can cleave only the
unmethylated regions, while methylation-insensitive enzymes
(e.g., MspI, ApeKI, and TaqI) cut DNA sequences without taking into
consideration the methylation status of concerned sequences [14].
There are a few variations of basic MSRE techniques for genome-
wide non-methylated region identification such as HELP-seq
(HpaII-tiny fragment Enrichment by Ligation-mediated PCR
sequencing), MSCC (Methylation Sensitive Cut Counting), Methyl-
seq, scCGI (methylated CGIs at single-cell level), etc. [5].

However, the computational difficulty lies in distinguishing
true and false negatives due to read loss caused by enzymatic
digestion. Alternatively, analysis can be done using single-tube
enzymatic methods such as DARE (DNA Analysis by Restriction
Enzymes), where both can be quantified in the same sample [21].
Moreover, MSRE sequencing provides low methylome coverage
due to limited CpG-containing cleavage sites, and it is also possible
that some of the restriction enzymes might have been destroyed,
leading to the non-trivial problem of identifying true negatives
during computational analysis [22]. Besides since MRE-seq
approach is relatively uncommon and most tools are inadequate
to extract total read mapping to a given recognition site, there exist
28
a gap in modern computational pipelines for studying MRE-seq
generated DNA methylation data [20,23].
3.2. Bisulfite based conversion methods

Since 1992, the application of bisulfite treatment has been a sig-
nificant milestone in analyzing DNA methylation status. In this
approach, all the unmethylated cytosines on reaction with bisulfite
get converted to uracil, while methylated cytosines remain
unchanged. Consequently, the comparison of methylation levels
before and after bisulfite treatment gives an estimate of DNA
methylation [24]. In addition, bisulfite-based conversion has been
the foundation of many techniques such as WGBS, RRBS, MCTA-
seq, targeted bisulfite sequencing, methylation array, MSP, etc.
Whole Genome Bisulfite Sequencing (WGBS) is currently the most
comprehensive technique for the identification of Genome-wide
DNA methylation patterns [25]. Anyhow, since the whole of the
genome is targeted in this approach, the cost of bisulfite conver-
sion becomes extremely high [26,27]. In contrast, RRBS
(Reduced-Representation Bisulfite Sequencing) is a balanced com-
bination of sequencing costs, genomic fold coverage, and CpG sites
measured. However, the application of RRBS on highly fragmented
DNA is yet to be determined [28]. MCTA-Seq (Methylated CpG tan-
dems amplification and sequencing) is a very sensitive technology
used to detect cfDNA hypermethylated sites in conditions such
HCC and cirrhosis [29,30]. However, one of the drawbacks is that
it only recognizes CpG tandem regions, which means it may over-
look certain non-CpG methylation sites. For routine diagnostic and
target validations, TBS (Targeted Bisulfite Sequencing) has nowa-
days become a well-known approach in terms of epigenome-
wide methylation profiling. It allows analysis of specific DNA loca-
tions while still retaining each single CpG resolution, which needs
less DNA than the WGBS approach. The Bisulfite conversion step
alters sequence complexity via non- complementarity and asym-
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metrical alignments, which makes the processing of bisulfite
sequencing data difficult [20]. In order to reduce sequence com-
plexity and allow adaption of conventional alignment algorithms,
many bisulfite sequencing-based tools have been developed
[Table 1]. Another non-trivial computational challenge with
bisulfite-based DNA methylation profiling is finding DMR (Differ-
entially methylated regions). The DNA fragments interrogated with
bisulfite-based conversion methods are mostly small and have few
cytosine positions; therefore, calling significant statistical DMR
becomes more challenging than detecting DMP (Differentially
methylated base position) [31]. A recent study by Erger et al., pre-
sented an assay named as cfNOMe that makes use of enzymatic
cytosine conversion approach as a substituent to bisulfite based
conversion to reduce the degradation loss and GC bias caused by
later. The computational analysis of cfNOMe profile also helps in
calculating nucleosome occupancy pattern at tissue-specific regu-
latory sites, making it a more efficient and comprehensive method
for studying the epigenetic landscape of cfDNA [32].
3.3. Enrichment/immuno-precipitation based methods

The basic strategy behind enrichment-based methods is the use
of anti methylcytosines antibodies for extraction of methylated
regions from the cellular genome [33]. Methylated DNA Immuno-
precipitation Sequencing (MeDIP-seq) and Methyl-CpG Binding
Domain Protein Capture Sequencing (MBD-seq) are examples of
techniques derived from affinity enrichment based array analysis.
MeDIP uses antibodies directed against mC and mCG to extract
methylated DNA fragments and has been used in several cases
such as trisomy detection, cancer, and cardiology [34,35]. High-
quality methylomes can be obtained by combining MeDIP with
NGS, which provides 1 to 300 bp resolution at costs comparable
to other enrichment techniques [36]. MBD-seq, on the other hand,
uses magnetic beads to pull out methylated-CpG binding domain
(MBD) of DNA fragments. A study reports that MBD-seq can out-
perform MeDIP-seq in the identification of CGIs proportion [37].
Enrichment-based methods are cost-effective and have high dis-
crimination power due to protein-binding specificity.

However, MBD-seq is sensitive for highly methylated regions
with high CpG densities. Such properties of the enrichment-
Table 1
Read alignment and Data visualization Tools.

S.
No

Tools Advantages

1 BatMeth2 Indel-sensitive mapping
2 BSMAP Good performance and flexibility due to seeding and has

3 Bismark Flexible, easy to use and interpret
4 BS-Seeker2 Supports both local and gapped alignments
5 BWA-meth Direct useable output, less storage requirements

6 BSmooth Ability to handle low coverage experimental data

7 MethylCoder Allows fast and sensitive mapping in both color and nucleoti
8 Segemehl Efficiently handles 3’ and 5’ contaminants along with mismat

indels
9 GSNAP SNP tolerant alignment, splicing and multiple mismatches can b
10 BRAT-BW Runs faster on longer reads
11 ERNE-BS5 Analysis of methylation pattern at repeats, skillfully handles

mapping reads
12 GEM3 Exhaustive search model, fast, scalable, and gapped matches c

found
13 Last High sensitivity and speed
14 Msuite supports bisulfite-free techniques,4-letter mode of alignme

computationally less expensive
15 TAMeBS Filters ambiguous read alignments and reduces bias in con

methylated cytosines
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based method create a computational challenge of correctly iden-
tifying differential methylation at sites with high tissue specificity
but low CpG densities. These methods also have a low resolution in
comparison to bisulfite-based methods, and the estimated confi-
dence score is highly influenced by the depth of sequencing [36].
Besides, some of the tools based on enrichment methods, such as
Batman and MEDIPS [Table 2], require the user to perform prior
quality control and reads mapping for data preparation which
becomes time-consuming and computationally challenging
[38,39]. In addition, computational analysis of enrichment-based
DNA methylation profiles with early-stage cancer becomes tough
when the fraction of cfDNA non–hematopoietic cells is
microscopic.
3.4. 5-hydroxymethylation profiling

DNA demethylation by ten-eleven translocation (TET)
enzymes can lead to oxidation of 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC), and further to 5-
carboxylcytosine (5caC) and 5-formylcytosine (5fC) [40,41]. Stud-
ies show the emerging role of 5hmC as a prominent epigenetic
marker, and it has been found to be associated with tumor progres-
sion. It is also found to be enriched in enhancers, promoters and
changes in 5hmC level are linked to changes in gene expression
levels as well [42–44]. A variety of techniques have been developed
such as 5hmC-Seal [45], hmC–CATCH [46], oxBS-seq [47], TAB-seq
[48] and hMeDIP-seq [49] etc. which makes use of 5 hydrox-
ymethylation profiling techniques.

The main weakness with 5hmc detection is its low frequency,
making it more challenging in nature than 5mc. Also, 5hmc derived
protocols possess low resolution (100–300 bp), are biased towards
hypermethylated regions, and require relatively large DNA input.
Hence for early-stage cancer detection where the contribution
from non-blood sources of cfDNA is small, the output of 5hmC
enrichment-based methylation profiles might suffer due to low
sensitivity for relevant sites. Bergamaschi et al., suggests that to
avoid model-based discrepancy, 5hmc based molecular classifiers
for cancer should be interpreted in an integrative manner by com-
bining demographic and disease comorbidity knowledge with
tumor histology and pathology [50].
Disadvantages References

Removes some parts of reads (soft-clipping) [129]
hing Can detect indels with length less than 3 nucleotides

only
[130]

Increased run time [131]
Local alignment leads to longer CPU times [132]

doesn’t facilitate data visualization, only supports 3-
letter alignment mode

[133]

Assumes methylation profiles to be smooth, not able
to detect single CpG sites

[134]

de space Uses only short read aligners [135]
ches and Large memory requirements [136]

e detected Might be slow for long positions [137]
Allows at most one mismatch in user defined reads [138]

multiple Chances of false positives are higher [139]

an also be some pruning methods are sensitive to mismatches [140]

Requires removal of poor quality bases [141]
nt and analysis on irregular CpG sites needs additional

validation
[142]

text of Memory requirements and running time are high [143]



Table 2
DNA Methylation Calling Software.

Applicability Tool Advantages Disadvantages Statistical model Reference

MeDIP-seq Batman High resolution and cost-effective whole genome
methylome can be obtained

Time-consuming to run even
with multiple processors

Bayesian model [38]

MEDME Provides both relative as well as absolute
methylation levels, Can also be used for microarray

designs of different platforms

Poor resolution in comparison
to bisulfite based methods

Logistic model [144]

MEDIPS More user friendly, cost and time effective Difficult to detect methylation
based on single end short reads

T-test, Wilcoxen test [39]

MeDUSA Complete analysis of MeDIP-seq data from quality
control to DMR calling

Approach employed is less
efficient in terms of time and

computation

Fisher’s exact test [145,146]

MBD-seq MethylAction Applicable on larger study designs (four group
comparisons), detects DMR’s through

bootstrapping

Chances of type one error Negative binomial and
ANODEV (Analysis of

Deviance)

[147]

Bisulfite-based RnBeads High computational efficiency and cross platform
analysis

Limited genome annotation
packages

Bayes framework and
Bartlett test

[148]

DMRcate Easy integration with other bioconductor tools, de
novo based method

Make use of 450 k array only F statistics [149]

DMRcaller Detects DMRs in both CpG and non-CpG contexts Sensitivity and specificity
depends on window sizes,
based on assumptions

Fisher’s exact test, Z
test, Beta regression

[150]

methylKit Includes clustering functions along with DMRs
visualisation

Limited by the memory of
computer

Logistic regression and
Fisher’s exact test

[151]

MethylSig Incorporates local information for estimating
biological variation

Difficulty in handling
heterogeneous data

Beta binomial model [152]

DSS Capacity to handle multi factorial experimentation
and data without biological replicates

Not suitable for paired design
and longitudinal data type

Beta binomial
distribution

[153]

MRE-seq msgbsR Removes fallacious mapped reads, explores
differential methylation

Requires pre-processed raw
data

Negative binomial
model

[154]

5-hydroxymethylation BiQ HiMod user-friendly GUI, locus based methylation analysis
and comprehensive analysis pipeline

pre-processed FASTA files are
needed

Multiple statistical
models

[155]
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4. Computational issues related to cfDNA methylation detection
techniques

After processing of samples according to different protocols for
isolation or enrichment of methylated cfDNA, several detection
techniques could be used to measure their quantity. However, each
detection technique has its own analytical issues as discussed
below:
4.1. Polymerase chain reaction based methods

Due to the low concentration of methylated DNA of non–he-
matopoietic origin in plasma cfDNA, digital polymerase chain reac-
tion (dPCR) is preferred for cfDNA detection over traditional PCR.
Digital PCR has shown to be 103–104 fold sensitive in having a
lower limit of detection in comparison to the traditional version
[51]. Digital PCR includes systems such as BEAMing (beads, emul-
sions, amplification, and magnetics) and droplet digital PCR
(ddPCR). BEAMing was one of the first approaches for quantita-
tively detecting cfDNA and possess great sensitivity and specificity.
However, its workflow is complex, necessitating oligonucleotides
for each location, and is costly for typical clinical work [52,53].

ddPCR is based on the technique of water–oil emulsion droplet
and has got several applications like identification of the tissue ori-
gin [54], cancer detection [55], diagnosis of infectious diseases [56]
among others. ddPCR is one of the most frequently used techniques
these days with multiplex quantification. Various automated algo-
rithms have been developed for ddPCR data analysis namely ‘de-
finetherain’ [57], ‘ddpcRquant’ [58], ‘ddpcr’ [59], ‘twoddpcr’ [60],
‘ddPCRclust’ [61], ‘ddPCRmulti’ [62] etc. According to Dobnik
et al., [61] the data analysis of such multiplex assays becomes dif-
ficult and noisy due to several possible target combinations along
with probes cross hybridization in a single droplet. Brink et al.,
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[61] reports that in the case of partially degraded DNA, multiplex-
ing can also result in higher-order cluster disappearance and
overlap.

Alternatively, methylation-specific PCR [MSP] can also be used
to amplify DNA of interest by using methylation-specific PCR pri-
mer sets. MSP requires a small quantity of DNA and is sensitive
to even 0.1% methylated regions of a given CpG island. The MSP
technique has been used to identify hypermethylated promoter
regions associated with tumor suppressor genes. With significant
improvements in droplet digital PCR (ddPCR), droplet digital
methylation-specific PCR (ddMCP) tools have also been established
for early detection of cancer using cfDNA [63]. As methylation-
specific PCR is qualitative, the sensitivity can only be tested via
the ratio of methylated and unmethylated DNA. Such results show
a lack of agreement between dilution ratio and band intensity,
with many scenarios exhibiting quite similar bands despite differ-
ing levels of DNA methylation [64]. MethyLight, MethylQuant, and
HeavyMethyl are some of the quantitative versions of the MSP
with enhanced performance in quantifying DNA methylation. As
these methods are able to investigate only one or two CpGs methy-
lation levels, some of the sites remain unexplored, providing lim-
ited data for computational algorithm and downstream analysis
[65].

Real-time PCR is one of the affordable rapid methods for nucleic
acid amplification, and in the past, several different methods have
been developed based on this technique. For instance, Allele-
Specific amplification (AS-PCR), Peptide Nuclei Acid-Locked
Nucleic Acid (PNA-LNA) PCR clamp, co-amplification at lower
denaturation temperature (COLD-PCR), and Allele-Specific Non-
Extendable Primer Blocker PCR (AS-NEPB-PCR) are some of the
techniques that evolved from the RT-PCR approach. The main
advantage of this method is that there is no need for post-PCR
steps; hence chances of cross-contamination are reduced, which
is beneficial for diagnostic purposes [66]. Besides, MethyLight can
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be used along with Real-time PCR as a quantitative assay where
relative fluorescence units (RFUs) represent the methylation per-
centage. However, it is unable to correctly analyze a heterogeneous
sample because the primers are designed in such a way to detect
only specific fully methylated patterns [67]. Despite being among
the most effective methods, the quality of the results of real-time
PCR can hold variations due to insufficient quality control steps,
inappropriate use of reference genes and data normalization meth-
ods, and batch effects [68,69]. In addition, for data normalization,
the choice of reference genes, their stability, and amplification effi-
ciency also play a significant role during data analysis. Kuang et al.,
demonstrated that usage of unstable reference genes could create
variations in the final output and proposed cDNA as an alternative
for normalizing data [70]. Reference genes can be evaluated by
applying some statistical tests on Cq or with the help of various
analytical methods such as NormFinder [71], BestKeeper [72],
GeNorm [73], RefFinder [74].

4.2. Next-generation sequencing

Although multiple studies have reported detection of ctDNA in
different stages with high sensitivity by using ddPCR or BEAMing,
yet limited clinical applications of PCR have led to the development
of other assays based on Next-generation sequencing (NGS) [75].
NGS has emerged as an excellent technique for high throughput
DNA sequencing and has revolutionized the concept of clinical
samples analysis [3]. This technology has become a powerful tool
for identifying biomarkers pertaining to its high sensitivity, speci-
ficity, and scalability. Since the resolution at the single-base level
by NGS allows accurate mapping of disease-specific regions, conse-
quently it has been applied for genome-wide profiling of plasma
from various cancers [76–78]. The sensitivity and specificity of
NGS analysis depend upon the type of platform used, such as deep
sequencing, Tam-seq, Safe-SEQs, CAPP-Seq, MCTA-Seq, FASTSeqS,
etc [79]. A study by Liang et al., demonstrated that a combination
of deep methylation sequencing with machine learning can pro-
vide better efficiency concerning cancer identification in compar-
ison to ultradeep sequencing[80].

However, despite its appreciable performance, a random error
rate of 0.1% and 1% by NGS technology creates a challenge in reli-
able detection of methylation and mutation profile with non–he-
matopoietic origin in plasma cfDNA [81]. Moreover, the
occurrence of repetitive sequences and indels (insertions and dele-
tions) can also be one of the contributing factors for sequence
misalignment, influencing variant analysis. Data processing also
relies on several other parameters such as filtering variants, the
NGS technology’s nature, VAFs (variant allelic frequency), quality
of sequencing, and bioinformatics pipeline. Henceforth the routine
clinical applicability of NGS workflows need special precautions to
ensure its authenticity, especially in case of dispersed, fragmented
ctDNA within the background of normal cfDNA [82]. The complex
and large size NGS data obtained from repeated experimentation
creates additional challenges for statisticians in terms of deciding
lower limits of detection based on assay due to lack of standard
pipeline. An additional challenge is building a classification model
for a high feature and small sample size dataset without overfitting
or bias [79].

4.3. Methylation array

Before the popularity of NGS, HM450k (Illumina Infinium
HumanMethylation450 BeadChip) had been the most desirable
choice for investigators when it came to studying cancer methy-
lomes. HM450k contains pre-designed probes for methylation sites
that cover 96% of CpG islands in 450k array and additional CpG
sites of enhancer regions in 850K array. Currently plenty of
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HM450k datasets are available on The Cancer Genome Atlas
(TCGA) [83] and Gene Expression Omnibus (GEO) [84] that are
being used for discovery and validation of biomarkers along with
the analysis of deconvolution based cfDNA tissue of origin [4].

The main limitation of array-based methods is the inadequate
genome-wide coverage, causing dissipation of some other essential
methylation regions [85]. In addition, the cost of the technique is
highly dependent upon the input data amount along with genome
coverage, besides the required assay expertise for the experiment
and subsequent downstream computational analysis [86]. Occur-
rences of too many false positives, probes and samples quality con-
trol, bogus cross-hybridization of probes, rescaling of probes,
platform specific background correction, data normalization to
reduce technical, experimental, and systematic variations are some
of the other concerning issues associated with the use of methyla-
tion array [87]. Methylation arrays are also susceptible to experi-
mental conditions and laboratory environments, leading to batch
effects in data from various studies. Many batch correction algo-
rithms can reduce the effect of known confounding factors, but
since the true source of confounding factors is often unknown,
even this task become non-trivial during statistical modelling of
array-based cfDNA methylation profiles. Moreover, several studies
report that there exists a high correlation of methylation levels
among the adjacent CpG loci; consequently, statistical analysis of
array-based data with the notion of independence among each
CpG methylation may be misleading [88].
5. Computational difficulties in cfDNA methylation data
analysis

The basic workflow of computational analysis of cfDNA methy-
lation data includes (i) reads pre-processing and quality assess-
ment, (ii) alignment and visualization, (iii) statistical analysis and
interpretation. Sample pre-processing makes sure that raw data
is structured and there is no bias in it. Different programs have
been developed based on various algorithms to perform quality
analysis such as FastQC, NGS QC, QC–Chain, ClinQC [89,90]. Once
the raw data is analyzed, low-quality bases and adapters can be
removed by programs such as Trim Galore. Wild card and three-
letter are two types of algorithms used to align sequencing data
to the reference genome. While wild card algorithm (e.g., GSNAP,
BSMAP) allows mapping of both Cs and Ts of reads to Cs in the ref-
erence genome, the three-letter algorithm (e.g., BisMark, BS-
Seeker2, BRAT-BW) changes all Cs of reference and reads into Ts
so that standard alignment tools can be applied [Table 1]. In order
to inspect the global distribution of methylation profiles, data visu-
alization can be done through various approaches such as UCSC
Genome Browser [91], DNMIVD [92], Methylation plotter [93],
Integrative Genomics Viewer (IGV) [94] and Web Service for Bisul-
fite Sequencing Data Analysis (WBSA) [95]. For restriction enzyme
and enrichment affinity-based methods (MRE-seq, MeDIP-seq),
relative read-count is estimated. However, for bisulfite sequencing
(WGBS and RRBS), methylation level at individual cytosine resi-
dues is estimated. Many recent DNA methylation calling software
(e.g., RnBeads, MeDUSA, MEDME, Batman) have used different sta-
tistical models to quantify DNA methylation coverage [Table 2].
However, sequencing depth, which depends on the assay used, is
a critical factor to consider before making any choices for the same.
5.1. Tumour heterogeneity and dependency on markers

Inter and intra-tumor heterogeneity has been in existence for
decades due to the morphological, genetic, epigenetic, and pheno-
typic diversity in cell populations. Nowadays, cellular heterogene-
ity is among the primary causes of disease resistance and targeted
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therapy failure [96]. While the studies based on whole-cell popula-
tions may represent the dynamics of majority cells, they may mask
the role of critical sub-populations and hence the fundamental
biology behind it. Also, such cellular heterogeneity poses tough
challenges in diagnostics and treatments of disease in studies
based on population-averaged measurements [97]. While tissue
biopsies may only capture a part of this heterogeneity, liquid biop-
sies are more useful in such a scenario [98]. Tumor heterogeneity is
also one of the leading causes of therapeutic resistance, treatment
failure, and poor survival rate of cancer patients. Often cancer diag-
nostics depend on the presence of specific biomarkers. However,
due to the dynamic nature of tumor cells, the predicted biomarkers
are found on a non-uniform scale causing an impediment to the
treatment of disease [99]. Literature shows multiple instances
when the non–homogeneous nature of the druggable targets is
observed, namely gastric adenocarcinoma, lung adenocarcinoma,
breast cancer, melanoma, etc. Consequently, applying the
biomarker-based targeted therapies in heterogeneous neoplasms
leads to recurrence in the long run [100]. Many different computa-
tional pipelines and algorithms are being developed for estimation
of cellular heterogeneity as a pre-processing step so that more
meaningful insights can be achieved [101–103].

In order to analyze the consistency of some known cfDNA
methylation literature-based biomarkers, we checked their expres-
sion in a set of 848 TCGA samples consisting of 96 normal and 752
breast cancer patients. It was found that the heterogeneity among
the biomarkers was sufficiently large to hamper the process of
diagnostics and therapeutics. Along with the heterogeneity arising
from markers used for disease detection, other sources for the
same could be some confounding factors. It can be also be seen
from the box plot that the idea of using a single marker-based
approach for disease detection does not seem to provide an accept-
able level of sensitivity when applied to a classification model of
192 TCGA 450k methylation samples (96 normal, 96 breast cancer
patients) [Fig. 2] (see supplementary material). Given the small
amount of cfDNA produced, the power of a single marker may
not be fully capable of distinguishing the cancerous state from
non-cancerous. However, the sensitivity can be augmented by
using a set of multiple markers.

5.2. Multi-marker based detection: opportunities and obstacles

Although rogue cfDNA methylation level in cancer has been
known for more than a decade, it has yet not fully established its
importance as a diagnostic tool in clinical practice. A significant
drawback with conventional biomarkers is that most of the time,
the marker’s utility is limited to only metastatic and late-stage can-
cer [63]. Barault et al., showed that individual biomarkers have a
relatively low prevalence in patients, which can be increased if
they are used in combination [104]. Perhaps each of these markers
may be informative alone; the multiparametric scenario could
improve its discriminating power for cancer and healthy individu-
als. Mouliere et al., studied the use of multi markers (Intplex) in
colorectal cancer for cfDNA, and it was found to be quite sensitive,
specific, and easy to implement. Also, it was shown to be adaptable
to repetitive examination, henceforth making the follow-up stud-
ies easy if one talks about in terms of personalized medicine
[105]. However, there seem to be some weaknesses in using a
multi-marker panel. Firstly, the performance of markers varies
based on the population, test data, experimental assay, and analy-
sis of the result. Due to these reasons, such biomarker panels hold
less confidence of clinicians. Also, studies aimed to prove cfDNA
marker’s robustness are often retrospective and possess inade-
quate sample size and statistical competency. In an effort to avoid
such anomalies, comprehensive studies are required to abide by
the standard guidelines for reporting the diagnostic accuracy [106].
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5.3. 5hmc based detection: success and limitations

The human genome contains a large number of 5-
hydroxymethylcytosines (5hmC) based epigenetic modifications
as the oxidized form of 5-methyl-cytosines (5mc) and is proposed
to act as ideal markers for reflecting the chromatin activation state.
In a similar fashion to 5mc based studies, 5hmc modifications have
also been reported as crucial factors for understanding different
types of cancer pathology and tissue-specific origin [45]. However,
in contrast to 5mc, 5hmc based profiles are shown to possess more
stability and robustness, which provides better specificity in terms
of cancerous vs. normal individuals. Besides, while 5mc is believed
to have a repressive effect, 5hmc got permissive ramifications on
the gene expression [107]. Also, since enhancers, promoters, and
other regulatory elements are found to be enriched with 5hmc, it
is also expected to be in more correlation with cellular gene
expression [108]. 5hmc has recently been linked to many biologi-
cal processes and disorders, including brain development, malig-
nant melanoma, breast cancer, bladder cancer, and non-small cell
lung cancer [108–110]. Although, in comparison to extensive
cfDNA research on 5mc, 5hmc has yet to be thoroughly investi-
gated in the realm of cancer diagnosis. Given the minute amount
of cell-free DNA, obtaining noise-free signals and lack of highly
sensitive DNA sequencer for 5hmc is one of the challenges faced
by researchers while using 5hmc as an epigenetic biomarker (10-
to 100-fold less than 5mC) [107].

In order to evaluate the possibility of using markers for the
5hmC profile of cfDNA, we performed an analysis using data pub-
lished by Song et al., for mostly advanced-stage cancer. For their
study, Song et al., performed analysis using read-count on a large
number of genes, and they did not report any classification based
on fewer number of markers. Therefore, we evaluated the classifi-
cation using the 5hMC profile of cfDNA with a reduced number of
genomic loci as markers. Our result revealed that the classification
accuracy reduces with a lower number of markers, but it was suf-
ficient to group similar phenotype samples together. Our analysis
used the top 50 marker locations using feature importance
achieved by applying random forest-based classification on gene
and CpG island read-counts (see supplementary material). Using
top 50 markers, it was possible to achieve good separability among
different phenotypes in the 2D embedding plot (see Fig. 3). Appli-
cation of density-based clustering (see supplementary material) on
the 2D embedding using top 50 markers resulted in clustering-
purity above 0.70 NMI (Normalized Mutual Information) score
(see Fig. 3). Thus the utilization of 5hmC profiles on selected mark-
ers for detection could be feasible to some extent for an advanced
stage of cancer. As Song et al. generated 5hmC profile using cfDNA
of patient with mid or late stage cancer, the challenge of sensitivity
with 5hmC for detecting early cancer still remains as open
problem.

5.4. Deconvolution: pros and cons

Considering high levels of heterogeneity among tissues, reports
suggest the use of tissue-specific biomarkers. For plasma DNA-
based testing as well, tissue-specific markers are found to be more
consistent in nature [111]. In order to map the origin of tumor tis-
sue from cfDNA, one of the commonly used methods is the decon-
volution algorithm, which recovers the original signal from a
mixture of signals. Deconvolution algorithms are basically of two
kinds: reference-based and reference-free. Reference-based decon-
volution algorithms are based on supervised methods utilizing
cell-type-specific differentially methylated regions (DMRs). On
the other hand, reference-free algorithms do not need cell-type-
specific DMRs as reference but estimate cellular proportion using
unsupervised deconvolution approaches [112]. One of the earliest



Fig. 2. cfDNAmethylation based markers performance on TCGA data. Illumina 450k methylation data-set for bulk tissue (Breast Cancer) was retrieved from TCGA (The Cancer
Genome Atlas) database and processed for manually curated literature based markers. (a) boxplot of FPR (False positive rate) vs sensitivity showing performance of single
marker for sample class prediction (Breast Cancer vs Normal). Based on LDA (Linear Discriminant Analysis) fitting of TCGA samples for one marker, values for sensitivity and
FPR were obtained and presented in the form of box-plot. It can be observed from the plot that a single marker-based approach for detection of disease delivers quite less
sensitivity. (b) heatmap showing heterogeneity among biomarkers for the same cancer type. Markers based normalised beta scores for all the TCGA observations were
visualised as a heatmap for differential analysis of cancer and non-cancerous observations. This figure demonstrates that such level of heterogeneity among biomarkers can
be one of the influencing factors for disease diagnostics and therapeutics.
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Fig. 3. The visualisation of low dimensional embedding of 5hmC profile of cell free DNA of samples from patients with different types of cancer. Here 2D embedding (using
tSNE) of 5hmC profile is shown for samples either using read-count of genes or CpG islands. The results of embedding are shown for read-counts on all genes or only 50
selected genes. Similarly the results of embedding done using all CpG island or only 50 selected CpG islands are also shown. The 5hmC profiles used here published by Song
et al. 2017. Using large number of genomic loci (all genes or all CpG island) can provide good separability among samples according to type of cancer. With 5hmc profile, top
50 chosen marker CpG island provide slightly better separability among different pathological condition in comparison to top 50 gene. The purity of clustering after
embedding using top 50 markers (genes or CpG islands) is also shown terms of Normalized mutual information (NMI).
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and most widely used algorithms, based on reference dataset, is
constrained projection [CP] (also known as quadratic programming
[QP]) which operates through least square minimization. For
reference-free approaches, there are frameworks such as removing
unwanted variation (RUV), non-negative matrix factorization
(NMF) [113]. Recently many more reference-based [EpiDISH,
CIBERSORT] and reference-free approaches [CellMix, CDSeq,
TOAST, RefFreeEWAS, EWASher, SVA] for cfDNA deconvolution
have emerged.[114–120]. Studies show that disease prediction
accuracy increases by incorporating tissue proportion factors and
more interpretative biological output is obtained. According to
Moss et al., the use of only defined sets of significant CpG sites in
deconvolution gives greater resolution and less noise in compar-
ison to using the entire methylome, even with a low amount of
DNA. [4].

Most of the reference-based deconvolution methods suffer from
two main limitations. First, they often need a prior guess about the
organ from which DNA could be found in plasma. Although with a
correct estimation of organ, the calculation of the proportion of
contribution from different cell types is reasonably satisfactory to
some extent. The second limitation of reference-based deconvolu-
tion is the difference in technical batch-effect in reference cell
methylome profile and cfDNA methylation profile. In actual prac-
tice, the prediction of cellular proportion can be more complicated
due to some biological or technical artifacts. Hence there is a need
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for such computational methods which can accurately project the
information in lower dimension space without being influenced by
a reference methylation panel [1,111].

To analyse the data separability of reference-free deconvolution
methods, we applied three most commonly used approaches such
as RefFreeEWAS [119], ReFACTor [121], and SVA [122] on 450 k
methylation profile from prostrate cancer and normal samples of
TCGA (100 samples) and cfDNA (28 samples). In the current study,
a comparison of the deconvolution techniques on randomly
selected 100 CpG sites showed that the performance of a specific
approach depends partially on the dataset itself; for example, in
TCGA samples, RefFreeEWAS was able to do a better classification
among others and in the case of cfDNA dataset RefFreeEWAS and
ReFACTor showed similar separation [Fig. 4] (see supplementary
material). Other limitations include batch effects, small datasets,
unaccountable covariates related to CpG islands methylation etc.

5.5. Machine learning based approaches: strengths and weaknesses

With computational advancements in the field of liquid biopsy,
the role of machine learning in diagnostics and therapeutics seems
quite promising. Recently a few studies have applied machine
learning approaches for cfDNA methylation analysis
[123,124,1,125,126]. Machine learning techniques can be applied
using whole-genome features or selected markers scores with or



Fig. 4. Applying different deconvolution techniques on the DNA methylation profiles of cancer and normal samples. Reference-free deconvolution methods such as
RefFreeEWAS, ReFACTor and SVA were applied to DNA methylation profiles and projected as tSNE coordinates to analyze sample separability. (a) Here DNA methylation
profiles available in the TCGA portal for solid tissue from prostate cancer were used. (b) Deconvolution methods were applied to DNA-methylation profiles of cell-free DNA
(cfDNA) extracted from the plasma of individuals with normal and prostate cancer pathotypes from CFEA. The comparative analysis is based on 100 randomly selected CpG
sites of the samples.
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without deconvolution. Such as Shu et al., used meDIP-seq profile
and first identified the top 300 DMRs among patients and non-
patients before applying the binomial generalized linear model
[123]. On the other hand, Feng et al., applied machine learning
using three scenarios: 1) just using markers, 2) after NMF based
reference-free deconvolution, and 3) after reference-based tissue
proportion estimation using QP. With WGBS profile from cfDNA
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(liver cancer and normal), Feng et al., achieved higher accuracy
using by training machine learning model after reference-based
proportion estimation (accuracy = 0.79) in comparison to
reference-free deconvolution (accuracy = 0.7) or using marker sig-
nal directly (accuracy = 0.75) [1]. It is not trivial to judge the use-
fulness of reports of high classification accuracy with smaller data
sets from previous studies. Provided a large data size, machine
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learning algorithms may develop solutions to learn disease-related
patterns directly from a patient’s whole genome or targeted sites
(multi-marker) signal.

For cfDNA methylation-based predictions, machine learning
techniques have their own limitations. Such as the requirement
of a large number of samples to train, bias in classification due to
imbalance in training data-set, batch effect [11]. Especially in the
case of cfDNA methylation data-set, when the relevant signal is
overwhelmed with the epigenetic signature of blood cells, sup-
pressing batch effect for correct prediction in target sample is very
challenging. It is reflected by the performance of classifier in
detecting 50 types of cancer by CCGA consortium [127] using large
training (1654 cancer + 1375 normal) and validation set (703 can-
cer + 605 normal). With such a large training set, the classifier
used by CCGA consortium could achieve average sensitivity of
44.2 ðFalsePositiveRate 6 1%Þ for cancer stages I, II and III [127].
Even for 12 predefined high signal cancer types, CCGA consortium
could achieve a sensitivity of only 39% for stage I samples. Such
results highlight the limitation caused by the low concentration
of cfDNA from non–hematopoietic origin and heterogeneity among
patients [127].
6. Discussion

Here we have described the strengths and weaknesses of sev-
eral procedures involved in detecting cancer using cfDNA methyla-
tion. By analyzing existing DNA methylation profiles from tumor
samples and cfDNA, we showed limitations in using individual
markers due to cancer heterogeneity. However, there is yet
another kind of bias, which adds to the computational challenge.
The bias in different ways of detection of DNA methylation reduces
the significance of detection of specific markers. Such as many
markers detected using HM450k methylation array might be com-
pletely non-detectable by RRBS based cfDNAmethylation profiling.
Therefore despite the availability of a few data-sets of cfDNA
methylation profiles from cancer patients, it is not trivial to finalize
markers for any cancer type that could be used globally with mul-
tiple cfDNA methylation profiling techniques. In other fields of
genomics, such as single-cell expression profile analysis, there
have been a few attempts to perform integrative analysis irrespec-
tive of bias of platform and protocol used. However, rarely such
attempts have been made to solve the computational problem of
integrative analysis using cfDNA methylation profiles. The reason
could be that single-cell expression profiles are not mixtures of
unknown cell types, whereas cfDNA methylation profiles have
mixed signals from several cell types.

The approach used by different clinical trials to learn machine-
learning models on a data-set and to validate on another data-set is
often called transfer learning. There has been substantial develop-
ment in making transfer learning more adaptive [128] to new data-
set to avoid the batch effect. However, adaptive transfer learning
often needs small samples from target data to adjust itself. There
could be day-to-day variation in the profiling of cfDNAmethylation
even from the same patient. Hence it remains to be seen how adap-
tive transfer learning can be used to identify the tissue of origin
using cfDNA methylation, irrespective of batch effect and variation
in signal-dilution by blood cells.

Even though a few clinical trials have reported good accuracy
for detecting late-stage cancer, detection of early-stage is still a
challenge [30,125,63]. The low accuracy on early cancer detection
reduces the utility of liquid biopsy as advanced-stage tumors are
often non-treatable. Hence there is still a demand for novel compu-
tational approaches to improve early-stage cancer detection using
cfDNA methylation profiles.
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