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Abstract: Cryptococcus species are encapsulated fungi found in the environment that predominantly
cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary
antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality
rates. The development of more effective therapies may depend on our understanding of the cellular
and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This
review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans,
is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal
response by effector cells of the innate immune system.
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1. Introduction

The encapsulated, yeast-like fungi of the genus Cryptococcus are prevalent throughout the
environment worldwide. The most common species that cause disease in humans are Cryptococcus
neoformans and Cryptococcus gattii. These pathogens can cause a life-threatening meningoencephalitis
after acquisition through the respiratory tract and subsequent dissemination to the central nervous
system (CNS). While C. gattii can infect apparently immunocompetent hosts, C. neoformans is more often
an opportunistic pathogen, affecting immunocompromised patients including those with HIV/AIDS,
cancer and solid organ transplantation [1].

Cryptococcal meningitis has been estimated to affect up to 1 million people worldwide each
year [2,3]. Despite modern-day combination antifungal therapy, the mortality rate for cryptococcal
meningitis is estimated at 15–25% [4,5], and the at-risk population is expanding with the development
of new immunosuppressive regimens for autoimmunity and cancer [6]. More effective approaches to
treating cryptococcosis may necessitate the incorporation of immunomodulatory therapies. Therefore,
it is essential to understand the cellular and molecular mechanisms of immunity to Cryptococcus
in mammalian hosts. While the adaptive immune response to Cryptococcus is an important arm of
anti-cryptococcal immunity (reviewed in [1,7,8]), this review will focus on our current knowledge of
innate immune responses to the species C. neoformans and identify significant questions that remain to
be investigated.

2. Animal Models of Cryptococcosis

Different vertebrate and invertebrate animal models have been utilized in the study of
cryptococcosis (for more comprehensive reviews see [1,9,10]). Predominantly, murine models have
been used to study innate immune responses to C. neoformans due to the relative ease of genetic
modification, manipulation and maintenance of this mammalian host. Therefore, results from mouse
studies will comprise the majority of this review.

The use of mouse models of cryptococcosis does have its challenges. Different mouse strains
develop different T helper cell (Th) responses to C. neoformans; mice that develop Th type 2 (Th2)
responses are more susceptible to cryptococcosis, while those that develop Th type 1 (Th1) responses
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are more resistant [11–15]. Mouse susceptibility can further vary depending on the virulence of the
C. neoformans strain, the type and amount of infectious propagule (i.e., spore versus yeast form),
and the route of administration [11–14,16–18]. C. neoformans has two main variants: var. grubii
(Serotype A), which is the most common clinical isolate, and var. neoformans (Serotype D) [1].
The most physiologic route of infection is through the respiratory tract, either intranasal or intratracheal.
However, respiratory infection in mice can result in variable dissemination to the CNS, so systemic
infection (intravenous or intraperitoneal) and direct inoculation into the cerebrospinal fluid have been
used to study the pathology of C. neoformans in the CNS [13,19,20].

As an example of the differences between mouse models of cryptococcosis, respiratory infection of
C57BL/6 mice with the highly virulent serotype A strain H99 leads to a Th2-skewed immune response
that results in an acute and uniformly fatal infection [21–23]. On the other hand, respiratory infection
of BALB/c mice with a less virulent serotype D strain like 52D leads to a Th1-skewed immune response
that results in a more chronic infection that can eventually be cleared in a CD4+ T-cell-dependent
manner [11,12,15,24]. A protective model of pulmonary cryptococcosis has also been established in
which mice are infected with a C. neoformans strain H99-γ, that has been modified to express murine
interferon gamma (IFNγ) [25].

3. Host Recognition of Cryptococcus

Fungal pathogens are typically sensed through the detection of fungal antigens, or
pathogen-associated molecular patterns (PAMPs), by pattern recognition receptors (PRRs) on host
immune cells. Engagement of PRRs induces signal transduction that coordinates innate immune
processes like phagocytosis and cytokine production. Common fungal PAMPs include components of
the cell wall, such as β-glucans, mannans, and chitin. However, C. neoformans provides an interesting
challenge due to its polysaccharide capsule that can mask these potential PAMPs. Correspondingly,
many PRRs that are known to detect other fungal pathogens, including members of the C-type lectin
receptor (CLR) and Toll-like receptor (TLR) families, do not have similar roles in the recognition of
C. neoformans. Therefore, the mechanisms by which C. neoformans is sensed by the host are still not
fully defined.

3.1. C-Type Lectin Receptors

The CLRs are a large family of receptors that can recognize fungal carbohydrate ligands like
β-glucans or mannans. An engaged CLR typically initiates downstream signaling pathways either
through its own intracellular signaling domain, if present, or else through signaling adapters that
contain an immunoreceptor tyrosine-based activation motif (ITAM), such as Fc receptor γ-chain (FcRγ
or FcεRIγ chain) or DNAX activation protein of 12 kDa (DAP12). While CLRs have established
roles in host innate immune responses to other pathogenic fungi (reviewed in [26]), their ability to
mediate immunity to C. neoformans is less robust. There is evidence that β-glucans can be accessible
on encapsulated yeast [27] and spore [28] forms of C. neoformans and that the fungal cell wall can
be exposed at daughter bud sites prior to capsule assembly [29], but it is likely that the capsule is
interfering with many of these potential interactions in vivo [30,31].

Mannose receptor (MR/CD206) binds to fucose and terminal mannose moieties and is known to
have roles in phagocytosis as well as antigen processing and presentation as a receptor of the endocytic
pathway (reviewed in [32]). MR does not have any known intracellular signaling motifs and can
also exist in a soluble form [32,33], suggesting it may work in concert with other receptors for signal
transduction, such as TLR2 [34]. Human MR has been shown to bind cryptococcal mannoproteins
in vitro [35]. It is unclear if MR binds whole cryptococcal cells since MR-deficient murine phagocytes
had no changes in binding and uptake of spores or yeast cells compared to wild-type (WT) phagocytes
by microscopy [36]. Nevertheless, MR−/− mice challenged with C. neoformans in an acute respiratory
infection model appear to have a moderate increase in fungal burden and susceptibility to infection [37].
Several studies have investigated the ability of MR to facilitate the priming of adaptive T cell responses
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by dendritic cells (DCs). MR-deficient bone marrow-derived DCs (BMDCs) from mice had no changes
in uptake of cryptococcal mannoproteins and no differences in expression of maturation markers like
MHCII, CD40 and CD86 [37]. In contrast, studies with human cells indicate that blocking MR can
inhibit maturation marker expression by DCs in response to cryptococcal mannoproteins [38] and can
inhibit fungal uptake by DCs and subsequent lymphocyte proliferation [39]. Therefore, the mechanisms
by which MR mediates innate immune responses to C. neoformans warrants continued investigation.

Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN/CD209)
binds fucose and mannose residues and is involved in antigen uptake as well as cellular adhesion
(reviewed in [40]). Complicating its study, DC-SIGN has eight homologs in mice, designated
DC-SIGN-related proteins (SIGNR) 1-8. SIGNR3 (CD209d) is considered the closest homolog to
human DC-SIGN [41], and SIGNR3 and SIGNR1 (CD209b) are the only homologs shown to bind
fungal ligands [42]. Human DC-SIGN binds cryptococcal mannoproteins in vitro [43], but murine
SIGNR1 does not influence the ability of splenic macrophages to internalize the cryptococcal capsular
polysaccharide glucuronoxylomannan (GXM) [44]. Additional studies on the potential role of DC-SIGN
or its murine homologs during cryptococcal infection are currently lacking.

Collectins are secreted carbohydrate-binding proteins and include the lung surfactant proteins
(SPs) SP-A and SP-D and serum mannose binding lectin (MBL), also referred to as mannose binding
protein (MBP). Collectins have been shown to engage with various fungal pathogens [45–48] and
regulate cytokine responses by binding to cell surface receptors like CD14, TLR2 and TLR4 [49,50].
Interestingly, SP-D appears to be detrimental to the host, as SP-D−/− mice have improved survival after
infection with C. neoformans [51]. SP-D binds to and protects C. neoformans from macrophage killing,
and its activity has been correlated with increased IL-5 production and pulmonary eosinophilia [29,52].
The cryptococcal PAMP recognized by SP-D in vivo is unclear. In vitro, SP-D can bind to capsular
GXM and mannoprotein 1 (MP1), but has higher affinity to pustulan, an analog of β-1,6-glucan
found in the cryptococcal cell wall [29]. This higher affinity for a cell wall component correlates
with the observation that acapsular C. neoformans mutants are more susceptible to agglutination and
phagocytosis in the presence of SP-D compared to encapsulated strains [29,53,54]. Further studies
are needed to determine which interactions and signaling mechanisms are essential for the harmful
effects of SP-D on the host response. In contrast, SP-A can bind to C. neoformans but does not affect
phagocytosis [55] and does not regulate murine susceptibility to infection [56]. MBL is known to bind
mannose and N-acetylglucosamine (GlcNAc) and has been shown to act as an opsonin for complement
activation [57]. However, soluble human MBL can only bind acapsular C. neoformans and minimally
improves phagocytosis of these fungal cells by human polymorphonuclear cells in vitro [30,54,58,59].
Thus, the overall role of collectins in anti-cryptococcal responses appears to be minimal or else harmful
to the host.

Other CLRs have been investigated but do not appear to have links to anti-cryptococcal immunity.
Dectin-1 (CLEC7A) does not mediate immune responses in vitro or in vivo to either yeast or spore
forms of C. neoformans [36,60]. Co-expression of Dectin-1 and TLR2 in vitro also does not facilitate
signal transduction in response to the fungus [61]. Dectin-2 (CLEC6A/CLEC4N) is not essential
in host defense against C. neoformans yeast or spore forms despite molecular evidence of increased
Th2 and decreased Th1 responses in Dectin-2−/− mice [36,62]. Dectin-3 or macrophage C-type
lectin (MCL/CLEC4D/CLECSF8) does not regulate murine outcomes after C. neoformans infection or
phagocytosis of fungal cells [63,64] and cannot initiate signal transduction in response to C. neoformans
spores [36]. Macrophage inducible C-type lectin (Mincle) does not bind C. neoformans or induce
signal transduction in response to the fungus in vitro [36]. Langerin (CD207) does not bind to
either encapsulated or acapsular C. neoformans [65]. Work remains to determine whether other CLRs,
including novel receptors like CD23/FcεRII [66], may play a role in host recognition of C. neoformans.
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3.2. Toll-Like Receptors

The potential role of TLRs as cryptococcal PRRs has been supported by evidence that myeloid
differentiation primary response gene 88 (MyD88), a signaling molecule downstream of most TLRs,
plays a role in murine anti-cryptococcal responses [67–69]. However, direct experimental evidence
supporting a role for many of the TLRs in cryptococcosis is limited. Whether TLR signaling is relevant
to human disease is unclear, as people with Mendelian defects in MyD88 do not have increased
susceptibility to cryptococcosis [70,71].

Studies on TLR2 have had conflicting results regarding the ability of this receptor to influence
infectious outcomes and to initiate signal transduction in response to C. neoformans, perhaps related to
differences in experimental design. Biondo et al. demonstrated that TLR2−/− mice have increased
susceptibility to systemic (intraperitoneal) infection with C. neoformans, as measured by survival, organ
fungal burden and cytokine production [67]. Yauch et al. found that TLR2−/− mice have increased
susceptibility to respiratory infection but not systemic (intravenous) infection; however, there were
no differences in lung fungal burden or cytokine production in the TLR2−/− mice compared to WT
mice [68]. Nakamura et al. also found no differences in fungal burden or cytokine production in
TLR2−/− mice infected through the respiratory tract, and C. neoformans did not induce nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) activation through TLR2 in an in vitro cell
reporter assay, even with co-expression of Dectin-1 [61].

TLR4, in conjunction with its co-receptor CD14, can respond to cryptococcal GXM in vitro by
inducing NF-κB but not mitogen activated protein (MAP) kinase pathways or tumor necrosis factor
alpha (TNFα) secretion, suggesting incomplete activation [72]. Monoclonal antibodies against TLR4
can inhibit Fas ligand expression [73] and partially block GXM uptake by human peripheral blood
mononuclear cell (PBMC)-derived macrophages [74]. However, TLR4 has not been shown to regulate
murine susceptibility to infection [67,68].

The strongest evidence for direct TLR involvement in anti-cryptococcal responses is for
TLR9, an intracellular receptor of the endocytic pathway that typically recognizes unmethylated
cytosine-phosphate-guanine (CpG) motifs common in the DNA of bacteria and viruses (reviewed
in [75,76]). More recently, the fungus Aspergillus fumigatus was found to contain unmethylated CpG
motifs that can stimulate cytokine responses by DCs in vitro in a TLR9-dependent manner [77].
Several groups have also used synthetic CpG-oligodeoxynucleotides to boost the immune response
against C. neoformans [78–81]. TLR9−/− mice are more susceptible to cryptococcosis, potentially due
to decreased recruitment and maturation of DCs and the development of Th2 immune responses,
including alternative activation of macrophages [69,82–84]. Cryptococcal DNA can stimulate in vitro
cytokine responses by DCs, which can be partially inhibited by deletion of TLR9 or MyD88 [84].
Subsequently, it has been shown that polymerase chain reaction (PCR) products amplified from
cryptococcal genes involved in virulence including URA5, CNLAC1, and CAP59 can induce the same
cytokine responses by DCs [85]. Interestingly, these genes do not contain canonical CpG motifs. Thus,
cryptococcal DNA can function as a PAMP for TLR9, but the specific nucleic acid motifs involved in its
recognition have not been elucidated.

3.3. Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptors

The NOD-like receptors, or nucleotide-binding domain leucine-rich repeat-containing receptors
(NLRs), are a family of cytoplasmic receptors that, upon activation, can form an inflammasome complex
that cleaves and activates pro-IL-1β and pro-IL-18 generated after initial microbial detection induces
NF-κB (reviewed in [86]). NLR family, pyrin domain-containing 3 (NLRP3) is an NLR that has been
shown to play a role in immunity against A. fumigatus and the yeast Candida albicans [87–89], although
the ligand for NLRP3 remains unidentified. Biofilms of encapsulated C. neoformans, opsonized and
encapsulated C. neoformans, and acapsular yeast forms of C. neoformans stimulate formation of the
NLRP3 inflammasome, and mice deficient in components of the NLRP3 inflammasome are more
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susceptible to infection [90–92]. However, additional studies will be needed to further clarify the role
of NLRs and inflammasome formation in antifungal responses to C. neoformans.

3.4. Scavenger Receptors

Scavenger receptors are classically known to bind and internalize oxidized low-density
lipoproteins. In more recent years, they have been found to have very diverse ligands and can
serve as PRRs that detect microbial PAMPs and complex with other receptors like TLRs (reviewed
in [93]). In vitro studies indicate that the scavenger receptors CD36 and scavenger receptor class F
member 1 (SCARF1), also known as scavenger receptor expressed by endothelial cells 1 (SREC1),
can bind to and internalize encapsulated C. neoformans, thereby inducing cytokine responses that can
further be enhanced by synergy with TLR2; competition assays suggest that CD36 and SCARF1 may
bind to β-glucans and, to a lesser extent, mannan, although they do not contain classic lectin-binding
domains [94]. In the same study, neutralizing anti-SCARF1 antibody inhibited binding of C. neoformans
to alveolar macrophages in vivo, CD36−/− mice were found to be more susceptible to systemic
infection with C. neoformans, and deletion of CD36 and SCARF1 orthologues in the nematode
Caenorhabditis elegans resulted in increased susceptibility to fungal challenge.

Macrophage receptor with collagenous structure (MARCO) has been shown to enhance early
lung recruitment of monocyte-derived immune cells and protective cytokine responses after murine
respiratory infection with C. neoformans that correlate with a transient improvement in fungal
clearance [95]. Interestingly, MARCO-deficient macrophages and DCs exhibit no defect in fungicidal
activity though they do have decreased interactions with fungal cells [95].

Scavenger receptor A (SRA/SR-AI/II/CD204/SCARA1) has been reported to have detrimental
effects on host immunity to C. neoformans. SRA−/− mice have decreases in lung fungal burden
likely related to regulation of cytokine responses that influence innate immune cell recruitment and
activation [96]. The potential cryptococcal ligands for SRA and MARCO and additional mechanistic
details for how all these scavenger receptors influence anti-cryptococcal responses have not yet
been determined.

3.5. Natural Antibodies

Natural antibodies, that are predominantly of the immunoglobulin M (IgM) isotype, are
constitutively produced in mammalian hosts by an innate subset of B lymphocytes called B-1 cells;
opsonization of microbial antigens with natural IgM can result in complement activation, phagocytosis
by macrophages, and priming of adaptive immune responses (reviewed in [97,98]). It has been shown
that IgM produced by murine B-1 cells in vitro can bind to cell wall laminarin, capsular GXM, and
acapsular and heat-killed encapsulated C. neoformans [99]. Secretory IgM-deficient (sIgM−/−) mice
have increased susceptibility to respiratory infection with C. neoformans compared to control mice and
exhibit defects in Th1 polarization and phagocytosis of fungi by alveolar macrophages; the defect in
phagocytosis can be ameliorated by administration of IgM into the lungs [100]. Additionally, depletion
of B-1 cells in pulmonary infected mice increases fungal burden and decreases phagocytosis of fungal
cells by alveolar macrophages compared to non-depleted controls; adoptive transfer of B-1 cells into
depleted mice can restore the phenotype to that of control mice [99]. On the other hand, sIgM−/−

mice infected systemically with C. neoformans have improved survival compared to control mice [101].
It was found that these sIgM−/− mice have an increased baseline number of B-1 cells [101], and,
interestingly, B-1 cell derivatives may have direct fungicidal effects against C. neoformans [102]. Thus,
IgM and B-1 cells may play different roles in the anti-cryptococcal response depending on the tissue
compartment. X-linked immunodeficient (XID) mice, that have a defect in B cell development and
IgM production due to a mutation in Bruton’s tyrosine kinase (Btk), exhibit increased susceptibility to
both respiratory and systemic infection with C. neoformans [6,103]. However, adoptive transfer of B-1
cells into pulmonary infected XID mice could neither reverse this susceptibility to C. neoformans nor
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fully restore serum IgM levels, suggesting that B-1 cells may not be the only source of protective IgM
or that additional immune mechanisms are contributing to the phenotype in this particular model [6].

Human studies support a role for IgM in protective immune responses against C. neoformans.
The percentage of IgM-expressing memory B cells inversely correlates with the risk for
developing cryptococcosis among HIV-positive patients [104]. In solid organ transplant recipients,
pre-transplantation levels of GXM-reactive IgM inversely correlate with the development of
post-transplant cryptococcosis [105]. The ability to identify B-1 cells in humans has recently been
reported (reviewed in [106]), which may facilitate future studies on the role of these innate immune
cells and natural antibodies in human cryptococcosis.

3.6. Complement and Other Soluble Mediators

The complement system is an important mediator for the phagocytosis of C. neoformans by
innate immune cells. Opsonization by complement has been shown to improve uptake and killing of
C. neoformans by phagocytes [107,108] and to mediate DC responses to C. neoformans [109]. Activation
of complement can occur through three pathways: alternative, classical, and lectin (reviewed in [110]).
Disruption of the alternative, but not the classical, pathway of complement reduces phagocytosis
of C. neoformans in vitro and increases the mortality of guinea pigs after infection [111,112]. The
lectin pathway likely does not play a significant role given minimal interactions between MBL and
C. neoformans, as discussed earlier in this review. It has been shown that complement component 3
(C3) binds to the capsule of C. neoformans and then is degraded to inactivated C3b (iC3b) [113–115].
Phagocytosis can then proceed via the action of complement receptors (CR). Blocking CR1, CR3
and CR4 decreases the interaction between C. neoformans and human macrophages in vitro [108].
CR3 has been shown to facilitate complement-mediated phagocytosis of C. neoformans by murine
macrophages [116], but CR3 and CR4 can also mediate phagocytosis independent of complement [117].
Additionally, signaling by C5a through its receptor C5aR appears to be important for neutrophil uptake
and killing of C. neoformans in mice [118].

Other potential soluble mediators of anti-cryptococcal immunity have been studied. Pentraxin 3
(PTX3) expression is induced in the brains of mice infected intracerebrally with C. neoformans [119],
but it is not yet known what function PTX3 may play in anti-cryptococcal responses. Recombinant
rat ficolin-A can bind and facilitate uptake of acapsular mutants of C. neoformans by lung epithelial
cells in vitro but does not bind encapsulated C. neoformans [120], so it is unclear if ficolins play any
significant role in anti-cryptococcal immunity. Finally, production of antimicrobial peptides is increased
in a protective model of cryptococcosis [121], but their specific functions in the response to C. neoformans
are not understood.

3.7. Other Recognition Pathways

Additional potential cryptococcal PAMPs have been identified, but their receptors remain unclear.
Chitin is a long chain polymer of GlcNAc that can also be deacetylated to chitosan; both forms are
components of the cryptococcal cell wall [1] and appear to have detrimental effects on the host immune
response upon recognition. The chitin content of cryptococcal cells has been shown to correlate with
Th2 cell accumulation and increased mortality in the murine host [122], and a chitosan-deficient strain
of C. neoformans promotes protective Th1 host responses and is avirulent in mice [123]. Cryptococcal
chitin has been shown to induce IL-10 secretion from human and murine macrophages [124] and
induce Th2 responses through CD11b+ conventional DCs, although this process does not seem
to occur through direct sensing of chitin by DCs [122]. The PRRs for chitin and chitosan are still
unknown (reviewed in [125]). Studies using C. albicans-derived chitin suggest that chitin recognition
is dependent on MR, NOD2, and TLR9 [124], and purified chitosan can induce inflammasome
activation [126,127]. The hypervirulent rim101∆ C. neoformans mutant, that has increased chitosan
content and exposure of chito-oligomers on its cell surface, induces TNFα secretion by murine bone
marrow-derived macrophages but not IL-1β, suggesting cryptococcal chitosan does not induce the
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inflammasome; however, the induction of TNFα appears to be dependent on the caspase recruitment
domain-containing 9 (CARD9) and MyD88 signaling molecules, indicating a potential role for CLRs
and TLRs [128–130].

Another possible source of cryptococcal PAMPs are extracellular vesicles (EVs), also referred to as
exosomes, which are bilayer vesicles released by C. neoformans [131] and can contain an array of cellular
components including polysaccharides, nucleic acids, and proteins (reviewed in [132,133]). Although
some EVs may be able to promote the virulence of C. neoformans [134,135], cryptococcal EVs have
also been shown to be internalized by macrophages and stimulate cytokine secretion, NO production,
and uptake and killing of the fungus in vitro [136]. As we improve our technical capability to isolate
extracellular vesicles, it will be interesting to perform further analysis of their contents under different
host conditions and determine if there are specific EV-borne PAMP interactions with host PRRs.

4. Intracellular Signaling Molecules

Another approach to defining innate immune responses to C. neoformans has been to study the
role of molecules that commonly integrate signals from PRRs after fungal recognition. These include
CARD9, MyD88, and the signaling adapters DAP12 and FcRγ (reviewed in [137,138]).

CARD9 is best known as a downstream mediator of signaling through CLRs like Dectin-1,
but it can also transmit signals from TLRs and NOD2 and can facilitate activation of NF-κB or
MAP kinase pathways (reviewed in [139,140]). Respiratory infection of CARD9−/− mice with
C. neoformans results in increased lung fungal burden and neutrophilia along with defective early IFNγ
production by NK cells and memory T cells [141]. CARD9 may not play a direct role in phagocytic
pathways, as CARD9-deficient murine phagocytes have no defect in binding or uptake of C. neoformans
spores or yeast forms as evaluated by microscopy [36], but it may regulate cytokine responses. For
example, TNFα production is reduced in CARD9-deficient murine macrophages in response to the
chitosan-enriched, acapsular rim101∆ cap59∆ C. neoformans mutant [128]. Together, these studies
suggest that CARD9 may play a role in the host response to Cryptococcus, but the signaling pathway
requires further definition.

MyD88 has well-established roles in signal transduction for most TLRs but can also function
downstream of the cytokine receptors IL-1R and IL-18R [142,143]. MyD88−/− mice have increased
susceptibility to both systemic and respiratory infection with C. neoformans [67–69]. Since the increased
susceptibility of TLR2−/− mice to cryptococcosis is not as pronounced as that of MyD88−/− mice [67,68],
MyD88 may mediate non-TLR signaling in response to C. neoformans as well. Indeed, IL-18R−/− mice,
but not IL-1R−/− mice, have increased susceptibility to respiratory infection with C. neoformans, and
knockout of either receptor causes significant changes in lung cytokine production compared to WT
mice [69]. Additionally, mice deficient in IL-18 have increased susceptibility to cryptococcosis [144,145].
Thus, MyD88 may integrate signals from multiple cryptococcal recognition pathways during the host
innate immune response.

DAP12 is an ITAM-containing signaling adapter that pairs to a variety of carbohydrate- and
protein-binding immunoreceptors on myeloid and NK cells, including CLRs and other tyrosine
kinase-signaling receptors (reviewed in [138,146–148]). DAP12 has been shown to have roles in
the regulation of macrophage activation and survival [149,150]. Interestingly, DAP12-deficient
macrophages have enhanced fungal uptake and killing and TNFα production in response to
C. neoformans, and DAP12−/− mice are more resistant to respiratory infection with C. neoformans
than WT mice [21]. Thus, DAP12 appears to inhibit beneficial fungicidal macrophage responses to
C. neoformans. Further research will be needed to identify the DAP12-associated PRRs that trigger
these immunosuppressive effects and could be potential immunomodulatory targets for the treatment
of cryptococcosis.

FcRγ is also an ITAM-containing signaling adapter utilized by receptors on myeloid and NK cells
(reviewed in [138]). In contrast to DAP12, there is no current evidence that supports a role for FcRγ
in innate immune responses to C. neoformans. Murine phagocytes from FcRγ−/− mice demonstrate
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no changes in binding or uptake of spores or yeast [36]. Any other potential roles of FcRγ during
cryptococcosis are still unknown.

Additional important signaling molecules in fungal sensing pathways, including spleen tyrosine
kinase (Syk), have not yet been investigated for their roles in cryptococcosis. As these gaps in our
knowledge are filled, we may gain further insight into the signaling network that enables coordination
of the innate immune response by effector cells.

5. Effector Functions of Innate Immune Cells

After a fungal pathogen is recognized by the innate immune system, signal transduction
coordinates the effector functions of innate immune cells, which may include phagocytosis and
the generation of inflammatory response mediators such as cytokines, fungicidal compounds and
acute phase reactants. These processes can regulate clearance of the fungus or initiate the development
of adaptive immune responses. In the case of C. neoformans, these pathways can also be subverted by
the pathogen to suppress the host innate immune response and allow the fungus to proliferate instead.

5.1. Inflammatory Monocytes

Inflammatory monocytes are innate immune cells that are recruited from the bone marrow to sites
of infection or inflammation, whereupon they can differentiate into macrophages or DCs [151–153].
Although monocytes from HIV-positive patients have been reported to have impaired chemotaxis
and cytotoxicity [154,155], studies using human monocytes and macrophages have had conflicting
results about the role of these cells during cryptococcosis. Some researchers have found that human
PBMCs can kill C. neoformans in vitro [156–158], and blood monocyte deactivation was associated
with early mortality in HIV-associated cryptococcal meningitis [159]. In other studies, human
PBMCs and monocyte-derived macrophages were merely fungistatic [160] or even permissive for
intracellular cryptococcal proliferation and dissemination [161–163], and there was no difference
in antifungal activity of monocyte-derived macrophages from cryptococcosis patients compared to
normal controls [161].

In mice, inflammatory monocytes are defined as cells expressing lymphocyte antigen 6 complex,
locus C1 (Ly6C) and C-C chemokine receptor type 2 (CCR2) that can migrate in response to the
chemokines monocyte chemoattractant protein (MCP1), also known as C-C chemokine ligand 2
(CCL2), and CCL7 (reviewed in [152]). In chronic models of respiratory cryptococcosis, inflammatory
monocytes appear to be beneficial to the host because CCR2−/− mice, that have a defect in
monocyte recruitment, develop Th2 responses and have increased fungal burden and decreased
lung macrophages, CD11b+ DCs and CD8+ T cells [164–166]. Further, in response to infection with
C. neoformans, Ly6Chi CCR2+ monocytes differentiate into fungicidal exudative macrophages and
CD11b+ DCs that promote fungal clearance and Th1 adaptive immune responses, respectively [166,167].
However, it is interesting to note that in an acute model of respiratory cryptococcosis, enhancing Th2
responses worsens survival and correlates with increased recruitment of monocytes to the lungs [122],
suggesting that monocytes and their derivatives could play different roles depending on the host
environment. This theory could potentially account for the differences observed in studies on human
monocyte responses to C. neoformans.

5.2. Macrophages

Macrophages are phagocytic cells that include tissue-resident, embryonic-derived cells like
lung alveolar macrophages as well as monocyte-derived macrophages that are of hematopoietic cell
origin [168]. Since macrophages, in the guise of alveolar macrophages, are present in the lung at the
time that C. neoformans is inhaled into the lungs, they have long been considered to be the first line
innate immune cell in host defense against the fungus. Indeed, fungi are seen within lung macrophages
in patients with cryptococcosis [169], and in murine models, alveolar macrophages have been visualized
to quickly take up cryptococcal cells after respiratory infection [170,171]. However, there have been
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differing results regarding the ability of macrophages to clear C. neoformans from the host. While some
groups have observed that murine macrophages can kill C. neoformans in vitro [172,173], others have
found that the fungus can actually replicate within these cells, which may lead to dissemination
by way of a Trojan Horse mechanism [170,174–176]. Interestingly, clinical C. neoformans isolates
that exhibit higher rates of uptake by macrophages in vitro predict poor patient outcomes [177]. In
murine respiratory infection models, depletion of macrophages using liposomal clodronate reduces
fungal burden [176,178]. In contrast, ablation of macrophages, along with DCs, using transgenic
CD11c-diphtheria toxin receptor (DTR) mice was found to worsen survival without any differences in
lung fungal burden [179]. It is important to note that the ablation protocol for CD11c-DTR mice can
induce fatal toxicity, even in the absence of any infection (reviewed in [180]). Thus, it will be necessary
to confirm this result using alternative strategies.

It has become apparent that macrophage polarization may be a key determinant of whether
macrophages are beneficial or detrimental during cryptococcosis. M1 (classically activated)
macrophages produce nitric oxide (NO) through inducible NO synthase (iNOS) expression, secrete
TNFα, and are fungicidal against C. neoformans, while M2 (alternatively activated) macrophages
typically express the markers arginase 1 (Arg1), chitinase-like 4 (Chil4 or Ym2), resistin like alpha
(Retnla or Fizz1), and MR (CD206) and are permissive for fungal growth (reviewed in [181]). M2
polarization has been associated with severe cryptococcal disease in non-HIV patients [182], though not
in HIV-positive patients [159]. In mice, alternative activation of macrophages worsens cryptococcosis in
the brain [183]. In a chronic respiratory infection model in mice, lung macrophages cycle from a resting
state to an M2 phenotype, that corresponds with initial proliferation of C. neoformans in the lungs,
followed by an M1 phenotype, that correlates to a period of fungal clearance, and then back to a resting
state; this cycling could be simulated in vitro by modifying the cytokine environment with either
IFNγ (M1) or IL-4 (M2) [184,185]. IFNγ−/− mice have increased lung fungal burden and demonstrate
alternative activation of macrophages after pulmonary challenge with C. neoformans [185,186]. IL4−/−

mice have improved fungal clearance and demonstrate classical activation of macrophages [185,187].
C. neoformans cells weakly stimulate expression of iNOS and Arg1 in murine macrophages in vitro,
suggesting that direct interaction between fungus and phagocyte is not the only determinant of
macrophage polarization [184].

From a therapeutic perspective, it will be helpful to further dissect the signaling mechanisms that
can influence the polarization of macrophages during cryptococcosis. Various signaling components
have been identified, including DAP12 [21], heat shock protein 70 (Hsp70) [188], and signal transducer
and activator of transcription 1 (STAT1) [189,190]. Studies on other intracellular pathogens suggest that
TLR signaling can induce Arg1 in macrophages [191]. Understanding these processes will allow testing
of the idea that macrophage polarization drives infectious outcomes in mammalian hosts and could lay
the foundation for potential new immunomodulatory strategies for the treatment of cryptococcosis.

5.3. Dendritic Cells

The primary function of DCs in antifungal responses is to take up, process and present antigens to
prime T cells and trigger adaptive immunity (reviewed in [192–194]). DCs are a heterogeneous group
of cells whose classification continues to evolve. Generally, it is recognized that the main subsets of
DCs include classical or conventional DCs (cDCs), monocyte-derived DCs (moDCs), plasmacytoid
DCs (pDCs), and Langerhans cells (reviewed in [151,195]).

DCs appear to have roles in protective immunity against C. neoformans. Ablation of DCs, along
with macrophages, using CD11c-DTR mice increases murine mortality after infection [179], although
there are limitations to this mouse model as mentioned previously in this review. DCs have been
shown to take up and present cryptococcal glycoantigens [43]. Researchers have found that protective
adaptive immune responses to cryptococcal antigen can be mediated by CD11b+ DCs and Langerhans
cells [196], and moDCs have been shown to enhance Th1 responses after respiratory infection with
C. neoformans [166]. Cryptococcal cells and cryptococcal antigen have been shown to stimulate IL-12
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and IL-23p40 secretion and expression of activation markers by DCs in vitro [38,197]. DCs upregulate
the CD80 activation marker in response to pulmonary C. neoformans challenge in vivo and can stimulate
T cell activation ex vivo [198]. In addition, DCs can phagocytose and kill C. neoformans [39,109,198].
However, CD11b+ cDCs can also mediate harmful Th2 immune responses stimulated by chitin, as
discussed earlier in this review [122].

The potential role of pDCs during cryptococcosis has not been as closely examined as that of
cDCs and moDCs. C. neoformans does not appear to activate pDCs in vitro [197]. Other reports suggest
that pDCs phagocytose C. neoformans and limit fungal growth through a Dectin-3 and ROS-dependent
mechanism [63]. However, infectious outcomes are not altered in Dectin-3−/− mice [63,64].

5.4. Neutrophils

Neutrophils are granulocytes that can phagocytose microorganisms, release antimicrobial
enzymes, and produce neutrophil extracellular traps (NETs) (reviewed in [137]). Neutrophils have
established roles in the innate immune response to fungal pathogens like A. fumigatus [199], but their
role in anti-cryptococcal immunity remains poorly defined. Human neutrophils can kill C. neoformans
in vitro [157,200], and treatment of mice with human recombinant granulocyte-colony stimulating
factor (G-CSF) in combination with fluconazole improves survival from intracerebral infection [201].
At the same time, C. neoformans can inhibit human neutrophil migration [202], and its capsule blocks
neutrophil binding of fungal cells [203]. Human neutrophils release NETs in response to acapsular
C. neoformans mutants and the capsular polysaccharide glucoronoxylomannogalactan (GXMGal) but
not in response to encapsulated C. neoformans or capsular GXM [204]. However, if already formed,
NETs can kill encapsulated C. neoformans [204].

In a systemic model of murine cryptococcosis, anti-Ly6G (1A8) antibody depletion of neutrophils
suggests that these cells are needed for fungal clearance in the brain and lungs [205], and neutrophils
have been visualized to swarm the fungus for removal from the brain microvasculature [206,207].
In a protective model of cryptococcosis, neutrophils are the primary source of IL-17A that enhances
protective immune responses, although they are not essential as γδ T cells can produce IL-17A in
their absence [208]. On the other hand, after pulmonary challenge with C. neoformans, depletion
of neutrophils and inflammatory monocytes with anti-Gr-1 (RB6-8C5) antibody improves murine
survival and causes an overall reduction in inflammatory lung damage, suggesting a detrimental role
for neutrophils [209]. In the same study, treatment with anti-Gr-1 had no effect on murine survival after
systemic infection. Further supporting a harmful role for neutrophils, mice with genetically-induced
neutrophilia appear to have increased susceptibility to cryptococcal disease [210]. Therefore, the role
of neutrophils in anti-cryptococcal responses is still not clear and may depend on the specific host
and/or tissue environment.

5.5. Natural Killer Cells

NK cells are cytotoxic lymphocytes of the innate immune system. Studies in murine models
of systemic cryptococcosis suggest that NK cells may participate in early anti-cryptococcal immune
responses through direct fungal interactions [211–216]. Other groups find that instead of direct
cytotoxic effects against C. neoformans, NK cells may enhance the fungicidal activity of macrophages in
mice by producing IFNγ [217,218]. Mice lacking NK cells have increased fungal burden, but they do
not have increased susceptibility to infection [211,213].

The role of NK cells in anti-cryptococcal responses has been more closely examined in human
cells. NK cells from HIV-positive patients are impaired in their growth inhibition of C. neoformans [219].
Human lymphocytes and NK cells have been shown to inhibit cryptococcal growth through direct
interaction [220,221]. In studies using human primary NK cells or cell lines, Mody and colleagues have
demonstrated that binding of C. neoformans by NK cells leads to signaling through the PI3K-ERK1/2
pathway [222] and triggers perforin degranulation to facilitate cryptococcal killing [223]. The natural
cytotoxicity receptor NKp30, an immunoglobulin-like protein, has been identified as a human NK cell
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PRR for C. neoformans [224]. In the same study, blocking NKp30 impaired PI3K-ERK1/2 signaling,
perforin release and ultimately fungal killing in response to C. neoformans. Additionally, it was shown
that NK cells from HIV patients have decreased expression of NKp30 and decreased toxicity against
C. neoformans, both of which can be reversed by IL-12 treatment in vitro. Work remains to identify any
additional cryptococcal PRRs on NK cells as well as the cryptococcal ligand for NKp30. Studies on
the detection of Candida glabrata by the related receptor NKp46 suggest that fungal adhesins could be
potential ligands for this class of receptors [225].

5.6. Eosinophils

Eosinophils are granulocytes that are best known for their roles in allergic responses and parasitic
infections (reviewed in [226]). Eosinophilia has been associated with cryptococcal disease in humans
and mice [11,227–235] and positively correlated to murine susceptibility to cryptococcosis [11,52], but
it is not clear if eosinophils have an essential role in the innate immune response to C. neoformans or if
their recruitment is the byproduct of an ineffectual Th2 response. After infection with C. neoformans,
eosinophil-deficient ∆dblGATA mice have enhanced Th1 and Th17 responses and decreased lung
recruitment of other inflammatory cells, although fungal burden in the lung and brain are not
significantly different from WT mice [236]. It is interesting to note that in rats, eosinophils can
phagocytose C. neoformans and prime T and B cells in order to generate Th1 responses that are
protective for the host [233,237,238]. Therefore, the role of eosinophils during cryptococcosis may
depend on the particular host setting.

5.7. Other Innate Immune Cells

Innate lymphoid cells (ILCs), other than NK cells, have not been extensively studied in
cryptococcosis, but type 2 ILCs may be detrimental to host anti-cryptococcal responses [239].
Derivatives of B-1 cells may have direct antifungal effects against C. neoformans [102], as discussed
earlier in this review. Epithelial and endothelial cells not only serve as a physical barrier to microbial
invasion, but can also participate as effector innate immune cells (reviewed in [240,241]). Lung
epithelial cells can bind C. neoformans and produce cytokines in response to the fungus [242,243], and
endothelial cells may enhance anti-cryptococcal activity of neutrophils [244]. The potential role of γδ T
cells is still unclear. Mice deficient in γδ T cells have improved infectious outcomes after C. neoformans
challenge [245], but studies in a protective model of cryptococcosis suggest that γδ T cells are a source
of beneficial IL-17A in the setting of neutropenia [208].

6. Conclusions

By methodically investigating common mammalian antifungal mechanisms, researchers have
established important roles for cellular PRRs, in particular MR, TLR9, and NKp30, and for signal
transduction through CARD9 and MyD88 in protective immune responses against C. neoformans. Other
promising PRR candidates include NLRs like NLRP3 and certain scavenger receptors. Furthermore,
soluble mediators including natural IgM and complement have key functions in facilitating host
recognition and immunity to C. neoformans. Many additional signaling pathways have been studied,
but they either require further evaluation as to their specific anti-cryptococcal functions or appear to
have limited or even detrimental roles in host responses to C. neoformans. Whether the limited findings
are due to redundancies in the immune system remains to be determined [246]. Several innate immune
cell types appear to have effector functions that facilitate C. neoformans clearance and prime adaptive
immune responses under certain conditions, but the mechanisms that coordinate these processes
require further definition. Much of the work on anti-cryptococcal immunity has been performed
in vitro, so it will be important to confirm these pathways in vivo and in human hosts, when possible.

Since C. neoformans is equipped with unique virulence factors, like its polysaccharide capsule,
that enable it to evade or subvert the host immune response [1], it is not unexpected that the fungus
would stimulate distinct innate immune responses compared to other fungal pathogens. Thus, while
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it is important to study the potential roles of established antifungal pathways in the response to
cryptococcosis, it is also critical to work towards identifying immune mechanisms that may be specific
to C. neoformans. Identification of additional patient populations susceptible to cryptococcosis, such as
those with anti-granulocyte macrophage colony-stimulating factor (GM-CSF) autoantibodies [247,248],
may reveal previously unknown immune processes important for the host response to C. neoformans.
Additionally, the rise of new bioinformatics approaches like next-generation sequencing [249] and
tools like CRISPR-Cas gene editing [250] and fluorescent probes [251] may enable the discovery of
novel pathways in anti-cryptococcal immunity.
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