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Abstract: By means of coarse-grained molecular dynamics simulations, we explore chiral sensitivity
of confining spaces modelled as helical channels to chiral superstructures represented by polymer
knots. The simulations show that helical channels exhibit stereosensitivity to chiral knots localized
on linear chains by effect of external pulling force and also to knots embedded on circular chains.
The magnitude of the stereoselective effect is stronger for torus knots, the effect is weaker in the case
of twist knots, and amphichiral knots do exhibit no chiral effects. The magnitude of the effect can
be tuned by the so-far investigated radius of the helix, the pitch of the helix and the strength of the
pulling force. The model is aimed to simulate and address a range of practical situations that may
occur in experimental settings such as designing of nanotechnological devices for the detection of
topological state of molecules, preparation of new gels with tailor made stereoselective properties, or
diffusion of knotted DNA in biological conditions.

Keywords: polymer; knot; topology; chirality; DNA; molecular dynamics; coarse-grained simulations;
confinement; nanochannel; nanotechnology

1. Introduction

Polymers are long molecules consisting of many repeating units [1]. Different poly-
mers are defined by the chemical composition of their building units, but polymers can also
be defined by their architecture, i.e., how the building units are connected. The polymer
architecture defines molecular landscape or topology [2]. While different architectures such
as branched polymers [3,4], polymer stars [5], comb polymers [6], cyclic polymers [7], etc.,
have been relatively well explored, a new group of topological polymers is represented
by polymer knots [8]. Control of molecular topology poses additional challenges to syn-
thesis, separation and analytical methods for the detecting and separation of molecules
with a defined topology. Molecular knots with well-defined properties can be prepared
in limited amounts thanks to progress in synthetic methods [8,9]. A relatively straight-
forward approach to preparing polymer knots is linking the polymer ends in a melt of
linear chains by cyclization relying on randomness of polymer coiling producing knotted
chains probabilistically [10]. However, the separation of knots with desired topology from
such melt would be virtually impossible with the current state of the art in analytical
methods. Besides artificial polymers, natural sources of knotted polymers are DNA and
proteins, where by far the most prevalent knot type is the simplest of knots—a trefoil, as
well as knots with more complex topology were discovered [11–13]. The DNA knots were
first discovered in 1976 [14]. These knots form naturally as result of action of molecular
machinery, such as topoisomerases and recombinases [14–16]. Here, the most common
bulk technique for identifying the DNA knot complexity and molecular knots’ topology is
the gel electrophoresis [17]. In addition to the electrophoresis, DNA is often a subject of
single-molecular experiments [18,19]. Here, a several techniques are developed to induce
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knots to the DNA chain by a number of approaches such as electric fields [20], mechanical
tweezers [21,22], enzymes [15,16], cyclization [11], etc. In single-molecular experiments, the
topological state of molecules is detected by nanotechnological devices where the knotted
portion is driven through narrow channels or pores [23].

Another topological property of molecules that has posed long-standing challenges
to its control is molecular chirality. Even after more than 150 years after the discovery of
biomolecular chirality [24], the common methods for obtaining well-defined representatives
of chiral pairs—enantiomers—are by leading synthesis in a certain way, what happens well
in vivo; however, it brings a price of increased costs of synthesis in organic chemistry or by
recrystallization which is not always feasible if the enantiomers do not form crystal units.
The challenges of controlling the chirality are virtually identical with those connected to
obtaining well-defined molecular knots [25,26]. There are more common features relating
knottedness [27] (sometimes also called knottiness [28])—the state of being knotted—and
chirality. First of all, knottedness and chirality are intrinsically bound [29]. The majority
of knots are chiral [30]. However, not all knotted molecules are chiral, and not all chiral
molecules are knotted. For a group of knots with increasing complexity characterized by
a crossing number up to 11, there exists in total 801 prime knots [31], out of which 20 are
achiral or amphichiral knots [32]. Polymers can consist of building units that are chiral,
and in the case of DNA, the DNA is intrinsically chiral, forming a right-handed double
helix from two DNA strands wound “negatively” around each other in anticlockwise
direction [33]. Knottedness and chirality are not confined in a particular length scale, and
they freely spread through smallest of existing scales over macroworld [34].

It is in our current knowledge that the topological state of molecules has important
consequences on the physical and biophysical manifestations of properties of molecular
systems. The behavior of circular molecules, which are topologically a ground-state zero
of knottedness—known as unknots—shows distinct behavior from the linear chains such
as slowing down of dynamics [35,36], where this effect increases with the complexity of
polymer knots [37]. In biological systems, undesired knottedness and wrong chirality
can be detrimental. While hundreds of proteins have their polypeptide chains knotted
in their native state [38,39], the knots on DNA are undesirable and have to be efficiently
removed. Why some proteins are knotted is not yet well understood; however, it is known
that knots on DNA can lead to a mechanical breakage of DNA and the obstruction of
molecular machinery, such as removal of transcribed RNA [16,40]. The importance of
controlling chirality for pharmacophores became notoriously known [41]. In the case of
DNA that is by itself chiral [33], the twisting of DNA in the opposite direction of the
DNA’s handedness can induce underwinding and melting of DNA resulting in R-loops
and genetic malfunctioning [42]. Existing experiments revealed existing abundance of
knots with certain chirality [43]. As DNA exists essentially in an unknotted state [44,45],
the topological investigations of DNA knottedness are commonly conducted in a reverse
way, i.e., how the DNA becomes unknotted. From this aspect, the abundance of a certain
chiral form may mean the mechanisms for DNA unknotting are not chirally equal, possibly
making one chiral form more problematic for the cell.

It is important to note that knots are mathematically defined as embeddings on closed
spaces such as 1D curves [27]. On open curves, such as linear polymers the knot can
be probabilistic, obtained by performing a direct closure that defines the knot [39]. In
some cases, such as a knot on a stretched linear chain, the direct closure running between
the stretched ends would lead to the cancellation of the knot that has driven efforts for
development of more sophisticated approaches for determination of the topology. In a
more robust approximation, the knots on open curves are treated as knotoids, where the
occurrence of a knot with given complexity is obtained by projections of the closure into
the surrounding space [46]. Then, the occurrence of the knot with a given complexity is
given as a probability from all evaluated projections [47,48]. This picture is very prominent
for open, i.e., more loose knots. The more precise methods for the evaluation of knots on
open curves led to realization that the number of well-defined knotoids is larger than the



Polymers 2021, 13, 3726 3 of 25

number of knots on closed curves for a given number of crossings [46]. However, if the
knots are localized and compacted, the closure and the given knot type prevalence is much
more restrained and more straightforward for determination.

The localization of knots is a very important physical phenomenon related to polymer
knots. The localization of knots on molecules is encountered in experiments where an
external force is applied whether in a form of electrical field, the flow of surrounding
media or mechanical pull applied on the ends of the polymer chain, in single-molecular
experiments [21,49]. From early stages, knots start moving in a direction of the applied
external force and eventually localize, while they continue drifting along the chain by
a process called self-reptation, when the polymer chain involved in knotting slithers in
a snake-like motion [21,49]. Later, the mechanism of self-reptation was revisited, and
the additional explanation was proposed for knot movement by breathing of knot and
exchanging portions of chain between knot and surrounding DNA [50]. The localization
and drifting of knots have also very profound biological importance as they make a crucial
part of our current understanding how the long DNA molecules get rid of knots and exist
in unknotted state. Long molecules of polymers spontaneously create knots and probability
of being knotted increases with the length of the polymer [10]. In addition, chromosomal
DNA that is a very long polymer fiber formed from DNA and histones and should be
essentially knotted due to the activity of topoisomerases that allow the passages of DNA
strands through each other [51,52]. Several mechanisms proposed for how DNA gets rid of
knots employing topoisomerases rely on the localization and drifting of knots whether by
entropic forces, mechanical push by supercoiling or involvement of molecular machinery
responsible for structure maintenance of chromosomes [53–59]. The size of localized knots,
drift speeds and other properties of left-handed and right-handed knots should be perfectly
mirrored for the both enantiomers and cannot be used to distinguish between the chiral
forms [60]. On the other hand, biological experiments show the abundance of left-handed
DNA knots over the right-handed ones as produced in vivo [43]. So far, the proposed
mechanisms that result in the abundance of one enantiomer account for the involvement of
writhing or stereospecific sensibility of topoisomerase IV to certain type of crossings but do
not address the common mechanisms of DNA unknotting mentioned above and possible
differences in mobility of enantiomers in chiral environment [61,62].

In addition to topological constraints, the physical properties of polymers are affected
also by confinement [63,64]. The manifestations of topological state emphasize placing
knotted polymer into confinement. A confined state may be encountered whether in ex-
perimental arrangements such as nanofluidic devices or emerge naturally, in the dense
environment of living cells. In a simple case, a linear polymer possessing a knotted portion
can be driven through a narrow opening in the process known as pore translocation in
polymers [65]. This scenario is encountered in biological conditions when knotted proteins
translocate through pores in the cell membrane [66] or if a knotted DNA exits viral cap-
sids [67,68]. Pore translocation is also an important mechanism accounted for in future
nanotechnological devices for DNA sequencing [65]. Currently, the experiments with artifi-
cial pores and nanosized slits and channels show to be successful for detecting topological
state of molecules and knotted portions on DNA chains [23]. The pore translocation of a
knotted polymer occurs in several stages, while it is observed by experiments and also by
computer simulations that the knotted portion would at first tighten and localize at the
opening of the pore, and then it enters and translocates through the confined space of the
pore, while the translocation of the knotted portion would usually occur in the latter stages
of the polymer translocation [23,69]. It is not clear whether the drifting of knots, while
they are in confining spaces of the pore, plays a role or if the knotted portion translocates
with polymer chain as one whole; however, other experiments using nanotechnological
devices called knot factories were used to study the drifting of knots along DNA confined
permanently in narrow nanochannels [70], and this process was explored also theoretically.
In confinement, additionally to the localizing effect of the driving force pulling the knot
through the channel, also confinement helps to stabilize the size of knotted portion of the
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polymer if the confinement is sufficiently small [71,72]. In the case of translocation of knots
on circular closed polymer chains, the computational experiments showed translocation
can occur in two modes, whether with a localized knot in the later stages of polymer
translocation or the translocation of entanglements of larger knot [69]. Current experiments
examined various groups of knots and showed the twist knots are more apt to act like
stoppers that are more difficult to translocate [73]. However, the experiments did not focus
chirality of knots and did not try to exploit the confinement by imposing stereospecificity
of the channels of some kind.

Finally, gel electrophoresis is a common method for studying and separation of
circular knotted chains, such as DNA knots [17,33,74]. In this case, the topological state of
molecules is constrained, and the molecules are confined permanently in the channels of the
gel. During agarose gel electrophoresis, the knotted DNA molecules are separated based
on an empirically known difference of mobility of molecules arising from the different
knotted state moving through the narrow channels of the gel or resin. Gel chromatography
allows also for separating chiral enantiomers of knotted molecules, however for the cost
of chemical and topological pretreatment of the molecules [43,75]. Here, the ends of a
chain containing knotted portion are ligated, and a righthanded (negative) supercoiling
is introduced by gyrases to the molecule. Then, the different enantiomers are separated
based on their different mobility in the channels arising from different internal motional
degrees of freedom, given by competition of the righthanded supercoiling with the given
handedness of the knot [76].

In this paper, we investigate the behavior of knotted polymers in chiral confinement
in terms of their mobility and geometrical measures. We employ coarse-grained molecular
simulations, as these have proven to be useful in similar computational experiments for
studying drifting of knots and translocation, polymer knotting in nanochannels, process
of gel electrophoresis and investigating behavior of topological polymers [69,77–80]. We
investigate both knotted linear polymers as well as knotted circular chains, together with
such parameters as knot complexity, geometry of channels, size of knots, etc. The spread of
the problems was enlarged intentionally to the point where we can show the problem of
geometrical sorting of chiral molecules is nontrivial and more simulation work would be
needed to fully understand the questions that emerged, while the primary goal of this paper,
i.e., to demonstrate that the helical channels do exhibit selectivity on chiral superstructures
such as DNA knots, is attained. In the first case, i.e., the knotted linear polymers, we
induce the pulling force on knotted linear chains while keeping one end of the polymer
chain tethered, while we investigate if the confinement is capable of inducing different
drift speeds of the knots along the chain. This model setup addresses practical situations
such as a knotted portion on linear chain translocating through a narrow channel in
nanotechnological devices developed for detection of topological state of molecules. These
devices currently cannot distinguish the chiral state of the knotted portions; however, as
our computer simulations infer, channels upgraded with a helical modulation would allow
one to make these devices stereospecifically sensitive. The situation of a knot drifting along
the chain in a chiral environment could also address the biological mechanism of DNA
unknotting, when the knotted portion is pushed in chiral environment formed by densely
packed righthanded plectonemes as found in organization of bacterial chromosomes [81] or
that one can imagine in simplicity as an array of plectonemic nanoposts [82]. Additionally,
we investigated the case of circular knotted chains, and we show that the stereospecific
effect induced by the helical modulation of channel would be sufficient for the sensing of
knot chirality and separation of knot enantiomers in gel electrophoresis. The methods for
preparation of tailor-made helical channels with finely tuned chiral properties have already
been devised for stereospecific catalysis but also for the stereospecific separation of small
molecules of pharmaceutical drugs [83]. These methods belong to the emerging field of
chiral nanotechnology [84]. Moreover, the current methods for nanochannel fabrication
allow for creating channels with any geometry one may think of or aiming there [85]. The
idea that we also test is that in the case of chiral superstructures such as polymer knots, the
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helical channels do not have to be carved so perfectly because the chiral superstructures
represented by polymer knots are soft and flexible; hence, they can adjust to dimensions of
the channel.

2. Materials and Methods
2.1. Model of DNA Chain

We performed coarse-grained molecular simulations of polymer confined in narrow
chiral channels. The simulations were performed using Extensible Simulation Package for
Research on Soft Matter (Stuttgart, Germany) [86,87]. As a model system for simulations
we chose DNA bio-polymer. For this purpose, we constructed a polymer chain, consisting
of beads connected by bonded potentials and having the excluded volume interaction.
The size of the beads in the simulation is 1 σ. In physical units, it corresponds to the
size of a chunk of DNA consisting of 10 base-pairs. Each bead thus has a physical width
of 3 nm [55,73]. The beads are connected with bonded potentials representing covalent
bonds and angle bending imposing stiffness to the chain. The covalent bonds were mod-
elled by the harmonic potential Us(r) = ks(r – r0)2, where ks is the force penalty against
bond stretching and r0 is the equilibrium bond length set to 1 σ. We kept the stretching
of the bonds limited by imposing a high stretching constant ks = 10 ε0, where ε0 = kBT
in order to prevent artificial passages between parts of the DNA chain and undesired
changes in topological state of the chain that is exposed to external forces by pulling and
compression in confinement. The bending potential was modelled by harmonic inter-
action Uθ = 1⁄2kθ(θ – θ0)2, where the force constant k represents penalty against bending
of the chain and equilibrium angle θ0 = π. The constant was set to kθ = 15 σ/ε0 beads
which corresponds to persistence length Pl = 45 nm. The persistence length is often set
at 50 nm [88], but other values have also been reported ranging between 35 and 55 nm
with an average value from different methods given as 45 nm [89]. In our work, we
are not revisiting the persistence length of DNA; rather, we aim to keep the simulations
minimalistic on computational time. The volume of the polymer chain was modelled
by nonbonded excluded volume interaction represented by fully repulsive shifted and
truncated Lennard-Jones potential Uex(r) = 4ε0[(σ/r)12 – (σ/r)6 + 0.25], if r < 21/6σ and
Uex(r) = 0 otherwise [90]. The DNA chain in majority of the simulations was considered to
be nicked, i.e., not storing torsional stress; however, for purpose of the proof-of-principle,
we performed also some simulations with non-nicked DNA (Figure S2). Here, we em-
ployed our earlier model that we used for simulations of supercoiled DNA with the
description and parameters of the model provided elsewhere [55,91]. During the simu-
lations, one end of the chain was tethered, and the external force responsible for pulling
and drifting of knots was imposed directly to the beads with amplitude of Fext = 0.05ε0/σ
corresponding to 0.07 pN and direction away from the tethered end. When the knots
reached one end of the chain, this end was tethered while the other one was released, and
the direction of the pulling force was flipped. In this way, we exploited longer sampling
of the knots’ geometrical measures and dynamical behavior in terms of drift speeds and
diffusivities. We performed Langevin dynamics simulations with the equations of motions
m

..
ri = −γm

.
ri −∇U(ri) + R(t)(2kBTmγ)0.5, where ri denotes position vectors of i-th bead;

∇U is the force calculated from particle’s interactions; γm
.
r = ξvi expresses friction where

γ = 2ξ/m = τLJ
−1 is damping constant in units of reciprocal time; and the last term repre-

sents the random kicking force of implicit media, where R(t) is a delta-correlated stationary
Gaussian process. The equations of motion were integrated with a time step ∆τ = 0.01. The
physical time unit after transformation into Stokes’ time corresponds to [τ] = 123 ns [73].
A single-molecular dynamics trajectory was obtained by performing 5 × 106 iterations,
corresponding to 6.15 ms, and we ran 5 repetitive runs saving configurations every 1000 it-
erations. In this way, we obtained 25,000 structures for analyses that provided stable
statistical averages.
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2.2. Molecular Topology

The initial structures with a given topology of a knot were generated based on paramet-
ric equations and p, q parameters for torus knots [27]; in the case of twist knots, coordinates
were downloaded from Knot Atlas website [92], and beads were added by interpolation by
using our routine KnotFit developed earlier [91]. In the case of simulations of knotoids,
or linear chains with a knotted portion, we arbitrarily interrupted one of the bonds as the
topology of resulting knotoid should not be dependent on the site where a bond is cut. In
order to pre-localize the knotted portion, we pre-stretched the chain by imposing a pulling
force Fext = 10 pN to the both ends. During all simulations, we continuously evaluated
the topology of the knot by using KymoKnot [93] and Knoto-ID software [46]. Both com-
putational tools are easy to implement into simulation scripts, while Knoto-ID provides
more information on chirality of knots in terms of nomenclature adopted in the related
work [46] and distinguishes larger numbers of knotoid types. However, as Knoto-ID is a
more complex tool it performs more slowly; hence, we used KymoKnot primarily to check
if the topology is maintained along the simulations evaluating the structure every 1 µs.
For some practical quick-checks, we used implementation of Knoto-ID within KnotProt
server [39].

It is important to note in context of nomenclature of chiral knots, when it comes to
distinguishing of a knot from its chiral pair, the current tables are ambiguous and choice
of a representative of the chiral pair is often inconsistent [94]. When identifying a knot,
one usually compares it with the Rolfsen’s table [95], while the representative of the chiral
pair in the table is often marked with a prefix “+” and the sign “−” is used for its mirror
image. In this way, the first of the knots depicted in the Rolfsen table that happens to have
negative crossing number is often found as +31 knot, while the “+” sign has nothing to do
with the handedness or writhe of a knot. In order to avoid confusion with the handedness,
some authors decline from using (+) and (−) signs [46]. Instead, an indicator “m” standing
for “mirror image” is used to distinguish chirality of a knot from that denoted in the table.
For practical purposes, we distinguish between different knots based on handedness and
writhe, indicated by <+> or <−> prefixes to the knot type. This nomenclature is consistent
with another study which originally realized that the writhe is useful for distinguishing
chirality of DNA knots [96], and in the new biologically meaningful table, the mean writhe
should be used to identify knots’ chiral pairs [94]. In the case of torus knots, the handedness
and writhe of the knots are defined by the handedness of winding of a chain around a
surface of torus. In the case of twist knots, the situation is more complex; hence, we indicate
prevalent handedness by the sign of computed mean writhe. In the case of achiral knots,
the mirror image is the same knot; hence, we do not associate it with a prefix.

2.3. Channels

We modelled the confining channel explicitly using beads with the diameter of 1 σ.
Channels with different helical geometries were examined within our simulations. The
channels were modelled by stacking circles composed of beads on each other. In such
an approach, the helicity can be controlled by a multiple of parameters such as pitch,
roll, slide, tilt, shift, etc., which have also been used for modelling of DNA’s helicity [97].
In the simplest case, one may think of a twirl of circles displaced by a radial increment
around a central axis of rotation, i.e., controlling pitch, slide and roll parameters. In such
an approach, however, the cross section of the channel would change with the radius of a
helix, RH. In order to maintain the cross-section independent on the radius of the helix,
one has to stack the circles perpendicularly to the equation of helix, i.e., also controlling
the tilt, tip and inclination of the stacked circles. When using perfect circles with radius
Rch that define the radius of the tube or the channel, the resulting object is a helical tube
known as the Archimedean spiral. The equations and algorithm to generate the hollow
helical tube are provided as a part of Supplementary Information, Figure S1.

In order to incorporate the knotted chains into the helical tube, we partially imple-
mented the protocol adopted from our previous work on segregation of DNA chains
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confined in channels [98]. At first, the chains were placed into a cylindrical channel with
very large radius Rch >> Rg. We applied pulling force colinear with the main axis of the
cylinder but with opposite directions at the ends of the chain. As we were pulling, we
started also shrinking the confining cylinder and decreasing its radius. This approach
would be sufficient for placing knotted chains into helical channels if the radius of the
channel is larger or approximately of the size of the radius of helix, Rch ≥ RH. For a more
general protocol, when the radius of the helix can greatly exceed the radius of the channel,
Rch << RH, we adopted an additional step when the implicit cylindrical confinement was
replaced by the explicitly modelled tube. Then, we started molding the helix by slowly
changing the radius of the helix and shifting positions of the beads forming the confining
channel (See Video S1). In this way, we were able to place the chains into any confining
helix with any parameters Rch and RH. During this process, one has to pay attention only
to the distances between beads that should not exceed diameter of 1 σ. In our computer
simulations, we investigated behavior of knots in helical channels in three scenarios: the
handedness of the channel was the same as the handedness of knots (in terms of their
mean writhe) that we named equichiral system; the handedness of knots and the channel
is opposite; hence, we called it antichiral system. Finally, we also performed simulations
of achiral knots in the helical channel. In order to investigate behavior of achiral knots in
chiral channels, we performed simulations by confining 41 and 63 knots into lefthanded
and righthanded helical channels.

3. Results and Discussion
3.1. Preliminary Measures of Pulled Knots in Free Spaces Do Not Exhibit Chiral Differences

First of all, we started with simulations of knotted linear molecules without confine-
ment, in a free space with implicit solvent present. In this step, we obtained a picture on
the geometrical measures of the knots, since the geometry of channels should be of similar
sizes as the average measures of the knot in order to induce the effect of confinement. As
the crucial parameter, here we chose the size in terms of gyration radius, Rg, of the simplest
of knots—the trefoil—and its knotoid obtained after interrupting one of the bonds and
stretching of the chain in order to localize the knot. This size determines the radius of the
channel Rch, which was set to be smaller than the calculated Rg and was used as default
value also in the simulations of more complex knots, which naturally show increased Rg.
As for the stretching of the chain, this was achieved by tethering one end of the chain and
imposing a pulling force on all beads with a direction pointing away from the tethered
point. The external pulling force employed in the simulations was Fext = 0.05ε0/σ, which
corresponds to 0.07 pN, and it is equivalent also to a magnitude of an electrostatic field
E = 280 mV·cm−1 [73]. This force was chosen based on preliminary simulations and also
because it is in the typical range of forces encountered in experiments moving in the pN’s
range. Rather than tensioning both ends of the DNA chain by applying additional force
of 10 pN, as in the experiments employing mechanical tweezers, we kept one end teth-
ered while the chain became stretched in a direction colinear with the vector of applied
force. At the same time, we observed that this setting was also sufficient to localize the
knotted portion on the polymer. Under the influence of the external force, the knots also
slithered, or drifted, away from the tethered bead. Once the knots reached the free end of
the chain we tethered this end, released the other end and reversed the direction of the
force. This was made for the purpose of saving computational time and to avoid using
very long chains that would be bearable for simulating free chains; however, the very
long chains would heavily increase the computational costs in latter simulations of the
polymers in confinement. We adopted this approach also based on the previous computer
experiments performed in alternating forcefields of AC currents, which showed that after
switching direction of the force, the steady-state quickly re-establishes in short periods
below 0.225 ms. In our simulations, the average time needed for a knot to reach the end
of the chain consisting of 100 beads was 0.5 ms for a trefoil with 10 switches of direction
of the pulling force over the total simulation time (6.15 ms). In the case of the 41 achiral
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knot, the drift speed is slower, and hence, the period needed to switch the direction of
the pulling force is longer, as the knot is more complex and it also belongs to a group of
twist knots that are known to move slower than torus knots and are used as stoppers. We
performed simulations τtot = 6.1 ms long, saving 5000 structures for analyses of structural
properties of knotted parts in terms of gyration radius of knotted part Rg and length of the
knotted portion Lk, also evaluating the asphericity, A, and prolateness, P [99], which were
summarized in Table 1 for several knots.

Table 1. Geometrical and dynamic measures of the knotoids. The first column indicates the knotoid name in terms of the
convention implemented in the Knoto-ID software [46]. The second column indicates the simplified name of the knot, with
the sign corresponding to the sign of writhe; ∆Wr is the mean value of writhe [100,101]; Rg is gyration radius; Lk is the
contour length of the knot; A is the asphericity; P is the prolateness [99]; vdrift and D are dynamic properties, drifting speed
and diffusivity. Bottom row also shows representative conformations with their ellipsoids of inertia with the main axes of
inertia used for calculating A and P.

Knotoid Knot ∆Wr
Rg Lk A P

vdrift D
[nm] [nm] [µm·s−1] [µm2·s−1]

3_1m <+> 31 3.27 7.7 ± 0.1 79.5 ± 0.5 0.11 −0.32 312 ± 14 16.94
3_1 <−> 31 −3.27 7.8 ± 0.1 80.1 ± 0.6 0.11 −0.33 316 ± 5 17.58

4_1|11n_19 41 0 9.0 ± 0.0 102.6 ± 0.2 0.16 0.41 239 ± 7 13.05
5_1m|10_132m <+> 51 6.1 8.6 ± 0.0 115.1 ± 0.0 0.09 −0.36 307 ± 5 15.63

5_1|10_132 <−> 51 −6.10 8.9 ± 0.1 117.6 ± 0.0 0.09 −0.39 302 ± 5 16.79
5_2|11n_57m <+> 52 4.56 10.6 ± 0.1 128.9 ± 0.9 0.17 0.69 304 ± 15 17.08|12n_475m
5_2m|11n_57 <−> 52 −4.57 10.9 ± 0.5 132.3 ± 4.3 0.16 0.67 302 ± 7 16.71|12n_475

6_1 <+> 61 1.17 12.8 ± 0.1 158.0 ± 0.6 0.21 0.84 265 ± 6 14.68
6_1m <−> 61 −1.18 12.5 ± 0.2 156.8 ± 2.6 0.2 0.77 276 ± 16 15.22

7_1m|12n_749 <+> 71 8.77 11.5 ± 0.1 172.3 ± 4.5 0.1 0.14 334 ± 7 19
7_1|12n_749m <−> 71 −8.82 11.3 ± 0.1 164.5 ± 4.5 0.12 0.37 313 ± 7 17.39

10_124 <+>10124 10.7 10.0 ± 0.3 167.9 ± 3.5 0.07 −0.42 359 ± 6 18.26
10_124m <−>10124 −10.71 9.8±0.3 161.8 ± 3.5 0.07 −0.41 347 ± 6 19.61

3_1m 4_1|11n_19 5_1|
10_132

5_2|11n_57m|
12n_475m

6_1 7_1m|
12n_749 10_124

Table 1 also contains topological parameters on the knots in terms of knot type with its
name based on convention implemented by Knoto-ID software. There could be cases when
knotoids share the same invariant, e.g., 4_1 and 11n_19 share the same Jones polynomial.
This should not be surprising as there are no complete polynomial invariants. Knoto-ID
reports correctly that it detects a nontrivial knot that could either be 4_1 or 11n_19 based
on the polynomial that it evaluated. However, the user has to also check the number of
crossings that structure has and determine which of the two is true. The additional check is
performed by KymoKnot software. Nevertheless, we keep and report all knots detected by
Knoto-ID as the software’s standard output, in Table 1.

We include also writhe of the knot, ∆Wr, and the corresponding notation based on
the proposed nomenclature based on the biological relevance, where the sign is obtained
based on the writhe, which we find extremely useful in discussion of the knots in chiral
confinements. The geometrical measures of the knotted cores were computed as averages
over the frames and also over the trajectories, obtaining a set of 25,000 samples for statisti-
cally equilibrated averages. The data summarized in Table 1 show that the gyration radius
Rg increases with the complexity of knot. At the same time, the length of the knot, Lk,
representing the contour length of the knotted core, also increases. The contour length of
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the trefoil knot obtained by our simulations was 80 nm. The contour length of the knotted
regions is dependent mostly on the persistence length affecting the gyration radius of
the polymer. The previous study indicates only a slight variation of the knot size on the
external force. Hence, the difference from the value of the knotted portion observed in the
previous should be attributed to the difference in persistence lengths applied.

The calculated values of asphericity and prolateness show complex behavior consis-
tently with what was reported in the previous study on knotted polygons [99]. As the
previous study has shown, the shape of knotted polymers has a complex behavior that
changes most dramatically in the case of short polymer knots. The parameter of asphericity
indicates deviations from a perfectly spherical shape, while the smaller values of A indicate
that approaching zero the knot is more spherical. In the case of prolateness, P, the negative
values indicate oblateness or disk-like-shaped geometry and values approaching 1 corre-
spond to cigar-like elongated objects. From the calculation of the geometrical parameters of
selected knots summarized in Table 1, we see the behavior of A and P is complex; however,
one may expect disk-like shapes for knotoids obtained from torus knots (31, 51, 71 and
10124), and while more elongated cigar-like shapes are observed for twist knots (41, 52, and
61). The obtained geometrical measures are mirrored, obtaining the same values within the
range of standard error deviation for pairs of enantiomers.

The drift speeds were computed from knot displacements ∆x along the polymer over
the simulation time, averaged for five trajectories for each knot, by fitting linear lines with a
slope corresponding to the drift speed vdrift and intercepting at zero. The displacement ∆x
was obtained as the sum of instantaneous displacements computed from different frames in
the trajectory multiplied by the direction of the force ∆x = sign (Fext)× (xi + 1 − xi), for i = 1,2
. . . Nframe, where Nframe = 5000 is the total number of frames. Multiplication by sign (Fext)
during summation was used for linearization of the drift, i.e., the total distance travelled by
a drifting knot. The position of the knotted portion was obtained by analyzing the position
of knotted core, giving also indexes of the starting and ending beads. The position of the
knotted core was then determined in coordinates along the chain by calculating the central
index of the knotted core, or it is also possible to calculate positions in terms of the center
of mass of the knotted core. In computer simulations, both ways are equally feasible, and
the results are highly correlated. In experimental settings, the coordinates of the confining
channel were also used. The drift speeds with the standard error deviations were obtained
by concatenated fits over the trajectories for a particular knot type. The drift of the sample
knots 31 and 41 are shown in Figure 1 as a function of time along with actual positions of the
knots. The instantaneous position of the knots under and alternating external force shows a
sawtooth pattern as observed also in the earlier work [73]. The computed drift speeds from
the simulations have a similar value for the knots from the same group, i.e., torus knots
and twist knots show a difference in drift speeds from each other, while the computed drift
speeds within the same group remain approximately the same. Comparison of the drift
speeds in our computational setting shows the speeds higher than observed in the previous
work. This difference most likely originates from the absence of the additional pulling
force that would tighten the knots on the chain. The absence of the additional pulling force
tightening the knots is measured also on diffusivities of the knots.

The previous experimental and computational works studied the diffusion of the
knot along a DNA stretched by pulling applied at the both ends of the chain, and the
diffusivity is computed from the mean square displacement of free Brownian motion of the
knot along the chain [21,49,50,73,102]. In our experimental setting, the diffusivities have
to be obtained in a different manner. We consider the computed mean square displace-
ment (MSD) is a result of two coupled processes, self-diffusion and drifting induced by
a pulling force. [103] The MSD’s curves under the influence of an external force exhibit
a ballistic behavior with a shape of a quadratic function. The MSD can be described as
MSD = (v0t)2 + 2Dt [103,104]. Here, the first term (v0t)2 describes movement by velocity
v0 induced by external force, where v0 = Fext/γk. The external force Fext corresponds
to the value 0.05ε0/σ = 0.07 pN, and γk is the friction related to the drifting of the knot
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along the polymer. The friction γk is related to self-diffusion of the knot along the DNA
chain, D = ε0/σk. Hence, the equation describing the mean square displacement can be
rewritten in the form MSD = (0.05 × Dt/σ)2 + 2Dt. The second term in the equation 2Dt
stands for the longitudinal diffusion colinear with the direction of the pulling force. The
resulting equation is a quadratic equation that is fitted over the calculated MSD’s, which
in the field of external force exhibit a ballistic dependence. The measured diffusivities are
higher that previously determined, but the increase is not dramatic, and the values are
consistent with the faster drift speeds for our particular model setting [21,49,50,73,102].
The measured diffusivities of knots along DNA chain have been shown to vary depending
on experimental settings such as pulling force or chain sizes, while the values in the range
between 1 and 12.5 mµ2·s−1 were reported for a trefoil [21,49,50,73,102]. In our simulations
and the model setting, we observe the diffusivity of the right- and left-handed trefoils
being 16 mµ2·s−1 (Table 1). The increased values of the measured diffusivities can be result
of absent stretching force at the polymer ends, but they also may originate from the short
length of polymers used, as pointed out previously that smaller diffusivities were observed
on much longer DNA chains with length up to 100 microns. Additionally, we would like
to note that the values of drift speeds and diffusivities in Table 1 were obtained for a single
setting of the pulling force Fext = 0.05ε0/σ = 0.07 pN. As the existing work suggests, the
degree of localization of the knot with a given topology characterized in terms of frictional
length does not affect the drift speeds [73]; thus, we suppose the external pulling force does
not affect the diffusivities, and the measured higher values should be related mostly to
the short length of polymer employed in our simulations. This assumption seems natural,
as the polymer ends perform faster movements, and hence, in the case of short chains,
the increasing proximity of the chain ends may increase the dynamics of the entire chain.
The comparison of the dynamical parameters, vdrift and D, obtained from the simulations
shows again that these parameters are mirrored and symmetric for the pair of enantiomers
and cannot be used for distinguishing chiral forms.

3.2. Pulled Trefoil Knot in the Helical Confinement Shows Symmetry Breaking

In the next step, we placed the linear knotted polymer containing a knotted portion
corresponding to a trefoil confirmed by Knoto-ID or a direct closure, into a helical channel.
A helical channel can be characterized by its chirality and three additional parameters,
diameter of the channel, Rch = 3 σ = 9 nm, radius of the helix, RH, and the pitch, k; see
Figure S1. The pitch is a parameter that characterizes elevation or distance of two loops
given as 2πk. We chose the pitch such that the loops made from channels with radius
Rch = 3 σ sit on each other and do not extend into each other, i.e., k = 1.5 σ. The resulting
period of the loops 2πk ∼= 28 nm is large enough to accommodate the trefoil knot with the
Rg = 7.7 nm determined in the previous section and also all of the more complex knots
investigated in Table 1. The value of the radius of the helix, RH = 1.5 σ = 4.5 nm, was chosen
arbitrarily from an intermediate range as we could not address a particular experimental
setup. Since the radius of the helix is smaller than the radius of the channel, RH < Rch,
and the channel has a small curvature, κ. The curvature and the torsion of the helical
tube are expressed by κ = α2/[RH(1 + α2)] and τ = α/[RH(1 + α2)], respectively [105]. The
parameter α =±RH/k is the subtended angle, and it defines the ratio between the curvature
and the torsion. The chirality of the helix is given by the direction in which the circular
cross-sections are rotated about the main axis of the symmetry. We use a negatively wound
helix to address equichiral and antichiral scenarios, and we consider those being symmetric
for a positively wound helix.
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Figure 1. Drift analysis of knots along polymer chain from molecular trajectories. (a) The figure
shows the distance ∆x travelled by the drifting knot as a function of time. A snapshot from the
simulation shows the shape and localization of a trefoil knot, <+>31. The graph in the middle shows
the instantaneous position of the knot along the polymer, x. The sawtooth pattern emerges from the
changes of the direction of external pulling force. The bottom graph shows the periods of pulling with
positive or negative force Fext = 0.05 ε0/σ = 0.07 pN oriented along the x-axis. (b) The graph shows
drifted distance for selected knots (<+>31, <−>31 and 41) with linear fits (red lines) with the slope
corresponding to the drift speed. A snapshot from the simulation shows the shape and localization
of the achiral 41 twist knot. (c) The panel shows ballistic behavior of mean square displacement
(MSD) typical for movement of particles in the presence of external force fitted by quadratic equation
(0.05 × Dt/σ)2 + 2Dt (shown as red lines) in order to obtain diffusivities.

Naturally, in the first simulation setup, we modelled the simplest of knots—a trefoil.
As mentioned above, we investigated two possible scenarios, when the writhe of the trefoil
is the same as the handedness of the helical nanochannel—we call this system equichiral;
in the second case, we investigate the case when the handedness of the channel is opposite
to the writhe of the knot, calling this system antichiral. The knots were incorporated into
the channels following the procedure described in the Methods section. The coordinates of
the knots were generated by using parametric equations for a torus knot with p = 3 and
q = 2, and then an arbitrary bond was interrupted, and the ends of the linear chain were
pulled away from each other [27,91]. Once the knots were incorporated into the channel,
the simulations were performed following the same procedure as described in the previous
section on free knots. An external force Fext = 0.05 ε0/σ = 0.07 pN colinear with the main
axis of symmetry of the channel was applied to the beads.

The molecular dynamics trajectories of the equichiral and antichiral systems showed
a striking difference of the movement of the confined trefoils. First of all, the trefoil in the
antichiral configuration tends to be trapped by the grooves of the helical channel. As a
result, the middle of the knotted portion, marked with green circle in Figure 2a, follows the
helical groove and advances along the channel in the direction of the pulling force that is
collinear with the main axis of the channel. In this situation, the arc of the knot orbits the
center of the channel, where the crossings tend to localize. The crossings localize in the
middle of the channel because of the twist induced by confinement (illustrated by arrows).
This is illustrated also in Figure 2c, tracking the positions of different regions of the knotted
portion marked as blue circles for the beads at the beginning and end of the knot with
index istart and iend, respectively; the middle of the knot is the bead imiddle = (istart + iend)/2
depicted by a green circle; and the red circle shows the position of the center of mass of
the knot. In the case of the equichiral system, when the sign of the writhe of the knot is
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equal to the handedness of the helix, the drifting of the knot along the helical channel
occurs in a different manner, when the movement is more random and knot does not
prefer moving in a particular conformation. The positions of the middle section of the
knot and the beads denoting the knot’s start and end, and center of the mass overlap and
their spread through the cross-section of the channel is much smaller and concentrated in a
circle with the radius of about half of the total cross section of the channel, Figure 2d. The
picture on the distribution of the selected characteristic points on the knot indicates that the
knot in the equichiral configuration may be also much smaller as compared to antichiral
confinement, Figure 2c,d. Hence, we also analyzed the geometrical measures of the knots in
both scenarios. Table 2 indicates that gyration radii in helical confinement differ by 0.5 nm,
while the difference is significant compared to the standard error deviation. The values of
gyration radii and knot lengths are also lower than those obtained for the unconfined knots
in free space, Table 1. The geometrical descriptors also indicate slightly more spherical
shape of the knot in the equichiral confinement, while the knot also becomes more prolate
as compared to unconfined knots as well as in the case of comparison with the values
obtained for antichiral system.

Figure 2. Trefoil knot in helical confinement. (a) A snapshot of trefoil with positive writhe <+>31

in a channel with negatively oriented helicity representing an antichiral configuration. The blue
circles indicate start and end bead of the knot detected by KymoKnot and Knoto-ID, the green circle
indicates the middle bead of the knot, and the red circle is the center of mass of the knot. The yellow
arrows indicate the direction of external pulling force for the particular snapshot. (b) Equichiral
system of a trefoil with a negative writhe <−>31 in a channel with negative helicity (c,d) distribution
of the knot starts and ends middle points and center of masses of the knot. (e) Global radius of
curvature (GRC) ρG compared to radius of the channel Rch = 1.5 σ along the size of the knot; in the
insets, the GRC is shown in green transparent color. (f) Total drift of the knot ∆x along the polymer
as a function of time compared for the equichiral and antichiral systems.
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Table 2. Geometrical and dynamic measures of the knotoids confined in a helical tube with radius RH = 1.5σ, Rch = 3 σ and
pitch k = 1.5 σ.

System Knot ∆Wr Rg
[nm]

Lk
[nm] A P vdrift

[µm·s−1]
D

[µm2·s−1]

Antichiral <+>31 (m) 3.24 6.8 ± 0.0 73.0 ± 0.3 0.12 0.10 87 ± 4 3.94 ± 0.22
Equichiral <–>31 −3.43 6.3 ± 0.0 69.6 ± 0.4 0.11 0.22 188 ± 5 10.29 ± 0.48

In addition, in order to obtained a more detailed look on the differences between
the shapes of the knots and distributions of the polymer forming the knot in the volume
of the confining space, we adopted a calculation of the function called global radius of
curvature [106]. This in simplicity calculates a maximum radius of a sphere, ρG (x), which
can be rolled around a knotted portion of polymer chain of the length x∈ <0,Lk >. The
calculation of the global radius of curvature yields a continuous profile in coordinates of the
polymer curve, here conveniently expressed as beaded coordinates. The profile describes
the local density of the molecule, which can represent the chain thickness; it can be related
to writhe so it is a topological descriptor; and it is also related to internal energy [106].
Previously, we implemented ρG in order to analyze density of supercoiled molecules [107].
Here, we extend the definition of ρG for confinement so that the calculation of ρG is obtained
not only from the beads forming the beaded chain, but it is also adjusted according to the
nearest distance of confinement wall through analytical equations. The computed radii
of curvature are shown in Figure 2e. The profiles are averaged over all structures in the
five trajectories. The profiles start at value 2ρG/Rch, meaning the unknotted chain tends to
stay equally distant from the walls of the channel, in its center. Later, the ρG drops at the
position of the crossings denoting the start (istart) and end (iend) of the knotted portion. The
peak in the middle indicates the opening in the center of the cardioid structure of the knot.
The peak is higher in the case of antichiral system, where the arc of the knot moves along
the grooves of the helical channel.

Finally, in Figure 2f, we show the drift of the knot along the polymer as a function of
time. The graph indicates that in the equichiral configuration, the trefoil with the negative
writhe moves over twice as fast as the trefoil knot with a positive writhe. The corresponding
values of vdrift and diffusivities D are shown in Table 2. The diffusivities were obtained as
described in Section 3.1 of Results and Discussion. These parameters indicate stereospecific
and selective behavior on the knotted superstructures with a given chirality.

3.3. Effect of Helical Radius, Pitch and Pulling Force on Separation of Knots

In the next step, we investigate further the stereoselective effects observed in the
previous section by varying parameters of the helix. As we described previously, aside
from its chirality, the geometry of the helical channel is defined by three parameters, the
channel radius Rch, the radius of the helix RH and the pitch k; for illustration, see Figure S1.
We determined the first parameter based on the size of the trefoil given by its gyration radii,
Rg, determined in the first section that investigates knots pulled in the free space. Secondly,
the pitch of the helical channel, k, should not be smaller than a half of the Rch, so that the
loops of the helix do not overlap or extend into each other that would make the cross-
section of the channel larger. Hence, the parameter of our primary interest is the radius
of the helix, RH. Investigating this parameter gives also a glimpse into the magnitude
of the effect and how sensitive are the chiral superstructures to chiral modulation of the
environment. In Figure 3a, the mobility of a trefoil knot and transport properties of the
channel are shown in terms of diffusivities and the radius of the helix. The smaller values
of the radius of the helix RH mean the grooves in the helical channel are quite shallow with
a small curvature, κ. On the other hand, when the radius of the helix exceeds the radius of
the channel, the curvature κ increases, and the shape of the channels becomes more spiral
like, where the term “spiral” would mean a spring-like object; see Figure 3b.
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Figure 3. Effect of radius of the helix RH on dynamic and geometrical properties. (a) Speed of
self-reptation of righthanded <−>31 and lefthanded knots <+>31 placed in negatively wound helical
channel (ω-) representing equichiral and antichiral system; dashed line corresponds to effective
diffusivity predicted for a given tortuosity Deff = D0/τ = D0L/C. (b) Snapshot of trefoils in helical
channels for different radii of helix indicated by numbers. (c–f) Dependence of geometrical de-
scriptors gyration radius, Rg, knot length, Lk, asphericity, A, and prolateness, P, with the radius of
the helix.

The diffusivities in Figure 3a show distinct behavior between equichiral and antichiral
systems. The diffusivities show a drop with different slope or intensity as a function of
RH. The values of D are shown starting from a value of RH = 0.1 σ = 0.3 nm. The values
obtained at the smallest radius of the helix considered are 16.5 mµ2·s−1 and 15.5 mµ2·s−1.
These values are slightly smaller than the diffusivity in the simulation of drifting knots in a
free space D = 17 mµ2·s−1, as in Table 1. Since at the beginning, we chose the radius of the
channel to be similar to the gyration radius of the freely moving trefoil, and the computed
diffusivities start at the slightly lower values, meaning that the knots only start to feel
the presence of the confinement. Interestingly, even with a tiny curvature κ of the helical
channel, the knotted superstructures already start showing a systematic deviation from
each other and sensitivity to the chiral environment. The diffusivities in the equichiral and
antichiral configuration increasingly deviate from each other with an increasing radius
of the helix. The maximum of the stereospecific sensitivity is reached for the radii of the
helix RH between 1 and 1.5 σ (3–4.5 nm), where the difference in mobility of over 200%
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is observed. Later, the diffusivities converge to the same value at RH = 3σ = 9 nm, above
which the radius of the helix becomes equal to and larger than the radius of the channel.
Behind this point, the channel becomes spiral like, Figure 3b.

In practical situations, the decrease in the effective diffusivity with increasing radius of
the helix of the confining channel can be justified by the increase tortuosity of the channel,
τ [108]. Tortuosity is a common engineering parameter that in the simplest definition
relates the ratio of the length of the curve travelled by a diffusing particle (C) to the
distance between its ends L, τ = C/L. Then, the effective diffusivity is given as Deff = D0/τ.
Tortuosity of a helical channel can be expressed as τ = [(2πk)2 + (2πRH)2]0.5/2πk, where k
stands for the pitch, and RH is the radius of the helical channel. Tortuosity provides a good
qualitative approximation of the change of effective diffusivity for equichiral system in the
range of radii of the helical channel RH < Rch, see Figure 3a (dashed line). For the antichiral
system, i.e., trefoil with positive writhe in a negatively wound helix, and vice versa, we see
differences that cannot be simply captured by a function of the curvature of space.

This infers that the diffusion of a knot in antichiral configuration is fundamentally
different. The detailed picture on the situation of knot self-drifting in antichiral and equichi-
ral configuration was provided in the previous section, where we showed that in the
antichiral configuration the arc of the knot prefers to reside away from the center of the
channel and proceeds along the channel by inducing an additional revolving motion in
the grooves of the helical channel, Figure 2c. On the other hand, the knot in equichiral
configuration shows that it is its center of mass that copies the curvature of the chan-
nel, Figure 2d, and hence, that is why there is a better agreement that the description of
effective diffusivity by tortuosity, Figure 3a. It is intriguing to verify whether the slow-
down of the self-diffusion in antichiral configuration cannot be a result of the revolving
motion. For the effective diffusivity of a propelled chiral particle, a relation was derived
Deff = D + v0

2 Dθ/[2(Dθ
2 + Ω2)], [103,104]; here, Dθ is the coefficient of the rotational

diffusion intrinsically bound with D since Dθ = 3D/(4RH
2), v0 is the velocity induced by

external force FextD/ε0, and Ω is the speed of rotations, here induced by the helical channel
with the pitch k, i.e., Ω = v0/(2πkσ). Since the effective diffusivity is a sum of rotational
and translational contributions, the rotational motion can only be a result rather than a
reason for the change of the diffusivity D.

On studying drifting knots driven by electric currents, Di Stefano et al. proposed
that the mobility of a particular knot type is related to the topological friction through a
characteristic frictional length [73]. In confined space supposedly, this frictional length
is increased by interactions of the knot with the walls of the channel. Since the spatial
distribution of lefthanded and righthanded knots in chiral channel is different, this increases
the topological friction imposed on the movement of knot. The helical geometry of the
channels is relatively complex, posing challenges to envisioning the distribution of knot in
the channel and how this interacts with the channel walls. We examine the distribution
of the knot and interactions with the channel walls by different descriptors. First of all,
Figure 3c shows the dependence of gyration radii on the radius of the helical channel
Rg = f (RH). The computed data indicate that in the antichiral system the gyration radius
of the knotted portion steadily grows. This indicates that the knot adjusts its radius and
fills the loops of the helical channel, exerting more effective friction with the walls of the
channel. In the case of the equichiral system, the knot maintains an approximately constant
value of its radius to about value of RH~Rch, while the knot remains mainly in the middle
opening of the channels.

The phenomenology reunites above RH > Rch where the effective diffusivity depends
on tortuosity and also quantitatively the helical channel loses chiral sensitivity. A critical
review on tortuosity approach pointed out its empirical character and the many definitions
of tortuosity that exist [108]. Very recent works aimed on rigorous solutions of unbiased
Brownian diffusion in helical channels provide analytical formulae for the case when the
radius of the helix is larger than the radius of the channel, RH >> Rch [105,109,110]. Despite
these works aiming to provide solutions for many problems in biology, our current simula-
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tions of the drifting knots in the helical confinement in terms of their diffusivities shown
on Figure 3a and the various practical problems we reviewed in the Introduction indicate
that the primary region of interest is around RH ≤ Rch. It is also worthwhile to stress
that tortuosity by itself is not expected to be sufficient to explain the deviations between
the mobilities of different enantiomers. As remarked by Marenda et al., the topological
sorting by channels with modulated geometry represents simple but yet underexplored
mechanism [79]. In the past decades, a handful of works addressed a problem of particles
diffusing through an entropy barrier [111–115]. The entropy barrier was imagined as a
periodically bulging or diverging-converging chamber in a confining channel. In a practical
scenario of proteins diffusing through nanopores, the barrier was modelled by a periodic
potential [114]. Recently, the approach was extended for studying the diffusion of knotted
molecules passing through a periodically modulated channel as passing through free
energy profiles [79]. So far, the shape of the entropic barrier is represented by a periodic
channel consisting of symmetrically rounded or conical chambers [111–114]. Using free-
energy profiles for describing energy barrier to diffusing knots could be straightforward, as
the global radius of curvature ρG is related to concentration, and hence the integral of the
inverse of the ρG function is related to energy [106]. Nevertheless, solutions for arbitrary
geometries would be difficult to solve [112].

In addition, we investigate the influence of several operating parameters on stereose-
lective performance of the helical channel in terms of the ratio of the equichiral-to-antichiral
diffusivities ϕD = D=/D±, as shown in Figure 4. First of all, on Figure 4a, we show sum-
marized ratios ϕD as a function of the radius of the helix, RH. As we discussed earlier in
Section 3.2, the ratio starts at the value of unity and increases with the increasing radius of
the helix as two phenomenologically mechanism engage—one, where the knot is driven in
the grooves of the channel revolving around the longest axis of the channel, and the second
one, where the knot passes through the channel rather randomly as a fuzzy ball. Finally,
the value of ϕD goes back to unity at RH > Rch, inferring that there is an optimal value of
the radius of the helical channel for the stereoselective performance of the channel between
RH = 1–1.5 σ, Figure 4a.

Figure 4. Stereoselectivity of the helical channel as a function of three parameters. (a) Effect of the
radius of the helical channel on stereoselectivity of the channel in terms of ϕD = D=/D±. (b) Effect
of the external pulling force Fext. (c) Effect of the distance between of the loops or steepness of the
helical channel in terms of its pitch, k. (d) Snapshots from the simulations with varying external
force, the values Fextσ/ε0 are indicated as numbers, for antichiral and equichiral configurations and
channels with RH = 1σ. (e) The channels with various pitch parameters, k, indicated as numbers to
the left in helical channels with RH = 1σ. The lines are provided as visual guides.
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In Figure 4b, we show the ratios ϕD as a function of the external force applied. The
range of applied forces was from the range of 0–0.14 pN. Again, the graphical dependence
infers the existence of an optimal value of the external force, Figure 4c. When no external
force is applied, the knots still show a difference in mobility induced by the chirality of
environment. However, the diffusivities in absolute values are very small D= = 0.30 µm2·s−1

versus D± = 0.15 µm2·s−1. These values are similar to the values reported experimental
for the pulling of knots on very long chains [21]. In our case, the reason of the small
values of diffusivities in the presence of no external force is that the knotted portion is
less localized, increasing the gyration radius of the knot, Rg = 9.2 nm, which generates
more collisions with the walls of the channel, as seen in the snapshots in Figure 4d. The
gyration radii decrease by increasing the strength of the external pulling force reaching
Rg = 9.2, 7.5, 6.9, 6.0 and 5.7 nm for antichiral and Rg = 9.2, 6.9, 6.3, 6.0 and 5.7 nm for the
equichiral system. When the pulling force is increased, the knot is much more localized,
which decreases its radius of gyration what decreases collisions of the knot with the walls
of the confining channel. As discussed in Section 3.1, the self-diffusivity of localized knots
in free spaces should be more or less constant regardless the pulling force applied; however,
the situation is more complex in the confined space, where the more localized knots exhibit
fewer collisions with the walls of the confinement. Here, the knots stay localized not only
by the effect of the pulling force but also because of the effects of confinement [71], but in
the absence of the pulling force, the knots are more spread and exhibit more friction with
the walls of the channel, which results in different and much smaller diffusivities.

Finally, we investigated the effect of the pitch or the rise of the channel that defines
the distance between the loops or the steepness of the helical channel, Figure 4c. Upon
increasing the pitch of the helical channels, they lose their stereoselective capability in
terms of ϕD, since the density of the loops as the stereospecific features over the length of
the channel decreases by increasing the parameter k. The dependence in Figure 4c shows
the continuous drop of the value ϕD indicating that there is still a space for improvement
of the stereospecific performance of the channel, and hence, the optimum size is yet to be
reached. The setting of k where the highest ϕD is observed corresponds to length of the
half period of the loop πkσ = 14 nm, which is by far sufficient to accommodating even the
largest knots investigated. By decreasing the pitch k, however, the ϕD is expected to drop
when the loops start to extend to each other.

From plenty of other parameters that may be of immediate interest to be explored
with the observed stereosensitivity, such as polymer length, radius of the channels, Rch,
electrostatics, explicit solvents, etc., which are not investigated here, we still considered
it would be of most importance to test the proof of concept for a situation of non-nicked
DNA. This is because of the phenomenon of revolving the knot in antichiral configuration
observed in Section 3.2, Figure 2c. If the helical confinement induces the revolutions to the
knot, this should be transferred to the chain and increase the torsional stress. This raises the
question, whether the knot would be forced to leave its orbital trajectory and drift through
the channel in the manner observed for equichiral system and the stereosensitivity would
be lost. The simulations show that even if the modeled DNA chain possesses torsional
stiffness, the stereosensitivity of the helical channels is maintained in terms of ϕD at the
levels observed for nicked DNA, Figure S2. This could be attributed to the fact that the
supercoiling diffuses away very fast but also that the chain length used in the simulations
does not exceed 1 kbp (3 µm).

3.4. Different Chiral Knot Types Show Symmetry Breaking in Helical Channels, While Achiral
Knots Do Not

The trefoil knot investigated so far is the most abundant of knots, with the highest
probability of spontaneous formation on long linear chains [11,39,116], but it is also the
most abundant knot found biologically on DNA and proteins. Despite this fact, more
complex knots were also regularly found on DNA or prepared in experiments [117]. Hence,
in the next step, we investigated the selectivity of channels with chiral modulation on more



Polymers 2021, 13, 3726 18 of 25

complex knots. The property of choice to represent different selectivity was again mobility
of self-reptating knots in terms of drift speeds or diffusivities.

In Figure 5a, we show the diffusivities grouped for given knot types for antichiral
versus equichiral situation. The diffusivities by themselves show a complex behavior. This
observation is in agreement with the previous studies of translocating knots, which showed
that the topological friction of different knotoids do not exhibit a simple dependence on
the knot type given by a crossing number [118]. Another study also showed that this
dependence shows a complex behavior with varying external pulling force [119]. Figure 3b
shows compilated data in terms of stereoselective performance of the channels given as
ϕD = D=/D±. The data infer that the highest stereoselectivity is observed for torus knots
(31, 51 and 10124), but a mediocre stereoselectivity is observed also for twist knots (61
and 74). Along with the chiral knots, we simulated also achiral knotoids with different
complexity 41, 63 and 818. During this investigation we varied the handedness of the
channel rather than the sign of the writhe of the knots. The helical channels show no
stereoselective effects on achiral knots yielding the value of vD to be about unity. Figure 5c
shows snapshots from the simulations of amphichiral and chiral knots.

Figure 5. Stereoselectivity of helical channels (RH = 1σ) for different knot types. (a) Diffusivities of
grouped enantiomers of different knot types in helical confinement. For amphichiral knots (41, 63

and 818), we flipped handedness of the channel rather than writhe of the knot. (b) Magnitude of
the stereoselectivity of the helical channel expressed as ϕD = D=/D±. The dashed line indicates no
selectivity. (c) Snapshots from simulations showing the situation of the knotted portions in helical
channels for amphichiral system with righthanded (left) and lefthanded helical channel (right).
(d) Snapshots from simulations showing the situation of the knotted portions in helical channels for
chiral knots, with equichiral (left) and antichiral (right) placement of knots in righthanded helical
channel. The handedness of the channels is indicated byω+ andω−.

3.5. Helical Channels Can Separate Chiral Knots Embedded on Circular Polymers

In this part, we investigate the capability of helical confinement to sort knots embed-
ded on circular chains based on their chirality. In this model, we used infinite channels with
helical modulation periodically replicated through periodic boundary condition. Here,
we used one directional pull with external force Fext = 0.05ε0/σwhose direction did not
alter. In Figure 6a, we show the drifting of the lefthanded and righthanded trefoil knots
in antichiral and equichiral placement into righthanded channel as a function of time.
The data shown in Figure 6a represent the overlapped values of the drift obtained from
the five independent runs for each enantiomer. Based on the simulations, we observe a
difference between the drift speeds of the enantiomers in chiral confinement. The observed
difference between the drift speeds is about 20%, which is significant for confirming the
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stereoselective effect, even though the difference between mobilities is much lower than the
stereoselective performance of the channels observed for knotoids reaching above 200%.
The growing difference in drift exhibited by the enantiomers is shown in the Video S2
(lefthanded knot shown in green, righthanded in orange).

Figure 6. Stereoselectivity of helical channel (RH = 1σ) on trefoil embedded on a circular chain.
(a) Total drift over the time for antichiral and equichiral system shown for 5 overlapped trajectories
for each setting. (b) Difference between orientation of the plane of the righthanded knot’s arc that is
responsible for friction with the walls of the helical channel and stereoselective effect. (c) Snapshots
from the molecular dynamics simulations showing circular chains with different handedness and
also different lengths of the polymer indicated by number. (d) Relative difference between drift
speeds in antichiral versus equichiral systems D±/D=.

However, the radius of the channels used in all simulations was the same and opti-
mized for the gyration radius of the simplest of the knots localized under the pulling of the
external force. In the case of knotted circular chains, these are topologically constrained
even without the presence of the pulling force or confinement to induce a metastable
knotted state. Hence, much larger channels could be used to exploit the chirality of the
knotted superstructures for sorting of enantiomeric forms.

Secondly, we also observe that the stereoselective effect is inversed compared to
knotoids. In the case of the circular chains, the helical confinement appears to affect knots
in equichiral placement, i.e., a knot moves faster if the handedness of the channel is the
opposite. The explanation of this phenomenon is that in the case of the circular chains, the
knot favors a different configuration in the channel, where two chains run through the
middle of the channel by extending an arc of the knot into the grooves of the channel. The
plane of this arc twisted in an opposite direction compared to the situation encountered in
the case of the knotoids, Figure 6b.

The stereoselective effect shows a maximum when investigated for polymers with
different chain lengths, Figure 6d. Here, the stereoselective effect computed as a ratio
D±/D=. starts at value about 1, when the polymers are too small with a radius of gyration
of about the radius of the channel. On the other hand, when the molecules become very
long, the effect of the friction of one arc of a knot becomes relatively small to the overall
friction of the polymer in the channel. The magnitude of the stereoselective effect is about
35% higher mobility of circular molecules of the length 75 σ (750 kbp). The magnitude of
topological selectivity fits into a range of performance of periodically modulated channels,
where it was observed for channels with periodic conical chambers that the variation
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of diffusivity between unknot and 41 knot ranges between 0% and 300%, depending
on the length of the molecules. [79] The variation of relative diffusivity in modulated
versus cylindrical channel D/D0 also showed a complex oscillatory behavior; however,
much larger channels in terms of their radii were employed. [79] As we reviewed in the
Introduction, the diffusion of knots in channels, translocations of knotted linear and circular
chains, self-reptation of knotted chains, etc., were the subject of multiple works, and deeper
investigation of the topological sorting in helical channels with varied radii would require
a separate paper.

4. Conclusions

We took a journey into simulations of chiral knots and chirally modulated confining
spaces in order to investigate whether knots on polymers could be recognized based
on a simple topological sorting mechanism, i.e., by geometrically modulated channels
represented here by helical tubes.

At first, the simulations of knots drifting along the polymer chain were performed in
the free space, and the trajectories were evaluated in terms of geometrical and dynamic
parameters. These were comparable with the available data from computer experiments.
The properties obtained in the free space were mirrored for the chiral enantiomeric pairs,
thus also indicating that these cannot be used by themselves for distinguishing between
the enantiomers.

Later on, the knotoids were confined in helical channels with periodic geometrical
modulation corresponding to helical shape. The helix was modelled as an Archimedean
spiral maintaining the constant cross section of the channels as a function of the radius of
helix, RH. Three parameters of the channels were scanned, the radius of the helix, the pitch
and handedness of the helical channel. The helical channels showed a strong stereoselective
effect on knotoids. This effect in terms of the drifting speed of diffusivity along the chain
showed deviations by up to 200% between antichiral and equichiral configuration. The
magnitude of the effect arises from the friction with the walls of the channel that is more
effective in the antichiral configuration. This effect could be exploited by nanotechnological
devices designed for the detection of the topological state of the knot. In our computer
experiments, we kept one end of the chain anchored. We believe the setting is possible
to achieve also by experiments, which often use anchoring of DNA molecules or employ
stoppers to slow down the translocation of the DNA molecule through the channels. In
addition, the setting with one end fixed corresponds to the biological situation when a knot
is pushed along the DNA whether by molecular machinery or by supercoiling generated
during transcription. The abundance of lefthanded knots observed experimentally could
be related to slower drifting speeds of the knots in antichiral environment formed by
negatively supercoiled DNA; this mechanism has to be tested in detail by a dedicated
computational biology study.

Along with the design parameters of the helical channel, we also investigated the effect
of the pulling force on the observed stereospecific effects. We saw that the dependence of
stereospecificity shows a more complex behavior exhibiting a maximum in a range of tested
pulling forces. This complex behavior arises from the fact that the pulling force affects the
degree of localization of knots, while less localized knots exhibit large friction with the
walls of the channel. Because of the increased friction the diffusivity of enantiomers drops,
however, the stereoselective effect is observed to be maintained even in the absence of the
pulling force.

Besides the trefoil knot, which is the most abundant of knots that can occur proba-
bilistically on long polymer chains or in biological systems on DNA, we also investigated
the magnitude of stereoselectivity of the helical channels for more complex knots. Our
computer simulations indicate that the stereoselective properties of helical channels can
be exploited also for probing the chirality of very complex knots. The simulations show
also that achiral knots are not sensitive to the channels whether the handedness of knots or
channels is mirrored.



Polymers 2021, 13, 3726 21 of 25

Finally, we investigated whether the observations of the chiral selectivity of helical
channels apply also on circular knotted chains. So far, the simulations have shown that the
stereoselectivity is weaker, but the channels were optimized for knotoids in terms of the
radius of the channels. The observed effect is strong enough to be exploited experimentally.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13213726/s1, Figure S1: The helical channel, Figure S2: Model of a knotted linear
DNA chain with torsional stiffness; Figure S3: Movie strips of trefoils in helical confinement,
Video S1: Molding the channel, Video S2: The knot race.
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