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Abstract
The fact that the rapid and definitive diagnosis of autism cannot be made today and that autism cannot be treated provides an 
impetus to look into novel technological solutions. To contribute to the resolution of this problem through multiple classifica-
tions by considering age and gender factors, in this study, two quadruple and one octal classifications were performed using 
a deep learning (DL) approach. Gender in one of the four classifications and age groups in the other were considered. In the 
octal classification, classes were created considering gender and age groups. In addition to the diagnosis of ASD (Autism 
Spectrum Disorders), another goal of this study is to find out the contribution of gender and age factors to the diagnosis of 
ASD by making multiple classifications based on age and gender for the first time. Brain structural MRI (sMRI) scans of 
participators with ASD and TD (Typical Development) were pre-processed in the system originally designed for this purpose. 
Using the Canny Edge Detection (CED) algorithm, the sMRI image data was cropped in the data pre-processing stage, and 
the data set was enlarged five times with the data augmentation (DA) techniques. The most optimal convolutional neural 
network (CNN) models were developed using the grid search optimization (GSO) algorism. The proposed DL prediction 
system was tested with the five-fold cross-validation technique. Three CNN models were designed to be used in the system. 
The first of these models is the quadruple classification model created by taking gender into account (model 1), the second is 
the quadruple classification model created by taking into account age (model 2), and the third is the eightfold classification 
model created by taking into account both gender and age (model 3). ). The accuracy rates obtained for all three designed 
models are 80.94, 85.42 and 67.94, respectively. These obtained accuracy rates were compared with pre-trained models by 
using the transfer learning approach. As a result, it was revealed that age and gender factors were effective in the diagnosis 
of ASD with the system developed for ASD multiple classifications, and higher accuracy rates were achieved compared to 
pre-trained models.
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Introduction

ASD is a neurodevelopmental disease that occurs in early 
childhood and is characterized by communication disorders 
and difficulties in socialization in children [1, 2]. There has 

been an increase in the incidence of Autism Spectrum Dis-
order over the years, and while one in every 150 children in 
America was autistic in 2000, it is reported that one in every 
54 children has autism in 2020 [3, 4].

Despite an extensive range of signs of ASD [5], a compli-
cation that prolongs the diagnosis process is the high rate of 
comorbidity. The comorbidity problem in children with ASD 
means an extra disability like a vision problem or another 
health problem [6]. A study revealed that 88.5% of children 
diagnosed with autism had at least one of the neurodevel-
opmental disorders such as attention deficit hyperactivity 
disorder (ADHD), intellectual disability and developmental 
coordination disorder [7]. The incidence of autism is higher 
in boys than in girls [8]. Although the reason for this is 
not clear, hypotheses such as Extreme Male Brain, Female 
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Protective Effect, and Female Autism Phenotype are being 
studied [9]. The lack of a known cure for autism, the long 
diagnosis and treatment process [10], and the high degree 
of comorbidity all indicate that more scientific work is 
needed on autism [11]. There is an important need to study 
the influence of age and gender factors on ASD diagnosis 
and to evaluate the possibility that multiple classifications, 
including age and gender, may contribute to the rapid early 
diagnosis of ASD. Recent genetic works show that ASD 
occurs differently between males and females and between 
youths and adults [12]. Artificial intelligence and machine 
learning (ML) techniques [13, 14] such as DL provide fresh 
opportunities to discover biomarkers for diagnosis of ASD 
taking into account factors like age and gender that affect 
ASD, to shorten the diagnostic process of ASD, to avoid 
subjective opinions of different doctors and possibly reach 
a definitive diagnosis [15–17].

DL techniques have found extensive application in  
medical and neurological fields such as seizure detection  
[18], seizure prediction [19–21], epilepsy diagnosis and 
classification [22, 23], autism [24–27], optimization of 
neuroprosthetic vision [28], post-stroke rehabilitation  
with motor imagery [29], sentiment analysis [30], emotion  
recognition [31, 32], patient-specific quality assurance [33],  
classification of the intracranial electrocorticogram [34], 
brain-computer interface (BCI) for discriminating hand 
motion planning [35], dyslexia biomarker detection [36–38], 
and many other fields such as mobile robots [39], drone-
based water rescue and surveillance [40], and structural 
health monitoring in recent years [41–43].

The design and effectiveness of a DL method for diag-
nosing ASD varies according to the data set. The data set 
can be numeric or two-dimensional graphical, or visual data. 
Numerical data can be behavioral [44, 45], eye-following  
[46], or fingerprint data [47–49], converted into numeri-
cal data by pre-processing. Optical data are brain  
structural magnetic resonance scanning images (sMRI) 
or brain functional magnetic resonance scanning images 
(fMRI). Using numerical or visual data to train an ML algo-
rithm for ASD diagnosis is ordinarily possible by deter-
mining the distinguishing features or using an automated 
feature extraction technique [50–52]. These features may be 
structural gray matter (GM) values acquired from cortical 
thickness (CT) [53–55], GM density (GMd) values from 
voxel-based morphometry (VBM) [56], diffusion-weighted 
imaging (DWI) [fractional anisotropy (FA)] in white matter 
(WM)) microorganism changes [57], connectivity matrices 
[58], parameters from network analysis [59–61], and rest-
ing/duty state fMRI information [62, 63]. However, if a 
type of DL known as convolutional neural network (CNN) 
is utilized, direct classification is performed because feature 
extraction is done automatically. This is known as end-to-
end deep learning [64]. For this reason, the CNN method is 

employed in this research as the most suitable method for 
rapid diagnosis of ASD.

In the study, the influence of a certain age range and gen-
der on the diagnosis of ASD is examined by performing 
multiple classifications of ASD based on age and gender. 
A DL system has been introduced that can diagnose ASD 
for certain age ranges and gender. The advantages and dif-
ferences of the current research compared to previously-
reported research on ASD diagnosis, binary classification, 
and/or multiple classification works can be listed as follows. 
First, multiple classifications, including age and gender, 
were performed in this study, and to the best of the authors’ 
knowledge, this has never been done before. Second, com-
pared to other works that employ a DA method, the number 
of image data in this study is huge and acquired from dif-
ferent brain regions. This is advantageous in terms of the 
generalizability of the models. Third, CNN was designed 
from scratch and utilized as a system element in this study. 
Thus, feature extraction is done automatically. Fourth, using 
a transfer learning (TL) method, today’s popular pre-trained 
models were trained and tested with the same data set.

The following sections are organized as follows. In the next 
section, works on ASD classification using brain MRI images, 
which also considered other factors like age and gender, are dis-
cussed. The third section explains the techniques and materials 
utilized in the study. In the fourth section, metrics used to evalu-
ate the performance of the study are presented. The fifth section 
reports the numerical experimental results acquired from the 
study. The paper ends with discussions and a conclusion.

Related works

Although multiple classifications are more informative for 
ASD diagnosis works using brain sMRI scans, researchers 
have not studied them due to their complexity and difficulty 
in achieving high accuracy rates. As a result, the authors 
could not find a CNN model trained with brain sMRI 
images that could perform quadruple and octal classifica-
tion, including gender and age factors, for ASD diagnosis. 
Therefore, in this study, multiple classifications were made 
through binary pairings such as F-ASD and F-TD, M-ASD 
and M-TD (F represents female, M represents male, and TD 
represents typical development) using brain MRI images. 
The quadruple classification was made using only gender, 
another quadruple classification using only age range, and 
the octal classification using both gender and age factors.

In a multiple binary classification study of ASD  
conducted by [12], they created separate groups like  
‘adolescents-F (< 18years)’ - ‘adolescents-M(< 18years)’  
and ‘adults-F(> 18years)’ - ‘adult-M(> 18years)’ [12]. They 
investigated which group could be diagnosed with ASD 
with the highest accuracy rate by making separate binary 
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classifications using by Extended Metacognitive Radial Basis 
Function Neural Classifier (EMcRBFN) method, which is 
trained and tested by sMRI data. They found that ASD can  
be detected more accurately in women (81%) than in men 
(60%). In [65], it investigated the impact of gender factors  
on the diagnosis of ASD in multiple binary classifications.  
In their study with the Support Vector Machine (SVM) 
method, they obtained an accurate prediction rate of 69% for 
the ASD-F (female) group and 66% for the ASD-M (male) 
group. However, the data set was limited to the 18–49 age 
group [65]. In [66], it employed DL trained with brain fMRI 
scans and performed binary ASD classification reporting a 
70% accuracy [66]. In another DL study dealing with the age 
factor, they were able to diagnose ASD in the 2-year-old group 
with an accuracy rate of 76.24% using the “Multi-Channel 
Convolutional Neural Network” (MC-CNN) [67]. In [68], 
they performed a binary classification of ASD and reported 
an accuracy rate of 65.69% deep belief network (DBN) model 
[68]. In [69], they diagnosed ASD with 90.39% accuracy in 
binary classification using a DL algorithm trained with brain 
sMRI scans of participators whose mean age was 15 [69].

Materials and methodology

Dataset

The ABIDE database, an international professional database 
made available on March 27, 2017, was used to train and 
test the models in the study [70]. Detailed information about 
ABIDE can be obtained from http://​fcon_​1000.​proje​cts.​nitrc.​
org/​indi/​abide/. The data in the ABIDE database consist of 
data collected from 29 different sites shown in Table 1. T1 
weighted sequence and sMRI of 2248 participators, 1072 
ASD and 1176 TD gathered from 29 locations from ABIDE, 
constituted first repository of the study called Data1. All 
images in the repository were scanned for clarity one by one. 
After the sharpness scan, a sum of 1831 image data, 938 ASD 
and 893 TD, were used as Data1 in this study. No coloration 
or any application affecting discrimination was made on any 
image data. For the three multi-classification CNN models 
utilized in the study, the data were distributed for all three 
models, as shown in Table 2, before pre-processing.

Data pre‑processing

The raw data were subjected to a three-step pre-processing. 
In the first pre-processing step, the unclear images were 
eliminated. Figure 1 shows examples of vague images.

In the second pre-processing step, the Canny Edge 
Detection (CED) algorithm subjected each image data 
to edge detection. The new image acquired after CED 

processing is cropped from the determined edges, and the 
lost area is minimized. Figure 2 describes the second step 
of data pre-processing, including the CED processing.

In the third step of the pre-processing, each image was 
subjected to DA by right-left flip, 90o right rotation, 180o 
right rotation, and 5% salting, magnifying the dataset five-
fold. Figure 3 shows the application of the planned DA 
technique for only one sample image.

Proposed CNN models

Optimal hyper‑parameter selection

Three DL models were designed as part of the sys-
tem developed in this study. For each model, the GSO 
algorithm was utilized to decide the most optimal 

Table 1   Distribution of the data utilized in this research

SITE ASD TD ALL

Ages

5–17 18–65 5–17 18–65

STANDFORD 20 0 20 0 40
KKI 77 0 188 0 265
KUL 5 23 0 0 28
LEUVEN 16 13 21 14 64
UCD 19 0 14 0 33
OHSU 51 0 70 0 121
MAXMUN 9 15 6 26 56
UCLA 81 0 68 0 149
BNI 2 25 2 27 56
CALTECH 1 18 2 17 38
EMC 27 0 27 0 54
GU 51 0 54 0 105
IP 17 4 10 23 54
NYU 134 20 104 31 289
PITT 18 12 15 12 57
SDSU 46 0 47 0 93
TRINITY 16 8 15 10 49
UM 80 0 89 3 172
UPSM 17 1 15 2 35
YALE 28 0 28 0 56
SU 21 0 21 0 42
OLIN 14 6 10 6 36
ETH 4 7 3 21 35
TCD 18 3 16 5 42
IU 2 17 0 19 38
ONRC 5 18 1 28 52
USM 36 38 26 32 132
CMU 0 14 0 13 27
SBL 0 15 0 15 30
ALL Sites 815 257 872 304 2248

http://preprocessed-connectomes-project.org/abide/
http://preprocessed-connectomes-project.org/abide/
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hyperparameters among the limit values determined in 
Table 3 [71]. After pre-processing the data set, each model 
was tested with a randomly selected 20% of the ready-
to-utilize data. From top to bottom, the first five rows of 
hyperparameters in Table 3 are about the architecture of 
the CNN models, and the next five are about fine-tuning 
each architecture. In Fig. 4, the system designed in the 
study is described schematically.

Convolution and pooling

The convolution operation is the processing of acquiring the 
B output matrix as a result of filtering the A image matrix 
entering a CNN model with the K filter matrix, as shown in 
Eq. (1). The resulting output matrix B is smaller than the input 
matrix A. During the filtering processing, the filter matrix K 
on matrix A can be shifted as much as the shift step (stride). 
In some strategies, resizing the output matrix to the same size 
as matrix A may be desirable. In this case, it can be brought 
to the same size as the A matrix by filling the blank parts of 
the B matrix with the number zero. This processing is called 

padding. In addition, before the convolution operation, pool-
ing, which is a sub-operation of the convolution operation, is 
performed to reduce overfitting. In the pooling processing, the 
input matrix of the pooling layer is filtered by the selected filter 
matrix on the principle of mean or maximum values [72]. With 
Eq. 2, the size of the output matrix is obtained as a result of the 
filtering used in both pooling and convolution operations [72].

Softmax and classification

The cross-entropy loss is calculated during the classification 
process. Softmax function is the layer before the classifica-
tion layer. Multiclassification is performed as probabilistic 
in the Softmax layer. The softmax function for the multiple 
classifications is expressed as follows [73].

(1)Bij = (A ∗ K)ij =
∑nk−1

f=0

∑nk−1

h=0
Ai+f ,j+hKi+f ,j+h

(2)nB = ⌊
nA + 2p − nK

s
+ 1⌋

Table 2   Summary of the data 
sets

Datasets Class
Number

Groups Size Total
Size

Gender Age range

Data1 1 ASD + f 127 1831 Female -
2 ASD + m 811 Male -
3 TD + f 209 Female
4 TD + m 893 Male

Data2 1 ASD 5–17 648 1831 - 5–17
2 ASD 18–65 290 - 18–65
3 TD 5–17 594 - 5–17
4 TD 18–65 299 - 18–65

Data3 1 ASD 5–17 f 96 1831 Female 5–17
2 ASD 5–17 m 552 Male 5–17
3 ASD 18–65 f 31 Female 18–65
4 ASD 18–65 m 259 Male 18–65
5 TD 5–17 f 157 Female 5–17
6 TD 5–17 m 437 Male 5–17
7 TD 18–65 f 52 Female 18–65
8 TD 18–65 m 247 Male 18–65

Fig. 1   Examples of eliminated 
sample images
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In Eq. (3); 0 ≤ yr ≤ 1 , 
∑k

j=1
yj = 1 , and ar is the condi-

tional probability of the given r class sample [73].

Designing processing of the proposed models

Three multiple classifications were performed using the 
system designed within the scope of this study. First, the 
acquired brain sMRI image data were pre-processed. After 
pre-processing, the data were divided into three separate 
data sets, taking into account age, gender, and both. Grid 
search optimization (GSO) algorithm was utilized to design 
the CNN models to be trained with these three separate 
data sets from scratch to achieve optimal hyperparameters 
and the highest accuracy rate. The flow diagram of the 
designed system is illustrated in Fig. 5.

In the study, the dimensions of the input data matrix is 
chosen as 224 × 224 regardless of any criterion. Input image 
sizes are not contained in the GSO algorithm. The study uti-
lized Model 1, Model 2, and Model 3 CNN model names for 
Data 1, Data 2, and Data 3, respectively. Table 4 shows the 
hyperparameters decided due to the GSO for each model and 
the structures of the CNN models thus designed. Figure 6 
shows the architectural scheme in which Model 3 is utilized 
in the developed system.

(3)yr(x) =
exp

�
ar(x)

�

∑k

j=1
exp

�
aj(x)

�
Performance metrics

Utilizing the loss function shown in Eq. (4), the network 
continues to be trained throughout the training processing of 
the network until the loss values calculated for each iteration 
reach their minimum value.

In Eq. (4), we have N samples represented by tij, where 
each sample I belongs to one of the K classes, and the cor-
responding output yij is assigned to sample j of class I [73]. 
Equation (5) shows the accuracy rate as another performance 
criterion [73].

Experimental results

In this study, a system was developed that can contribute 
to ASD automatic diagnosis. CNN models, a part of this 
system, are designed to have the most optimal parameters 
through the GSO algorithm. Within this system, three 
CNN models were designed, and multiple classifications 
were performed to view the role of gender-age factors  

(4)Loss = −
∑N

i=1

∑K

j=1
tijln yij

(5)

Accuracy =
Total correct prediction labels

Total Equation Number of real labels
× 100

Fig. 2   The second step of the data pre-processing

    a)                          b)                            c)                             d)                         e)

Fig. 3   a The raw image, b rotating by 90 degrees, c rotating by 180 degrees. d right/left flip, e 5% salting to the image
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in diagnosing ASD. Gender with Model 1, age with  
Model 2, and both with Model 3 were highlighted. In 
addition, the developed system was compared to four pre-
trained networks using TL. The accuracy and loss curves 
acquired for all three models utilized in the designed  
system in Fig. 7, the confusion matrices in Fig. 8, and the 
comparison of the results with the pre-trained networks 
in Table 5 are presented. According to the results given  
in Table 5, the accuracy rate obtained in the quadruple 
classification made with Model 1, which highlights the 

gender factor, is 80.94% and is higher than all pre-trained 
models designed for the same purpose. It is seen that an 
accuracy rate of 85.42% was achieved in the quadruple 
classification made with Model 2, which highlights the age 
factor. It is seen that the accuracy rates obtained with pre-
trained models designed for the same purpose are higher 
than all of them. This result leads us to think that the 
age factor has a greater impact on the diagnosis of ASD 
than the gender factor. An accuracy rate of 67.94% was 
achieved with the octahedral classification model made 
with Model 3, which takes both age and gender factors 
into consideration. Although it seems to be less successful 

Table 3   Hyper-parameters and value ranges

Hyper-parameters to 
optimize

Value ranges

1 Number of Convoluiton layer  [1, 2, 3, 4, 5, 6, 7, 8]
2 Number of Maxpooling layer  [1, 2, 3, 4, 5, 6, 7, 8]
3 Number of FC layers  [1, 2, 3, 4]
4 Number of filters [16, 24, 32, 48, 64, 96]
5 Filter sizes for conv and 

pooling
 [2, 3, 4, 5, 6, 7]

6 Padding [0, 1, Same]
7 Stride [1, 2, 3]
8 L2 regularization [0.0001, 0.0005, 0.001, 0.005]
9 Momentum [0.70, 0.75, 0.80, 0.85, 0.9, 

0.95]
10 Mini-batch size [8, 16, 32, 64, 128]
11 Learning rate [0.0001, 0.0003, 0.0005, 0.001, 

0.003, 0.005]
12 Activation function ReLu, Leaky Relu, ELU, SELU

Fig. 4   Schematic representation 
of the proposed system

Fig. 5   Flow chart of the proposed system
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than Model 1 and Model 2, this result is quite high for 
the eight-fold classification. When compared to other 
eight-class classification pre-trained models implemented 

for the same purpose, it is seen that the highest result is 
obtained with Model 3. Similar comments can be made 
by examining missing values. With this system designed 

Fig. 6   The architecture of the designed Model 3

Table 4   Optimal hyper-parameters of the proposed CNN models

Value

Hyper-parameters Model 1 (Gender) Model 2 (Age) Model 3 (Both)

1 Number of Convoluiton layer 7 6 2
2 Number of Maxpooling layer 7 6 2
3 Number of FC layers 2 2 2
4 Number of filters [Conv1, Pool1, Conv2, Pool2, 

Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, 
Conv 6, Pool6, Conv7, Pool7…]

[48, 48, 24, 24, 24, 24, 24, 24, 16 
16,16, 16, 16, 16]

 [48, 48, 32, 32, 24, 24, 24, 24, 
16, 16, 16, 16]

 [48, 48, 24, 24]

5 Filter sizes [Conv1, Pool1, Conv2, Pool2, Conv3, 
Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, 
Pool6, Conv7, Pool7 …]

 [3, 4, 3, 3, 5, 4, 5, 5, 3, 3, 3, 3, 5, 4]  [4, 3, 4, 3, 5, 4, 3, 5, 4, 4, 4, 4]  [2, 4, 5, 4]

6 Padding [Conv1, Pool1, Conv2, Pool2, Conv3, 
Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, 
Pool6, Conv7, Pool7 …]

[0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] [0, same, 0, 0]

7 Stride [Conv1, Pool1, Conv2, Pool2, Conv3, 
Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, 
Pool6, Conv7, Pool7 …]

 [1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1]  [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2]  [2, 2, 2, 2]

8 L2 regularization 0.0001 0.0001 0.0001
9 Momentum 0.9000 0.9000 0.9000
10 Mini-batch size 32 32 32
11 Learning rate 0.0001 0.0001 0.0002
12 Activation function ReLu ReLu ReLu
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Table 5   Test results for all three 
classifications and comparison 
with pre-trained models

Model 1 (Gender) Model 2 (Age) Model 3 (Both)

CNN Models Accuracy
(%)

Loss Accuracy
(%)

Loss Accuracy
(%)

Loss

Alexnet 78.13 0.9126 81.09 0.6631 62.73 1.8453
Googlenet 77.68 1.2609 78.59 1.0999 59.32 1.9831
Resnet18 73.12 1.2083 82.46 0.8289 66.36 1.3508
Squeezenet 72.67 1.3960 79.27 1.0946 64.55 1.7776
Proposed 80.94 0.4893 85.42 0.3785 67.94 0.8418

Fig. 7   Accuracy and Loss 
curves for all three classifica-
tions
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for ASD classification and diagnosis, it is seen that the 
effect of gender and age factors in multiple classification  
emerges. The results showed that all three networks  
outperformed the pre-trained models. In the diagnosis of 
ASD, the influence of the age factor seems to be more 
than the gender factor. With this system designed for ASD 
classification and diagnosis, it is seen that the influence of 
gender and age factor in multi-classification is revealed.

Conclusions and discussion

All studies on automatic diagnosis of ASD with arti-
ficial intelligence are binary classification studies. 
An octal classification study that takes both age and 
gender factors into consideration cannot be found in 
the literature. In this study, a deep learning system that 
is different from what has been done so far and is a 
first, as far as we know, makes quadruple and eight-
fold classifications by taking age and gender factors 
into account and uses sMRI brain images. In this study, 
an estimation and classification system was designed, 

which, as far as we know, is different from what has 
been done so far, and which is a first, takes into account 
age and gender factors and utilizes sMRI brain images. 
The success and reliability of the designed system were 
provided by comparing it with the Alexnet, Googlenet, 
Resnet-18, and Squeezenet popular pre-trained net-
works. The model developed in this research performs 
better than these pre-trained models. In addition, the 
designed system has the feature of generalizability since 
the data set was acquired from the ABIDE database cre-
ated by acquiring from 29 different locations, and the 
data set was enlarged five times by DA techniques. As 
a result, the accuracy rates acquired as a result of the 
test performed with all three CNN models designed to 
be utilized within the system show that the designed 
system has robust dynamics enough to give the highest 
accuracy rates.

In the future, more successful applications are planned 
by adding advanced (ML) algorithms like enhanced proba-
bilistic neural network (EPNN) [74] and neural dynamic 
classification (NDC) algorithm [75] to a system that exam-
ines age and gender factors.

Fig. 8   Confusion matrices for 
all three models
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Appendix 1

SITE DEFINITON

STANDFORD Stanford University
KKI Kennedy Krieger Institute
KUL Katholieke Universiteit Leuven
LEUVEN University of Leuven
UCD University of California Davis
OHSU Oregon Health and Science 

University
MAXMUN Ludwig Maximilians University 

Munich
UCLA University of California, Los 

Angeles
BNI Barrow Neurological Institute
CALTECH California Institute of Technology
EMC Erasmus University Medical 

Center Rotterdam
GU Georgetown University
IP Institut Pasteur and Robert Debré 

Hospital
NYU New York University Langone 

Medical Center
PITT University of Pittsburgh
SDSU San Diego State University
TRINITY Trinity Centre for Health Sciences
UM University of Michigan
UPSM University of Pittsburgh School of 

Medicine
YALE Yale Child Study Center
SU Stanford University (ABIDE II)
OLIN Olin Neuropsychiatry Research 

Center (ABIDE I)
ETH Eidgenössische Technische  

Hochschule Zürich
TCD Trinity College Dublin’s School of 

Medicine
IU Indiana University
ONRC Olin Neuropsychiatry Research 

Center (ABIDE II)
USM University of Utah School of 

Medicine
CMU Carnegie Mellon University
SBL Social Brain Lab. BCN NIC UMC 

Groningen and
Netherlands Institute for  

Neurosciences
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