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Purpose:Weproposed adeep convolutional neural network (CNN), namedRetinal Fluid
Segmentation Network (ReF-Net), to segment retinal fluid in diabetic macular edema
(DME) in optical coherence tomography (OCT) volumes.

Methods: The 3- × 3-mm OCT scans were acquired on one eye by a 70-kHz OCT
commercial AngioVue system (RTVue-XR; Optovue, Inc., Fremont, CA, USA) from 51
participants in a clinical diabetic retinopathy (DR) study (45 with retinal edema and
six healthy controls, age 61.3 ± 10.1 (mean ± SD), 33% female, and all DR cases were
diagnosed as severe NPDR or PDR). A CNNwith U-Net-like architecture was constructed
to detect and segment the retinal fluid. Cross-sectional OCT and angiography (OCTA)
scans were used for training and testing ReF-Net. The effect of including OCTA data for
retinal fluid segmentation was investigated in this study. Volumetric retinal fluid can be
constructed using the output of ReF-Net. Area-under-receiver-operating-characteristic-
curve, intersection-over-union (IoU), and F1-score were calculated to evaluate the
performance of ReF-Net.

Results:ReF-Net showshigh accuracy (F1= 0.864± 0.084) in retinal fluid segmentation.
Theperformance canbe further improved (F1= 0.892± 0.038) by including information
from both OCTA and structural OCT. ReF-Net also shows strong robustness to shadow
artifacts. Volumetric retinal fluid can providemore comprehensive information than the
two-dimensional (2D) area, whether cross-sectional or en face projections.

Conclusions: A deep-learning-based method can accurately segment retinal fluid
volumetrically on OCT/OCTA scans with strong robustness to shadow artifacts. OCTA
data can improve retinal fluid segmentation. Volumetric representations of retinal fluid
are superior to 2D projections.

Translational Relevance: Using a deep learning method to segment retinal fluid
volumetrically has the potential to improve the diagnostic accuracy of diabetic macular
edema by OCT systems.

Introduction

Diabetic macular edema (DME) is the most
common cause of vision loss in diabetic retinopathy
(DR).1 Accurate detection of DME for screening and
treatment response is critical in preventing vision loss.2
Currently, clinicians use structural optical coherence

tomography (OCT) to diagnose DME from retinal
thickness maps, central macular thickness (CMT), and
qualitative inspection of the raster scans.3 CMT is an
imperfect biomarker forDME, because atrophy caused
by cell loss can reduce the thickness in the presence
of edema, and the presence of other pathology such
as epiretinal membranes can increase the thickness
without edema.4,5 Segmentation and quantification of
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retinal fluid cysts provide a more specific biomarker
for DME that is useful even when other confounding
abnormalities are present.6

For a more accurate measurement of retinal
fluid cysts, several reading centers have explored the
measurement of retinal fluid area on cross-sectional
commercially available OCT.7–9 However, quantifica-
tion of fluid based on the quantity of fluid present
may not be accurately captured by cross-sections at
large step intervals. Retinal fluid cysts are inherently
three-dimensional, and measurements using CMT
and cross-sectional OCT cannot precisely measure
volumes, only projected areas. With increasing laser
speed, the sampling density in commercially available
OCT/OCTA volumes is getting higher, which provides
a basis for volumetric measurement of retinal fluid.
Previously, we presented a fuzzy level-set method10
to measure retinal fluid volume in OCT/OCT angiog-
raphy (OCTA) scans of DME eyes. This approach,
however, was vulnerable to the shadow artifacts caused
by vitreous floaters and large vessels, as well as pupil
vignetting.

Contemporary deep-learning-based methods
have shown a great advantage for image segmenta-
tion tasks.11–18 In ophthalmology, researchers have
proposed a number of deep neural networks to solve
specific problems, such as retinal layer segmenta-
tion in OCT,19–21 retinal vessel segmentation in
fundus photography,22,23 choroidal neovasculariza-
tion segmentation,24 high-resolution reconstruction
on OCT angiograms,25 and retinal nonperfusion area
segmentation in OCTA.26–28 Deep-learning–based
retinal fluid segmentation on cross-sectional OCT has
also been reported by many scholars. Bai et al.29 use
a fully convolutional neural network (CNN) and a
fully connected conditional random field method to
segment cystoid macular edema. This method can get
good segmentation results when the fluid deposits are
extensive, but it is not sensitive to small target regions.
Schlegl et al.30 propose an encoder-decoder-based
deep learning method to detect and quantify macular
fluid in OCT images that achieved high accuracy.
To solve the challenges due to speckle noise and
imaging artifacts, Girish et al.31 add denoising and
subretinal layer segmentation during preprocessing
before feeding the data to a CNN, which improve
performance. Denoising also helped their algorithm
perform well on data from different instruments.
Li et al.32 apply a three-dimensional (3D) CNN on
Spectralis OCT (Heidelberg Engineering Inc., Heidel-
berg, Germany) scans and achieved high performance,
but the sparse sampling density hindered the accurate
measurement of fluid volume. Some researchers tried
to combine a deep-learning-based method with a

traditional image processing method to get a better
segmentation result.33 However, all of these methods
segment retinal fluid fromOCT data alone.We hypoth-
esize that OCTA signal could improve segmentation
accuracy, because retinal fluid and blood flow are never
collocal.

In this study, we propose a new deep CNN, named
Retinal Fluid Segmentation Network (ReF-Net), to
segment intraretinal and subretinal fluid from simul-
taneously generated volumetric OCT/OCTA scans.
Our network provides three key innovations: first, we
include OCTA data in the network input. As part of
this work, we characterized the effect of this inclu-
sion on network performance. Second, we provide 3D
segmentation results and data representations. Last,
our network shows strong, robust performance with
different types of shadow artifacts.

Methods

Data Acquisition

Volumetric OCT data were acquired over the
central 3- × 3-mm region using a 70-kHz OCT
commercial AngioVue system (RTVue-XR; Optovue,
Inc., Fremont, CA, USA) centered at 840 nm with
a full-width half-maximum bandwidth of 45 nm.
Two repeated B-scans were taken at each 304 raster
positions, and each B-scan consists of 304 A-lines.
The structural OCT was generated by averaging the
two repeated B-scans, and the OCTA was generated
by using the split-spectrum amplitude-decorrelation
angiography algorithm34 to compute the decorrelation
between the two repeated B-scans, simultaneously.
Projection-resolved OCTA (PR-OCTA) removed
shadow graphic artifacts from the superficial vascu-
latures while preserving true flow signal in deeper
layers.35

Convolutional Neural Network Architecture

Deep convolutional neural networks (CNNs) are
superior to traditional methods for semantic segmen-
tation tasks. U-Net–like CNNs have high adaptabil-
ity to medical image segmentation due to skip connec-
tions that enable feature extraction with minimal loss
of resolution.36 In this study, we adopted U-Net–like
architecture and designed ReF-Net to segment retinal
fluid. To increase its capability for feature extrac-
tion, we applied some modifications to the original U-
Net (Fig. 1A). A Multi-scale feature extraction block
(Fig. 1B), inspired by Inception,37 is placed after the
input layer. This block can extract multiscale features
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Figure 1. The architecture of deep convolutional neural network constructed in this study. (A) ReF-Net architecture. (B) Multi-scale block.
(C, D) Residual convolutional blocks.

Figure 2. Representative OCT/OCTA B-scan showing retinal fluid.
(A) OCT B-scan. (B) OCTA B-scan. (C) Ground truth map with three
categories, background (green), retinal tissue (black), and retinal fluid
area (red).

that enhance the ability of the neural network to detect
targets with different sizes.26,27 We also replaced the
regular forward convolutional layers with residual units
(Figs. 1C, 1D), borrowed from ResNet,38 to increase
the feature extraction ability of ReF-Net. More details
on ReF-Net appear in the Appendix.

Dataset Preprocessing

The data we used in our experiment contain three
types of image: structural OCT B-scans (Fig. 2A),
OCTA B-scans (Fig. 2B), and the ground truth map
(Fig. 2C). We collected data from a total of 51 eyes
(45 with DME and six healthy controls) from a clinical
DR study, and each eye has two repeated volumetric
scans. To remove excessive speckle noise, each B-scan
was enhanced by performing a moving average with

the two adjacent B-scans. In this study, each volumetric
scan contained a total of 304 B-scans.

Previously, researchers only used OCT data to
segment retinal fluid. Because the fluid region does not
contain any vasculature, the simultaneously computed
OCTA data may contribute to segmentation accuracy.
To verify that OCTA data can indeed improve the
segmentation performance, we designed two versions
of the CNN in this study, each of which works with
different inputs. The input of the first network (ReF-
Net-OCT) only contains OCT data, and the other
one (ReF-Net-OCTA) contains both OCT and OCTA
data. Before feedingOCT andOCTAdata toReF-Net-
OCTA, an image fusion operation (Equation 1) was
applied to merge these two types of data together:

Ifusion = (1 − β ) × IOCT + β × IOCTA. (1)

Here, Ifusion is the fused data, β ∈ [0, 1] is a fusion
factor, and IOCT and IOCTA represent the OCT and
OCTA data, respectively. To get the optimal parame-
ter value of β, we tested 12 values from 0.05 to 0.60 at
intervals of 0.05.

The ground truth map that was used to train
ReF-Net contains three categories: background, retinal
tissue, and retinal fluid area. To obtain the ground
truth, three graders manually delineated retinal fluid
area using a customized graphical user interface
(Fig. 3A). A guided bidirectional graph search (GB-
GS) method was used to segment retinal tissue bound-
aries.39 We merged three manual grading outputs
together by using a pixel-wise voting method to obtain
the final ground truth map (Fig. 3B). In rare instances
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Figure3. Manual delineationof theground truth for training. (A) The in-housegraphical user interface software. (B) Threegradersmanually
delineated the background (green), retinal tissue (black), and retinal fluid area (red). Pixel-wise voting method to generate the final ground
truth map.

when three graders assigned a pixel to three disparate
categories (one vote for background, one vote for
tissue, one vote for fluid), the graders would reach a
consensus through discussion.

Ref-Net Hyperparameter Settings

Loss Function
As a multiclass segmentation task, retinal fluid

segmentation encounters a serious category imbalance
problem because of the huge difference in the area
between these three categories. To suppress the effect
of the category imbalance, we used a categorical cross-
entropy loss combined with weighted Jaccard coeffi-
cient loss:27

L =
N∑
i=1

Ji × wi,
N∑
i=1

wi = 1,

J =
(
1 −

∑
x y(x)×ŷ(x)+α∑

x(y(x)+ŷ(x))−∑
x y(x)×ŷ(x)+α

)
× α,

(2)

where N is the number of categories, Ji is the Jaccard
loss of ith category, and wi is the weight of ith category
associated with Jaccard coefficient Ji. In our experi-
ment, we associated the three categories (retinal fluid
area, retinal tissue, and background) with weights w =
(0.5, 0.25, 0.25). We set a higher value to the retinal
fluid region tomake the ReF-Net paymore attention to
this category. The y and ŷ denote the ground truth and
output of the ReF-Net, respectively, x is the position of
each pixel in the sample. The α is a smoothing factor
usually set to 10027 to get a similar gradient change
from a similar loss change.

Optimizer and Training
A modified Adam algorithm, AdamW,40 was used

to train ReF-Net by minimizing the weighted Jaccard
coefficient loss. The initial learning rate was set to
0.001. Training batch size was set to 8. We used a
global learning decay strategy that reduces the learn-
ing rate by 90% when the loss reaches a plateau. Early
stopping was used to stop the training phase when the
validation loss did not show a decrease over 15 train-
ing epochs. The total dataset (51 eyes) was randomly
split into a training set (40 eyes) and test set (11 eyes).
The training set consisted of 36 DME cases and four
healthy controls, the testing set consisted of nine DME
cases and two healthy controls. In the hyperparameters
tuning step, we split five cases (fourDMEcases and one
healthy control) to form a validation set from the train-
ing set. After parameters tuning, we used the whole
training set (including the cases from the validation set)
to train our model. To increase the cases available for
training, we augmented the training data with horizon-
tal flips. We only used horizontal flips because they are
anatomically reasonable (a horizontal flip turns a left
eye into a right eye, and vice-versa), and just this trans-
formation provided sufficient data for training.

Results

ReF-Net was implemented in Python 3.7 withKeras
(Tensorflow-backend) on a PC with an Intel i7 CPU,
twoGTX 1080Ti GPUs, and 64GBRAM. In the train-
ing phase, each training epoch takes about 13 minutes,
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Table 1. Agreement (in Voxels) Between Automated Detection and Manual Delineation of Volumetric Retinal
Fluid Region (Mean ± Standard Deviation)

CNNs AROC IoU F1-Score P Valuea

ReF-Net-OCT 0.992 ± 0.011 0.770 ± 0.124 0.864 ± 0.084 –
ReF-Net-OCTA (β =0.05) 0.995 ± 0.004 0.775 ± 0.107 0.870 ± 0.073 0.6541
ReF-Net-OCTA (β =0.10) 0.996 ± 0.005 0.787 ± 0.124 0.875 ± 0.086 0.2841
ReF-Net-OCTA (β =0.15) 0.996 ± 0.007 0.800 ± 0.096 0.885 ± 0.064 0.1063
ReF-Net-OCTA (β =0.20) 0.996 ± 0.003 0.807 ± 0.061 0.892 ± 0.038 0.0725
ReF-Net-OCTA (β =0.25) 0.992 ± 0.008 0.771 ± 0.089 0.868 ± 0.060 0.6134
ReF-Net-OCTA (β =0.30) 0.992 ± 0.007 0.760 ± 0.083 0.860 ± 0.057 0.5321
ReF-Net-OCTA (β =0.35) 0.991 ± 0.009 0.728 ± 0.097 0.840 ± 0.065 0.1220
ReF-Net-OCTA (β =0.40) 0.993 ± 0.006 0.716 ± 0.100 0.830 ± 0.069 0.0728
ReF-Net-OCTA (β =0.45) 0.992 ± 0.013 0.672 ± 0.128 0.797 ± 0.091 0.0043
ReF-Net-OCTA (β =0.50) 0.989 ± 0.015 0.664 ± 0.169 0.784 ± 0.137 0.0037
ReF-Net-OCTA (β =0.55) 0.988 ± 0.013 0.636 ± 0.195 0.757 ± 0.172 0.0042
ReF-Net-OCTA (β =0.60) 0.988 ± 0.017 0.638 ± 0.190 0.760 ± 0.162 0.0026

Bold indicates best performance.
aPaired samples t-test was used for F1-score between ReF-Net-OCT and ReF-Net-OCTAs.

and each model reached the best performance after 55
epochs on average.

Segmentation accuracy

The performance of each model (Table 1) was
measured for the area-under-receiver-operating-
characteristic-curve (AROC), intersection-over-union
(IoU; also known as Jaccard coefficient), and F1-score,
defined as

F1 = 2 × TP
2 × TP + FP + FN,

(3)

where TP is true positive, FP is false positive, and FN is
false negative. ReF-Net-OCT can achieve good results
using only the OCT data as the input, which is expected
because the retinal fluid region shows extremely low
OCT reflectance intensity compared to the healthy
retina. For ReF-Net-OCTA, the AROC, IoU and F1-
score depend on the β parameter in Equation 1, with
each reaching a peak when β = 0.20. The value of β

regulates the proportion of information contributed to
segmentation from both structural OCT and OCTA.
As β increases, so does the proportion of OCTA infor-
mation used for decisionmaking, while the correspond-
ing proportion of information from OCT decreases.
The network achieved its best performance with β=
0.20; thus we can confirm that the information from
the OCT data played the major role in the segmen-
tation, although OCTA still improved performance.
Comparing the segmentation results of ReF-Net (ReF-
Net-OCTA, β= 0.20) (Fig. 4B) to the ground truth

Figure 4. Comparison between ReF-Net-OCTA (β = 0.20) and
ground truth on structural OCT B-scans. (A) Structural OCT B-scans.
(B) Segmented fluid maps from ReF-Net (blue) and (C) the ground
truth maps (red) overlaid on structural cross-sections. (D) Differ-
encemapbetween segmented fluid fromReF-Net and ground truth.
White area is the overlap region of two maps. The blue and red in
(D) show pixels exclusively in the algorithm output or ground truth,
respectively.

maps (Fig. 4 C), the large overlapping areas (Fig. 4D)
indicate the high accuracy of ReF-Net.

Resistance to Shadow Artifacts

Shadow artifacts caused by large vessels, vitreous
floaters, and pupil vignetting can reduce the signal
reflectance strength in retinal tissue, which reduces
contrast in shadow area. To verify the robustness of
ReF-Net on shadow artifacts, we applied ReF-Net
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Figure 5. Automated retinal fluid segmentation results on shadow artifact effected scans. Yellow arrows indicate shadow artifacts. (Row
A) Example case with large vessel shadow artifacts. (Row B) Example case with vitreous floater shadow artifacts. (Row C) Example case with
pupil vignetting shadow artifacts. (Column 1) Reflectance en face images, with the green line indicating the position of the B-scan shown
in the other columns. (Column 2) Raw cross-sectional scans. (Column 3) Ground truth map (red) overlaid on B-scans. (Column 4) ReF-Net
(ReF-Net-OCTA, β = 0.20) outputs (blue) overlaid on the B-scans.

(ReF-Net-OCTA, β =0.20) on cases with three types
of typical shadow artifacts (Fig. 5); ReF-Net could
handle all three types. This is likely because ReF-Net
does not just rely on contrast information between the
fluid and tissue, but also on other geometrical informa-
tion extracted by convolutional kernels.

Volumetric Versus 2D Projected Retinal Fluid
and Cross-Sectional Quantification

By applying the best model (ReF-Net-OCTA, β
= 0.20) to each frame of OCT/OCTA data, we
can construct a 3D segmentation. The total fluid
volume in the retina is a prognostic indicator for
visual acuity.41 The average percent difference between
the fluid volume predicted by Ref-Net-OCTA with
β = 0.20 and the ground truth is 8.71% ± 4.48%
(mean ± SD). Compared to the 2D en face projected
retinal fluid regions overlaid on projected OCT
reflectance (Figs. 6A1–6D1), the 3D retinal fluid region
(Figs. 6A2–6D2) is more intuitive. Furthermore, the
3D volumetric result produces a more meaningful
quantification than the 2D projected area, which may
not reflect the actual extent of the fluid region. In
(Figs. 6A1, 6B1); for example, although the two DME

cases have similar fluid areas in the 2D en face
image, the actual fluid volumes differ by a factor of 2
(Figs. 6A2, 6B2). Similarly, cases with very different 2D
projected fluid area on en face image (Figs. 6C1, 6D1),
may have similar fluid volume (Figs. 6C2, 6D2).

Figure 7 further demonstrates how 2D fluid
measurement on cross-sectional raster scans are more
likely to miss a substantial portion of retinal fluid
because of undersampling. Using densely sampled
OCT andOCTA data, ReF-Net can render retinal fluid
cysts in 3D (the volumetric of fluid is shown in Fig. 7B,
blue) and reveal anatomic changes related to macular
edema more completely.

Recovering DME Diagnosis From a
False-Negative Cmt Measurement

Central macular thickness (CMT) is a commonly
used biomarker for DME diagnosis. Major clini-
cal trials have used CMT greater than 2 SD from
the population mean for inclusion criteria in clini-
cal trials.42 Because there is a significant population
variation in retinal thickness, and specific pathology
such as epiretinal membrane or retinal atrophy can
cause changes unrelated to macular edema, diagnosis
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Figure 6. Comparison between 2D projected fluid areas and 3D fluid volumes in DME cases. (A1-D1) 2D structural OCT and retinal fluid
projections. (A2-D2) 3D structural OCT and retinal fluid representations. Apparent fluid areas can be similar while volumes are quite different
(A, B), and apparent fluid areas can be quite different while volumes are similar (C, D). In such cases, the 2D projection is misleading.

Figure 7. A DME case in which a substantial portion of retinal fluid
would be missed by under-sampled scans. (A) Infrared photograph
with sampling positions (green lines) from a Spectralis OCT (Heidel-
berg Engineering Inc.) scan. (B) Dense volumetric OCT (RTVue-XR;
Optovue, Inc.) with retinal fluid volume (blue). The yellow square
in (A) indicates the scanning position in (B). Red arrows indicate
the retinal fluid missed by the undersampled scan, which can be
detected by our algorithm using the densely-sampled OCT. Green
lines indicate the sampling position of Spectralis OCT scan.

of DME solely based on CMT measurements can be
unreliable. Figure 8 shows an eye with a CMT of 217
μm, which does not meet the CMT definition of center-
involved DME, but it has a known clinical diagnosis
of DME with retinal fluid caused by DME.3 ReF-Net
automatically detected a fluid volume of 0.044 mm3.

Longitudinal Study of Retinal Fluid In
Oct/Octa Scans

The change in retinal fluid volume is an important
indicator of treatment response in DME. Using our
algorithm, it is easy to visualize fluid volume changes

longitudinally. To do so, we register the baseline and
follow-up scans (Figs. 9A, 9B) using Bruch’smembrane
and large retinal vessels as a reference for the axial
and lateral directions, respectively. After the omnidirec-
tional registration (Fig. 9C), the changes in the shape
and size of the fluid (Fig. 9D) can be easily visualized.
Furthermore, we can identify the vascular changes
caused by retinal fluid accumulation by overlaying
the retinal fluid volumes on the angiographic volumes
(Figs. 9E, 9F).

Discussion

We have presented a deep-learning-based method
(ReF-Net) for segmenting and quantifying retinal fluid
in 3D using OCT and OCTA volumes. We demon-
strated that OCTA data enhances the segmentation
task, and the 3D approach provides a more intuitive
and complete representation of the anatomic changes
in DME than 2D cross-sections or projections.

ReF-Net is a U-Net-like convolutional neural
network. We added several useful modifications to
enhance its feature extraction capability, such as
a multi-scale feature extraction block and residual
blocks. We also compared our network’s performance
to previously published results. For a fair comparison,
all hyperparameters in the various networks were set
to the same value. ReF-Net achieved the best perfor-
mance out of the networks we examined (Table 2).
The methods proposed by Bai et al.29 and Schlegl
et al.30 (both of which were based on fully convolu-
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Figure 8. A diabetic macular edema (DME) case with a false-negative result from central macular thickness (CMT) was automatically
detected and measured by ReF-Net. (A) Retinal fluid volume segmented by ReF-Net. (B) Cross-sectional structural OCT. (C) Retinal thick-
ness map and average thickness distribution in early treatment diabetic retinopathy study (ETDRS) grid. The CMT value is 217, which does
not meet the definition of DME.

Figure 9. Local dynamics of retinal fluid in longitudinalmonitoring of aDMEeye. (A) Baseline. (B) One year follow-up after the treatment. (C)
Registered baseline and follow-up scans. (D) Changes in the retinal fluid region. (E) Baseline retinal fluid area overlaid on an inner retinal OCT
angiogram. (F) Follow-up retinal fluid area overlaid on an inner retinal OCT angiogram. The yellowarrow indicated the change of vasculature
caused by retinal fluid.

tional neural networks) show lower performance than
U-Net–like CNNs (the other three methods in Table
2). This may be because the skip connections could
transfer feature information from the initial layers
to the deeper layers directly, thereby improving the

CNN’s ability to identify minute details in the target.
Comparing to the method of Girish et al.,31, ReF-Net
shows higher accuracy, which is likely because of the
multiscale feature extraction block and residual blocks,
which made ReF-Net more adaptable to different
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Table 2. Performance Comparison Between Deep-Learning-Based Methods (Mean ± SD)

Methods F1-Score IoU AROC

Bai et al.29 0.836 ± 0.084 0.727 ± 0.119 0.989
Schlegl et al.30 0.842 ± 0.068 0.733 ± 0.102 0.990
Girish et al.31 0.871 ± 0.075 0.779 ± 0.113 0.992
Li et al.32 0.862 ± 0.073 0.764 ± 0.106 0.991
ReF-Net-OCTA, β = 0.20 0.892 ± 0.038 0.807 ± 0.061 0.996

sizes of edema. Although Li’s method32 reported high
accuracy on sparsely sampled OCT volumes, in our
dataset, however, its performance did not surpass ReF-
Net, which may be because the architecture of Li’s
method was not optimized for high sampling density
OCT volumes.

The main feature useful for retinal fluid segmen-
tation is the low reflectance of fluid regions in struc-
tural OCT scans. Additionally, because the fluid region
does not contain any flow signal, OCTA data have
the potential to improve segmentation performance.
In this study, we analyzed the contribution of OCTA
data to ReF-Net-OCTA’s performance. By merging
OCT and OCTA data with different fusion factors,
we trained 12 different models based on the ReF-
Net-OCTA architecture, each with different segmen-
tation accuracy. Experimental results show that ReF-
Net-OCTA achieves the best performance (F1-score
> 0.89) when the fusion factor equals 0.2 (Table 1).
The accuracy of ReF-Net-OCTA is superior to ReF-
Net-OCT for this value of β, indicating that OCTA
data is helpful to segment fluid correctly. While the
inclusion of OCTA data did improve network perfor-
mance (Table 1), the improvement was not statistically
significant (β = 0.2; P = 0.0725, paired samples t-test).
Nonetheless we still believe that inclusion of OCTA
data improved performance, given both the higher
accuracy demonstrated by the network with OCTA
data included, and the clear relationship between the
β parameter and network performance. At this and
similar values, the β network performance was also
most consistent, as indicated by the low measurement
error values. Additional benefits of using OCT/OCTA
data are as follows: (1) high-sampling-density struc-
tural OCT andOCTA can be simultaneously processed
from the same scan; (2) they are inherently coregis-
tered, facilitating the study on anatomic and angio-
graphic pathologies; (3) OCTA vasculatures can be
used for registering multiple scans during longitudinal
studies.

Because the input to ReF-Net is a single B-
scan, ReF-Net is compatible with conventional cross-

sectional data. Additionally, ReF-Net also achieves
high performance on scan volumes with structural
OCT only, which allows us to apply ReF-Net to the
scans that only have OCT data at the expense of
some accuracy loss. Furthermore, ReF-Net does not
require segmented layers for its input. This is a criti-
cal advantage in this context, since retinal slab segmen-
tation is especially error prone in the presence of
pathological disruptions to normal slab anatomy, of
which the presence of retinal fluid is an important
example. ReF-Net also shows strong robustness on
different types of topical shadow artifacts, including
large vessel shadows, vitreous floater shadows, and
pupil vignetting shadows. ReF-Net was trained on
3- × 3-mm central macular scans, but it could also
easily be migrated to larger scan patterns or the scans
acquired from other OCT instruments using transfer
learning.43

Although our method can segment retinal fluid with
high accuracy, there are some drawbacks that may
hinder its application. Retinal fluid can be classified
into intraretinal fluid and subretinal fluid according to
location, with each category having different diagnos-
tic and prognostic value.44 Because a CNN is insen-
sitive to the location of the target and the different
types of retinal fluid have similar features, we labeled
all the fluid regions in one category to help ReF-Net
learn consistent features in order to improve its perfor-
mance. Thus, ReF-Net cannot distinguish these two
types of retinal fluid. However, differentiating type
could be easily accomplished by an additional retinal
layer segmentation step. Alternatively, other unidenti-
fied fluid accumulation features that could be discov-
ered with the precise 3D segmentation provided by
ReF-Net could possibly serve as superior biomarkers
than the intra/subretinal fluid classification. Another
limitation concerns the features used for decision
making. The most obvious feature indicating retinal
fluid is the high contrast between the fluid region
and retinal tissue. In future work, we can try to
improve the performance of ReF-Net by resolving this
drawback.
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Conclusions

In summary, we designed a deep-learning-based
method named ReF-Net to segment volumetric retinal
fluid on OCT/OCTA scans. By combining the OCT
and OCTA data as the input to the network, ReF-
Net demonstrated that OCTA data can improve retinal
fluid segmentation. Our results indicate volumetric
representations of retinal fluid can provide more
comprehensive information than 2D either cross-
sections or projections.
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