
Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Original Article

Epidemiology • Volume 33, Number 3, May 2022 www.epidem.com | 325

ISSN: 1044-3983/22/333-325
DOI: 10.1097/EDE.0000000000001470

Submitted September 28, 2021; accepted January 26, 2022
From the aFaculty of Pharmacy, Université de Montréal, Montréal, QC, 

Canada; bDepartment of Social and Preventive Medicine, School of 
Public Health, Université de Montréal, Montréal, QC, Canada; and cDe-
partment of Epidemiology, Biostatistics and Occupational Health, McGill 
University, Montréal, QC, Canada.

M.E.S holds a Canada Research Chair from the Canadian Institutes of Health 
Research (CIHR) and receives research support from the Natural Sciences 
and Engineering Research Council of Canada (NSERC).

No human data was used in this methodological study. All code for simulated 
data generation is provided in the online repository https://github.com/
mirschn/TND.

M.E.S. has recently received speaker fees from Biogen. She has no other real 
or perceived conflicts of interest.

Correspondence: Mireille E. Schnitzer, Faculty of Pharmacy, Université de 
Montréal, Montréal, QC, Canada. E-mail: mireille.schnitzer@umontreal.ca.

Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

Estimands and Estimation of COVID-19 Vaccine 
Effectiveness Under the Test-Negative Design

Connections to Causal Inference

Mireille E. Schnitzera,b,c   

Abstract: The test-negative design is routinely used for the moni-
toring of seasonal flu vaccine effectiveness. More recently, it has 
become integral to the estimation of COVID-19 vaccine effective-
ness, in particular for more severe disease outcomes. Because the 
design has many important advantages and is becoming a mainstay 
for monitoring postlicensure vaccine effectiveness, epidemiologists 
and biostatisticians may be interested in further understanding the 
effect measures being estimated in these studies and connections to 
causal effects. Logistic regression is typically applied to estimate the 
conditional risk ratio but relies on correct outcome model specifica-
tion and may be biased in the presence of effect modification by a 
confounder. We give and justify an inverse probability of treatment 
weighting (IPTW) estimator for the marginal risk ratio, which is valid 
under effect modification. We use causal directed acyclic graphs, and 
counterfactual arguments under assumptions about no interference 
and partial interference to illustrate the connection between these 
statistical estimands and causal quantities. We conduct a simulation 
study to illustrate and confirm our derivations and to evaluate the 
performance of the estimators. We find that if the effectiveness of the 
vaccine varies across patient subgroups, the logistic regression can 
lead to misleading estimates, but the IPTW estimator can produce 
unbiased estimates. We also find that in the presence of partial inter-
ference both estimators can produce misleading estimates.

Keywords: Causal inference; Directed acyclic graphs; SARS-CoV-2; 
Test-negative design; Vaccine effectiveness
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The test-negative design is a type of observational study 
design routinely used to estimate seasonal influenza vac-

cine effectiveness.1,2 It is currently being employed interna-
tionally to estimate coronavirus disease 2019 (COVID-19) 
vaccine effectiveness.3,4 When prospectively implemented, 
this design recruits individuals who are seeking care or testing 
in response to COVID-like illness.5,6 Participants are tested 
for severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, for example, by reverse transcription poly-
merase chain reaction test. The results of this test determine 
whether the participant is categorized as a COVID-positive 
“case” or a COVID-negative “control”. COVID-19 vaccina-
tion history and other patient information are then obtained, 
possibly from health records.5 Another implementation of this 
design involves using electronic health data to retrospectively 
identify patients who sought care or testing due to COVID-
like symptoms, their SARS-CoV-2 infection test results and 
vaccination status at the time of care-seeking, and demo-
graphic and clinical information about the patient.7,8 In either 
version, vaccine effectiveness is typically estimated using a 
multivariable logistic regression of the test result (i.e., case 
status) conditional on vaccination status and measured con-
founders6–8 but inverse probability of treatment weighting has 
also recently been used.5

Jackson and Nelson1 provided the first formal frame-
work for the test-negative design. Using contingency tables 
of a hypothetical population stratified by binary vaccination 
status, infection status, and binary propensity to seek care, 
they showed that case status odds-ratio estimands simplify 
to risk ratios for medically attended illness under certain 
assumptions.1 Foppa et al. 9 justified the design and use of the 
case status odds ratio through mathematical models of infec-
tious disease transmission. Several studies2,10,11 used causal 
directed acyclic graphs (DAGs)12 to explore different sources 
of bias that may manifest when estimating seasonal flu vac-
cine effectiveness with the test-negative design. Shi et al.11 
investigated bias of the standard test-negative design param-
eter with respect to the marginal risk ratio parameter under 
a multiplicative model with binary variables. Vandenbroucke 
et al.13 and Schnitzer et al.14 investigated the identification 
of risk factors for COVID-19 disease and SARS-CoV-2 
infection, respectively, under the test-negative design with 
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additional population controls. Lewnard et al.15 reviewed the 
test negative design in the COVID-19 context and proposed 
multiple strategies to limit bias due to confounding and mis-
classification of case status. Important insights arising from 
past literature include (1) Because only those seeking and 
accessing care can be enrolled in the study, the test-negative 
design can better control for confounding due to care-seeking 
behavior than case–control studies though residual bias is pos-
sible when care-seeking behavior is nonbinary.10,15 However, 
a consequence is that vaccine effectiveness is only estimated 
in the subpopulation that has access to care.1,4 (2) Because 
all subjects are tested for infection, the test-negative design 
may be less subject to measurement error than cohort stud-
ies1; however, there is also a danger of important bias when 
patients falsely testing negative for SARS-CoV-2 are consid-
ered to be “controls.”15 (3) The test-negative design can only 
estimate vaccine effectiveness to prevent medically attended 
illness, such as illness leading to hospitalization. (4) Under 
this design, logistic regression is only valid when the vaccine 
has no effect on disease with similar presentations to the one 
being studied.1

Although many of the above-cited studies contrib-
uted to the theoretical justification of the test-negative 
design,1,9–11,15 none formally derived the estimands under 
a statistical sampling framework such as the one used to 
justify the now-standard analytical methods used for case–
control studies16 or investigated connections to counterfac-
tual causal parameters. Furthermore, no study has justified 
estimation with inverse probability of treatment weighting 
(IPTW) though at least one applied study has made use of 
this method.5

In this article, we postulate a nonparametric model, rep-
resented by a DAG, of the relevant variables at play when the 

test-negative design is used to study vaccine effectiveness for 
medically attended COVID-19. Under this model, we derive 
the estimand of the test-negative design that is estimated with 
a correctly specified logistic regression. Under the assumption 
that the vaccine does not impact the probability of infection or 
disease due to another infection, the estimand is interpretable 
as an adjusted risk ratio for medically-attended COVID-19 
with respect to vaccination status.1,11 We also give the mar-
ginal risk ratio and show that it can be estimated using inverse 
probability of treatment weighting when the propensity score 
model (i.e., model for the probability of vaccination status) 
is fit using only the control data. In observational and experi-
mental studies of vaccines for infectious disease, one person’s 
disease occurrence may be impacted by the vaccination status 
of those in their entourage. This is called “interference” and 
complicates causal analysis.17 We discuss potential connec-
tions of the statistical estimands to causal parameters under 
the assumptions of noninterference and partial interference, 
respectively. We conduct a simulation study to illustrate how 
estimates and estimands vary under effect modification and 
partial interference.

STATISTICAL ESTIMANDS
We consider a test-negative design that recruits all 

patients admitted to hospital on the basis of specific symptoms 
of COVID-like illness which may be another infectious dis-
ease. The patients are then tested for SARS-CoV-2 infection. 
Administrative databases are then used to ascertain patients’ 
history of COVID-19 vaccination.

The directed acyclic graph (DAG) in Figure repre-
sents a model of the progression of the variables considered 
in this study. First, individuals have some status of vacci-
nation against COVID-19 V, for example, “unvaccinated,” 

FIGURE. Directed acyclic graph representing the hypothetical relationship between baseline confounders C, vaccination status V, 
infection I (none/SARS-CoV-2/other infection), severe symptoms W, hospitalization H, and unmeasured common causes of I, W, 
and H. The variable U represents any (possibly unmeasured) common causes of infection, symptoms, and hospitalization that do 
not also affect vaccination. The boxes around W and H represent how the study sampling method conditions on these variables. 
Note that this conditioning also results in all participants having some kind of infection that can lead to severe COVID-19-like 
symptoms.
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“fully vaccinated + x days”, etc. Subsequently, they may 
become infected with some virus (I). Let I = 2 denote 
infection by SARS-CoV-2, I = 1 other infection, and I = 
0 the infection-free state. If an infection is present, the 
individual may develop severe symptoms W. These symp-
toms may lead to hospitalization H and thus inclusion in 
the study. Because this design is observational, there may 
be common causes C and U of any of the aforementioned 
variables, where U is unmeasured and assumed to not 
affect V. Confounders C may include age, comorbidities, 
employment sector, etc. The variable U could include latent 
COVID-19 susceptibility.

The test-negative design in this context presumably sam-
ples those with some infection (I ≠ 0), with severe symptoms 
(W = 1) who are then hospitalized (H = 1). Assuming a perfect 
test for SARS-CoV-2 infection, those who test positive, I = 2, 
have the outcome of interest and are considered cases. Those 
who test negative, I = 1, are considered controls. The index 
date of the study is the date of hospitalization and vaccination 
status is considered as of that date. This design is distinct from 
a standard case–control16 because the participants are selected 
before knowledge of the nature of their infection.1

The Conditional Risk Ratio Estimand
The observed data z = (c,v) are samples of Z = (C,V) 

from the probability function Pr |( = 0, = 1, = 1)Z z I W H≠ . 
The infection type i = {1,2} is sampled from a Bernoulli distri-
bution with probability Pr |( = = , 0, = 1, = 1)I i Z z I W H≠ .  
From this sampling, we can identify the odds ratio of data z 
versus some comparator z0 with respect to infection type by
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(1)

For example, we may contrast those fully vaccinated 
z v= ( , = )c "fullyvaccinated 14 days"+  vs. those unvacci-
nated z v0 = ( , = )c "unvaccinated" . By the identity
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for i = 1,2 we can rewrite Equation (1) as
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which represents the prospective adjusted odds ratio 
of being hospitalized for COVID-19 vs. being hospitalized 
for another infection between fully vaccinated and unvacci-
nated individuals. Under the assumption that the COVID-19  
vaccine has no impact on any other type of infection, the 
ensuing disease severity and potential for hospitalization, 

Pr | Pr |( = 1, = 1, = 1 = ) = ( = 1, = 1, = 1 = )0I W H Z z I W H Z z  
and the odds ratio in Equation (2) simplifies to
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which is the prospective adjusted risk ratio of hospitalization 
for COVID-19 between fully vaccinated and unvaccinated 
individuals. The “vaccine effectiveness” estimand is typically 
given as 1−ψ cRR.

Now applying the identity
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we can rewrite Equation (2) as
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A multivariable logistic regression of I = 2 vs. I = 1, condi-
tional on C and a factorization of V using the data sampled 
under the test-negative design will yield estimates of the odds 
ratios in Equation (4) under the assumption that the logistic 
regression model for Pr( = = , 0, = 1, = 1)I i Z z I W H| ≠  is 
correctly specified.16 Because of the equivalence of Equation 
(4) with Equation (3), we can say that the exponential of the 
coefficient related to vaccination status in the logistic regres-
sion is an estimate of the adjusted risk ratio for hospitalization 
with COVID-19.

Thus, under the assumed DAG and logistic regression 
model, the conditional risk ratio in Equation (3) is the inter-
pretable estimand. Importantly, this risk ratio is an association 
between vaccination and a combined outcome that involves 
three steps: becoming infected with SARS-CoV-2, having 
severe symptoms, and accessing (being admitted to) a hospital 
due to these symptoms.1

The Marginal Risk Ratio
The risk ratio is collapsible, so its value does not depend 

on the variables in the conditioning set beyond adjustment for 
confounding. But estimation using logistic regression relies 
on correct model specification, which may be implausible in 
practice. In particular, if vaccine effectiveness differs by sub-
group, then estimating an overall effect with logistic regres-
sion will inevitably result in misspecification because the 
model cannot include interactions with vaccination. One may 
choose to instead directly estimate the marginal risk ratio.
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Under effect modification where a third variable can 
change the effect of vaccination on infection, disease, or hos-
pitalization, this estimand is not equal to the conditional risk 
ratio.

Due to the biased sampling design, one cannot directly 
estimate the conditional probability of experiencing an out-
come. However, under the previous assumption that the vac-
cine has no impact on other infections, we have that

Pr |

Pr | Pr |
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This means that we can estimate the propensity score by (1) 
modeling the conditional probability of vaccine status using 
only the controls, then (2) using this model to estimate prob-
abilities for the whole sample.

It is then possible to use IPTW to estimate the marginal 
risk ratio directly. This involves taking a ratio of weighted 
means between subjects with different vaccination statuses. 
Consider a sample of n hospitalized patients with observed 
data ( , , ; = 1,..., )ck k kv i k n  corresponding to measured con-
founders, vaccination status, and SARS-CoV-2 infection 
status, respectively. The latter IPTW estimator contrasting 
vaccination status v vs. v0 can be written as follows:
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where I( )⋅  represents the indicator function and 
Pr |�( = = )0V v kC c  represents the estimate of the propen-
sity score for the kth patient. One could alternatively run a 
weighted logistic regression. Estimation with IPTW in the 
biased sample is justified theoretically in the Appendix and 
empirically in the simulation study.

CAUSAL INTERPRETATION
Whether statistical estimands can be connected to 

causal estimands depends on additional assumptions. Causal 
estimands are often defined based on potential outcomes.  
A potential outcome under a given treatment is the outcome a 
participant would have had if they had received that treatment, 
for example, the outcome they would have under a given vac-
cination status. Causal inference operating under Rubin’s 
“stable unit treatment value assumption”18 requires that the 
treatment (vaccination) of one individual does not impact the 
potential outcome of another. This assumption, also referred 
to as the absence of interference, is likely violated in stud-
ies of COVID-19 vaccination effectiveness due to widespread 
vaccination programs and reduced infectiousness among fully 
vaccinated people.17,19 We explore the relationships between 
the statistical estimands defined above and causal estimands 

under the hypothetical assumptions of no interference and 
partial interference.

Causal Interpretation Assuming No 
Interference

In the absence of interference, one patient’s infection, 
illness, and hospitalization under their vaccination status could 
not depend on another patient’s vaccination status. We would 
then assume consistency where assignment to a vaccination 
status V = v yields the same outcome as when the observed 
vaccination status is V = v. If we define the potential outcome 
under vaccination status v as { ( ), ( ), ( )}I v W v H v ,  this means 
that { , , } = { ( ), ( ), ( )}I W H I v W v H v  when V = v. Under the 
DAG in the figure, we must assume that we have measured 
all variables C. Specifically, we must satisfy the conditional 
ignorability assumption { ( ), ( ), ( )}I v W v H v V⊥⊥ C.  This also 
means that any common cause of vaccination status with any 
of the three outcome variables must be measured.

In addition, the probability of an individual having any 
vaccination status must be non-zero for any possible value 
of C. This last assumption would be violated if, for instance, 
the study covers a time-period where some of the recruited 
patients could not have possibly been fully vaccinated due to 
age-restrictions during the roll-out period.

Supposing that the above assumptions were true, the 
risk ratio in equation (3) contrasting some vaccination statuses 
v = 1 versus v = 0 could be rewritten as

 
ψ cCausalRR =

( (1) = 2, (1) = 1, (1) = 1 = )

( (0) = 2, (0) = 1, (

Pr |

Pr

I W H

I W H

C c
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which is the conditional causal risk ratio of being hospi-
talized with COVID-19. The marginal risk ratio can be rewrit-
ten as

 
ψ mCausalRR =

( (1) = 2, (1) = 1, (1) = 1)

( (0) = 2, (0) = 1, (0) = 1

Pr

Pr

I W H

I W H ))
.
 

(7)

However, given that interference is likely in vaccine 
studies of infectious diseases, these causal parameters may 
not be well-defined.

Causal Interpretation Under Interference
Under general interference, one person’s potential out-

come, indexed by j, depends on the full vector of other individ-
uals’ treatment statuses, v− − +j j j nv v v v v= ( , ,..., , ,..., )1 2 1 1 . This 
individual’s potential outcome can be denoted Y vj j j( , )v− . If 
interference is limited to known blocks or networks, causal 
effects can be defined and potentially estimated. For example, 
in a multisite study, suppose that participants are geographi-
cally connected by site so that interference only exists between 
individuals accessing care at a common site. We say that these 
individuals are in the same “block.”20 Let vm  denote a vector 
of vaccination statuses for the mth block and let v− j

m  denote 
the same vector with the jth element removed. Suppose that 
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we can define the potential outcome of the jth individual in 
block m as depending on a one-dimensional summary f j

m( )v−  
of the block’s overall vaccine uptake (called “vaccination cov-
erage”).21 The potential outcome for individual j in block m 
could then be rewritten as Y v Y v fj j j j j j

m( , ) = ( , ( ))v v− − . Given 
two block vaccination coverage levels f and f' and two individ-
ual vaccination statuses v and v', estimands of interest in this 
framework include the direct effect E E{ ( , )} / { ( , )}Y v f Y v f′ ,  
which is the effect of changing an individual’s vaccination sta-
tus but fixing the vaccination status of others in the block; 
the indirect effect E E{ ( , )} / { ( , )}Y v f Y v f ′ ,  which is the effect 
of changing the block’s vaccination coverage when the indi-
vidual’s vaccination status is held fixed; and the total effect 
E E{ ( , )} / { ( , )}Y v f Y v f′ ′  of changing both the individual 
vaccination status and block’s vaccination coverage.17

In standard contexts, these causal estimands can be 
estimated under challenging assumptions about measured 
confounding.20 First, all confounders of individual vaccina-
tion and outcome must be adjusted for. But because we also 
need to unconfound the relationship between the individual 
outcome and the block’s vaccination coverage, it may also 
be necessary to adjust for summaries of the block’s covari-
ates.22 Examples of such covariates are summaries of the 
political orientations of the block’s members and leader-
ship which can impact vaccination uptake and are related 
to health risk-taking behavior. Let c− j

m  denote the vector of 
all covariates in block m except individual j. The block-level 
summary can be denoted g gm j

m= ( )c− . If these measured 
variables allow for the adjustment for confounding, then we 
have that

E Y G g V v F f E Y v f G g( = , = ( ), = , = ) = ( ( , ) = , = ( )).| |C c c C c c

In the test negative design, the outcome for individual j 
in block m is Y I W Hj j j j= { , , }  which we assume is equal to 
the potential outcomes { ( , ), ( , ), ( , )}I v f W v f H v fj m j m j m  when 
we observe V vj =  and f fj

m
m( ) =V− . And so we can write the 

conditional risk ratio estimated by the standard logistic regres-
sion as

ψ cRR =
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Pr |
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where Pr( )Sm
 is the proportion of the source population 

in block m and the second-line expectations are taken under 
Pm, the block-specific density function. With no unmeasured 
confounders, ψ cRR  is equal to

Pr Pr |

Pr

( ) ( ( , ) = 2, ( , ) = 1, ( , ) = 1 = , = )

(

1
S I v f W v f H v f G gm Pm m m m mm
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=∑ C c

So if block-level confounder summaries are adjusted 
for in the analysis and if those and the individual-level con-
founders are sufficient to identify block-specific causal effects, 
then the overall conditional risk ratio estimand can roughly 
be interpreted as a contrast between the weighted averages of 
the block-specific probabilities of medically-attended disease. 
However, because fm is the observed vaccination coverage in 
block m and because this coverage can vary by block, this is 
not a causal contrast in the sense that it does not represent a 
marginal or conditional effect of intervening on vaccination. 
In the simulation study, we explore the potential deviation 
between the estimates from the test-negative design and the 
causally-interpretable direct effect risk ratio

ψ
cRR, *

* * *

=
( ( , ) = 2, ( , ) = 1, ( , ) = 1 = , = ( ))

( (f

I v f W v f H v f G g

I

Pr |

Pr

C c C

′vv f W v f H v f G g, ) = 2, ( , ) = 1, ( , ) = 1 = , = ( ))* * *′ ′ | C c C

under vaccination coverage f*.

SIMULATION STUDIES
The objective of the simulation study is to compare the 

values of statistical and causal estimands and to evaluate esti-
mation by logistic regression and the proposed IPTW in the 
test-negative design. We generated three scenarios, summa-
rized in Table 1. The first two followed the DAG in the Figure 
with single continuous confounder C and all other variables 
binary. Two binary unmeasured variables impacted the risks of 
SARS-CoV-2 infection, severe symptoms due to COVID-19, 
and hospitalization if the severe symptoms were present. The 
second unmeasured variable also impacted the risk of other 
infection and severe symptoms due to other disease. Severe 
disease symptoms were generated separately for infection 
with SARS-CoV-2 and other infection. Hospitalization was 
only possible with severe disease. Vaccination offered protec-
tion from infection, severe disease, and hospitalization. For 
the first two scenarios, no interference was present.

• Scenario 1 (Basic Setting): No effect modification of 
vaccination V by covariate C in any model, no effect of 
the vaccine on non-SARS-CoV-2 infection or disease. 
The effects of the vaccine V and symptoms W on hospi-
talization did not depend on infection type.

• Scenario 2 (Effect modification): Same as Scenario 1 
except with an added interaction term between C and 
V in the model for infection with SARS-CoV-2. This 
represents a different individual effect depending on the 
patient’s value of C. For example, if C represents age, 
then this represents a scenario where older people do 
not benefit as much from the vaccine as younger people.

The third scenario introduced partial interference.

• Scenario 3 (Partial interference): The subjects in the 
simulation belonged to 10 blocks of fixed sizes. We 
generated three subject-level covariates: one continu-
ous and measured, and two binary and unmeasured. 
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We also generated a continuous block-level covariate, 
X, representing a measure of local incidence of infec-
tion with SARS-CoV-2. The probability of vaccination 
depended on the block, and the local incidence X where 
greater incidence encouraged vaccination. Infection 
with SARS-CoV-2 was affected by vaccination status, 
the block- and individual-level covariates, and the over-
all vaccine uptake (proportion vaccinated) in the rest of 
the block. The proportion vaccinated was included as an 
effect modifier of vaccination with the hypothesis that 
there is less exposure to the virus when more surround-
ing people are vaccinated, and that vaccination in addi-
tion to lower viral exposure is more protective than the 
sum of each individual element.

In all scenarios, logistic regression and IPTW adjusted 
for the baseline confounder C. In the third scenario, the mod-
els also adjusted for the block-level covariate X.

The results are presented in Table  2. In all scenarios, 
the vaccine is more effective at reducing hospitalization than 
infection. When there was no interference, both the condi-
tional (ψ cRR ) and marginal (ψ mRR ) risk ratio estimands have 
a causal interpretation, corresponding to the counterfactual 
parameters ψ cCausalRR  and ψ mCausalRR, respectively.

In the first scenario, there was no effect modification so 
the conditional and marginal risk ratios were equal. The effect 
of vaccination on infection with SARS-CoV-2 (0.84) was lower 
than for hospitalization with COVID-19 (0.96). In terms of 

estimation, the logistic regression performed well although 
standard confidence intervals undercovered the true conditional 
causal effect. IPTW performed better with higher coverage of 
the marginal causal effect when the propensity score was esti-
mated using the controls. The IPTW with propensity score esti-
mated using all of the data was highly biased in all scenarios.

In the second scenario, effect modification resulted in 
subpopulation vaccine effectiveness that differed by value of 
C: vaccine effectiveness was 0.98 in the first three quartiles 
of C, 0.70 in the fourth quartile, and only 0.56 in the 95th 
percentile. This is akin to vaccine effectiveness dropping 
off substantially only for the elderly. The overall marginal 
and conditional vaccine effectiveness were slightly different 
(0.75 and 0.77, respectively). Logistic regression incorrectly 
averaged over subgroup effects, resulting in a large overesti-
mate of vaccine effectiveness. When we stratified the logistic 
regression on subjects with C values in the fourth quartile, 
we obtained a mean estimate of 0.84, which was also biased 
for the vaccine effectiveness in that quartile (0.70). IPTW 
with the control-estimated propensity score performed very 
well for the estimation of the marginal causal effect. Logistic 
regression had a lower variance than IPTW because the for-
mer ignores the variability in vaccine effectiveness across 
members of the population.

In the third scenario, we calculated the true conditional 
and marginal risk ratios. Because interference was pres-
ent, these no longer have a causal interpretation. We also 

TABLE 1. Data Generation Structure in the Simulation Study

Variable Name and Type Description Generated Conditional On

Scenarios 1 and 2: generated from single population.

Scenario 3: generated in 10 blocks of fixed size.

C, conts Baseline confounder None

(Scenario 3 only:) Study-level baseline confounder (common value within 

block), e.g., local incidence

None

X, conts    

U1 and U2, bin Unmeasured covariates (causes of outcome) None

  Scenario 3: U2 depends on X

V, bin Vaccination C

    Scenario 3: +X and block

I1 = 1, bin Infection with other virus C, U1

I2 = 1, bin Infection with SARS-CoV-2 C, V, U1, U2, (1 − V) * U2

    Scenario 2: +V * C

    Scenario 3: +X

W[I == 1], bin Severe disease due to other virus C, V, U1

W[I == 2], bin Severe COVID-19 C, V, U1,

    Scenarios 1 and 2: +(1 − V ) * U2

    Scenario 3: +U2 and interaction between V and % vaccinated in block

H[W == 1], bin Hospitalization with severe symptoms C, V, U1

      Scenario 3: +% vaccinated in block

Study sample, scenarios 1 and 2: randomly sample n patients with H = 1

Study sample, scenario 3: randomly sample n = 10 patients with H= 1 per block

Each given variable is univariate and generated randomly conditional on the variables given in the rightmost column.
bin indicates binary (generated as Bernoulli), conts: continuous (generated as Gaussian).
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computed the direct effect of vaccination 1 ,−ψ cRR f , defined 
as the risk ratio of hospitalization with COVID-19 contrast-
ing vaccination status and fixing the proportion vaccinated 
in a block (f). We give this estimand for three values of 
f = 0.75,0.5,0.25. The impact of vaccination was the high-

est (0.86) when 75% of a block was vaccinated. The impact 
was lower when half or a quarter of the block was vacci-
nated, with direct effects of 0.80, and 0.76, respectively. In 
this scenario, logistic regression slightly overestimated the 
conditional association between the vaccine and hospitaliza-
tion with COVID-19. IPTW accurately estimated the mar-
ginal association. Both estimators gave misleading estimates 
if they were to be interpreted in a population with lower vac-
cination coverage.

Under partial interference by block, one may stratify 
estimation by block to directly estimate the causal param-
eters ψ cRR fm, for the block-specific vaccination prevalence 

value fm. Table 3 compares the results of pooled and block-
stratified estimation for a single simulated dataset, repre-
senting a census of the hospitalized patients (note that in the 
previous analysis, we took a random subset of patients from 
each block to represent participants in the study). The analy-
ses of the pooled data had a large sample size of 13,731, 
and both estimates produced little error relative to the true 
risk ratios. However, the stratified estimators had smaller 
sample sizes (particularly for controls) leading to much 
greater error in the estimates, in particular for the studies 
with lower vaccination prevalence.

TABLE 2. Simulation Study Results

  Truth Mean Est MC SE % Cov cRR % CovmRR

Scenario 1: Basic setting

 Estimands          

  1 − ψcRR
0.96        

  1 − ψmRR
0.96        

  1 − mRR for SARS-CoV-2 0.84        

 Estimators          

  Logistic regression   0.97 0.01 89 -

  IPTW      

   πcontrols   0.96 0.02 - 92

   πall   0.44 0.06  - 0

Scenario 2: Effect modification by C for SARS-CoV-2 infection

 Estimands      

  1 − ψcRR
0.77        

  1 − ψmRR
0.75        

  1 − mRR for SARS-CoV-2 0.44        

 Estimators          

  Logistic regression   0.91 0.06 39 -

  IPTW      

   πcontrols  0.74 0.15 - 93

   πall   0.18 0.05 - 0

Scenario 3: Partial interference by block vaccination prevalence, f

 Estimands          

  1 − ψcRR
0.86        

  1 − ψmRR
0.85        

  1 − mRR for SARS-CoV-2 0.48        

  1 − ψcRR,75
0.86        

  1 − ψcRR,50
0.80        

  1 − ψcRR,25
0.76        

 Estimators          

  Logistic regression   0.88 0.04 89 -

  IPTW      

   πcontrols  0.85 0.06 - 92

   πall   0.14 0.04 - 0

Aggregate results of the application of each method to 1,000 simulated datasets of n hospitalized patients where n = 500 for Scenarios 1 and 2 and n =1000 for Scenario 3. The 
results are given with respect to one minus the risk ratios, often referred to as “vaccine effectiveness.” ψcRR: the conditional risk ratio for hospitalization with COVID-19 in Equation (3);  
ψ mRR : the marginal risk ratio for hospitalization with COVID-19 in Equation (5).

% Cov indicates % of 95% confidence intervals that contain the true vaccine effectiveness (optimal is 95%); Mean est, mean estimate; MC SE, Monte-Carlo standard error of the 
estimate; mRR marginal risk ratio.
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DISCUSSION
The test-negative design is being increasingly used to 

study postlicensure vaccine effectiveness for COVID-19.4 In 
this article, we placed the design in a causal inference context 
by presenting a nonparametric model related to vaccination for 
SARS-CoV-2, infection, disease symptoms, and reception of 
care, such as hospitalization. Under this model, we derived the 
identifiable conditional risk ratio estimand under the statistical 
sampling framework that differentiated between inclusion crite-
ria (symptoms and accessing care) and measured data (covari-
ates, vaccination status, and infection status). We demonstrated 
that an IPTW estimator for the risk ratio can be implemented 
when the propensity score model is fit using only control data. 
This approach has also been used for case–control studies23,24 
where the validity of the propensity score estimation relies 
instead on a rare disease assumption. In the test-negative design, 
neither estimator requires a rare disease assumption. However, 
both estimators require that vaccination for COVID-19 has no 
impact on other diseases with similar symptoms.

The major benefit of IPTW is that, unlike logistic 
regression, it estimates marginal effects even when effect 
modification is present. While one may present stratified esti-
mates of vaccine effectiveness for different age subgroups, for 
instance, effect modification is likely to be high-dimensional, 
also depending on comorbidities and immunosuppressant 
drug usage. Thus there is likely effect modification occurring 
even within age groups, leading to potential bias in the logis-
tic regression estimator. IPTW avoids the issue of needing to 
stratify on a subset where there is no residual effect modifica-
tion. This also avoids having only small sample sizes to esti-
mate the effects of interest.

In vaccine studies, including randomized controlled 
trials, interference typically complicates the definition and 

estimation of causal estimands.17 In our discussion on inter-
ference, we made the strong assumption that one person’s out-
come (infection, severe symptoms, and hospitalization) can 
only be affected by their block’s vaccination coverage, and not 
the vaccination statuses of the individuals inside or outside of 
the block. A block may be approximately defined by the geo-
graphic region of the medical facility where the patient was 
admitted.5 If all confounders of individual vaccination and 
block vaccination coverage with the individual’s outcome are 
measured, then the conditional risk ratio is a ratio of weighted 
sums of block-specific causal risks. This means that we are 
contrasting averages of block-vaccination-rate-specific risks 
under (counterfactual) assignment of vaccination status to the 
individual. In the simulation study, we presented a scenario 
where the conditional and marginal risk ratios represented 
the impact of vaccination only under high vaccination cov-
erage. If we were to interpret either risk ratio as the impact 
of vaccination, we would be overestimating the vaccination 
effectiveness except when vaccination coverage is high. Note 
that this is one specific scenario but it illustrates that average 
associations over populations with heterogeneous vaccination 
coverage can be misleading and not represent a causal effect. 
We also showed that when presenting results by block,5 we 
target a causally interpretable block-stratified parameter, but 
risk greater estimation error due to smaller sample sizes.

Similarly, we could repeat this exercise by considering 
interference and effect-modification by local infection rates. 
The noted challenges point to the importance of stratifying 
the analysis by block when sample sizes are sufficiently large 
and developing valid pooled estimators under various types of 
interference for this design.

Although the test-negative design is not new, emerging 
evidence of COVID-19 vaccination effectiveness has put it in 

TABLE 3. Single Simulated Dataset From Scenario 3: Block-Stratified and Pooled Estimation of Vaccine Effectiveness With 
Logistic Regression and IPTW

Block
Population  

Size
Sample Size  
(n. Controls)

Population  
Vaccination Prevalence, f*

True Values  
1 − ψcRR, f*

Logistic Regression,  
Est (95% CI)

IPTW, Controls,  
Est (95% CI)

2 250,000 1,832 (31) 0.24 0.76  0.44 (−0.70, 0.77) 0.0 (−2.2, 0.65)

3 250,000 895 (26) 0.32 0.77 0.73 (0.35, 0.88) 0.64 (0.17, 0.84) 

1 250,000 523 (48) 0.37 0.77 0.69 (0.38, 0.84) 0.66 (0.34, 0.82) 

5 500,000 1,665 (73) 0.58 0.82 0.86 (0.77, 0.92) 0.86 (0.75, 0.92)

4 250,000 346 (38) 0.69 0.84 0.89 (0.77, 0.96) 0.92 (0.81, 0.96) 

8 500,000 1,578 (78) 0.75 0.86 0.84 (0.73, 0.91) 0.79 (0.64, 0.88) 

10 1,000,000 2,816 (134) 0.77 0.87 0.93 (0.88, 0.96) 0.90 (0.84, 0.94) 

9 1,000,000 2,379 (147) 0.78 0.87 0.89 (0.83, 0.93) 0.85 (0.76, 0.90) 

6 500,000 1,121 (78) 0.79 0.87 0.88 (0.78, 0.93) 0.84 (0.71, 0.91) 

7 500,000 576 (77) 0.83 0.88 0.91 (0.82, 0.96) 0.87 (0.74, 0.94) 

Analysis of pooled data, n = 13,731: Adjusting for X 0.87 (0.84, 0.89) 0.85 (0.81, 0.87)

 Adjusting for block 0.86 (0.84, 0.87) 0.83 (0.80, 0.86)

This analysis was conducted on a single simulated dataset representing a census of hospitalized patients, allowing for a larger sample size in each block. IPTW was implemented 
with weighted logistic regression where only controls were used to fit the propensity score model. The stratified analyses used 10% weight truncation, but this had negligible impact on 
the estimates of all blocks except for block 2 where the estimation was unstable due to only having five vaccinated controls.
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the international spotlight. Careful study of this design and 
the interpretation of estimates obtained under this design are 
ongoing research priorities.
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APPENDIX: PROOF OF CONSISTENCY FOR THE 
IPTW ESTIMATOR

Claim: Let ETND  represent an expectation under test-
negative design biased sampling and E  be an expectation 
under unbiased sampling. Let Y I W H= ( = 2, = 1, = 1)I , the  
outcome of interest. Let q I W H0 = ( 0, = 1, = 1)Pr ≠  be  
the marginal probability of having the inclusion criteria for the 
study. Then, we have that

E
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Y V v q

V v
I W H V v

( = )

( = = )
= { ( = 2, = 1, = 1 = , = )}.0

Pr |
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C c
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Proof. Let prC c( )  and p I W HC c( 0, = 1, = 1)| ≠  be 
the probability density functions of the covariates C under 
simple random sampling and test-negative design sampling, 
respectively. Also let S I W H= ( 0, = 1, = 1)I ≠  indicate the 
presence of inclusion criteria for the test-negative design.
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Thus, if we weight observations by the inverse of 
Pr |( = = )V v C c  (which, as we recall, must be modeled using 
only the control data), we can recover the marginal mean of 
the outcome under a vaccination status v up to the constant q0. 
Therefore, one can only estimate the marginal probability of 
the outcome (i.e., the numerator of Equation 5) with knowl-
edge of q0. But by taking a ratio, q0 cancels out, so it is not 
needed for estimating the risk ratio.
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