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Abstract

3-hydroxybenzaldehyde (3-HBA) is a precursor compound for phenolic compounds like
Protocatechuic aldehyde (PCA). From recent reports, PCA has shown vasculoprotective
potency, but the effects of 3-HBA remain unclear. The aim of this study is to investigate the
vasculoprotective effects of 3-HBA in endothelial cells, vascular smooth muscle cells and
various animal models. We tested effects of 3-HBA in both vitro and vivo. 3-HBA showed
that it prevents PDGF-induced vascular smooth muscle cells (VSMCs) migration and prolif-
eration from MTS, BrdU assays and inhibition of AKT phosphorylation. It arrested S and GO/
G1 phase of VSMC cell cycle in Pl staining and it also showed inhibited expression levels of
Rb1 and CD1. In human umbilical vein endothelial cells (HUVECSs), 3-HBA inhibited inflam-
matory markers and signaling molecules (VCAM-1, ICAM-1, p-NF-kB and p-p38). For ex
vivo, 3-HBA has shown dramatic effects in suppressing the sprouting from aortic ring of Spar-
gue Dawley (SD) rats. In vivo data supported the vasculoprotective effects of 3-HBA as it
inhibited angiogenesis from Matrigel Plug assay in C57BL6 mouse, prevented ADP-induced
thrombus generation, increased blood circulation after formation of thrombus, and attenuated
neointima formation induced by common carotid artery balloon injury of SD rats. 3-HBA, a
novel therapeutic agent, has shown vasculoprotective potency in both in vitro and in vivo.

Introduction

Atherosclerosis is a multi-factor disease process including outgrowth and migration of vascular
smooth muscle cells (VSMCs), endothelial dysfunction, chronic inflammation, plaque forma-
tion, and rupture and arterial thrombosis. Previous studies on atherosclerosis have shown that
the disease is characterized by the increased production of proteins such as VCAM-1, ICAM-1,
phosphorylated AKT, CD1, and matrix metalloproteinases (MMPs) and the generation of reac-
tive oxygen species (ROS).[1-5] Also, increased VSMC proliferation and migration, increased
expression of adhesion molecules on the surfaces of endothelial cells, augmented platelet aggre-
gation, and inflammatory angiogenesis have been observed.[6-9]

PLOS ONE | DOI:10.1371/journal.pone.0149394 March 22,2016

1/17


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0149394&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nrf.re.kr/nrf

@'PLOS ‘ ONE

Vasculoprotective Effects of 3-HBA

Benzaldehydes, which have a myriad of applications in cosmetics, as flavoring agents, and
as fragrances, are “generally regarded as safe” (GRAS) by the United States FDA.[10] The latest
findings show that these compounds have therapeutic effects for the treatment of various dis-
eases such as cancer and vascular and renal diseases.[11-14] With regard to atherosclerosis,
benzaldehydes are reported as potent inhibitors of lipoprotein-associated phospholipase A2
[15] and are capable upregulators of ABCA1[16].

3-Hydroxybenzaldehyde (3-HBA) is one of the benzaldehydes commonly found in nature.
It is produced by 3-hydroxybenzyl-alcohol dehydrogenase,[17] and is a substrate of aldehyde
dehydrogenase (ALDH) in rats and humans (ALDH2).[18, 19] It is widely used in the chemical
synthesis of flavonoids, which are well-known antioxidants. It is a structural isomer of salicylal-
dehyde and 4-HBA and has one hydroxyl (OH) group at the meta position of the phenolic
ring. Several reports have mentioned the importance of OH group position in hydroxybenzal-
dehydes. Reports from Cao et al. suggest that benzaldehydes with OH groups have higher
intracellular antioxidative activity than those without and showed that methylated or glycosy-
lated C3-OH no longer exhibits antioxidative activity.[20, 21] 3-HBA has been used as a pre-
cursor agent for the synthesis of PET agent (J147) in Alzheimer’s disease, but there are very few
reports delineating the therapeutic effects of 3-HBA in atherosclerosis.[12, 22]

Here, we show that treatment of 3-HBA has vasoprotective effects in both vitro and vivo.
The vasoprotective effects of 3-HBA involve anti-proliferative and anti-migrative effects on
VSMCs and ROS inhibition and p-p38/p-p65 inhibition of HUVECs. Also, we observed these
effects in both ex vivo and in vivo levels by assessing 3-HBA on anti-angiogenic and anti-
thrombic effects. Finally, we showed that 3-HBA has inhibitory effect on the formation of
Neointima.

Materials and Methods
Reagents

3-Hydroxylbenzaldehyde (3-HBA) was purchased from Sigma Aldrich (St. Louis, MO, USA),
dissolved in water, and filtered using a 0.2-um pore cellulose acetate syringe filter (16534-K;
Sartorious, Goettingen, Germany). TNF-a and rat PDGF-BB were purchased from R&D Sys-
tems (Minneapolis, MN, USA). Heparin and normal saline were purchased from JW Pharma-
ceutical (Seoul, Korea). Antibodies for Western blot analysis against VCAM-1 (sc-8304),
ICAM-1 (sc-7891), MMP-2 (sc-10736), and CD31 (sc-1506) were purchased from Santa Cruz
(Delaware, CA, USA). Phospho-AKT (#9271S), AKT (#9272S), phospho-MAPK (#9106S),
NFxB (#4767), and phospho-NF«B (#3033S) were purchased from Cell Signaling Technology
(Danvers, MA, USA). Cultrex BME Matrigel (3431-005-01) was purchased from Trevigen
(Gaithersburg, MD, USA) for use in the sprout ring assay. MTS assay kit (G3580) was pur-
chased from Promega (Madison, W1, USA). Propidium iodide (PI) was purchased from Sigma
Aldrich for use in cell cycle assay. Bromodeoxyuridine (BrdU) incorporation assay kit was pur-
chased from Roche (Basel, Switzerland) for use in cell proliferation ELISA assay.

Cell culture

Primary human umbilical vein endothelial cells (HUVECs) were purchased from GIBCO (C-
003-5C), cultured, and prepared for experiments as reported in a previous study. Rat vascular
smooth muscle cells (VSMCs) were isolated from the thoracic aortas of Sprague Dawley (SD)
rats (250-300 g; Orient Technology, Seoul, Korea) as it is previously described,[13] anesthe-
tized with Zoletil 30 mg/kg (Virbac) and Rompun 10 mg/kg (Bayer) by intraperitoneal (i.p.)
injection. After the procedure, rats were euthanized via carbon dioxide inhalation. The VSMCs
in passages 3—-6 were used in experiments after serum deprivation for 24 h. [23]
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Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was extracted from VSMC lysates with Isol RNA lysis reagent (5 prime, Hilden,
Germany), and cDNA was prepared using ReverTra Ace -a- ® (Toyobo, Osaka, Japan) as
described previously.[24, 25] Primers designed for cyclin D1 were based on the rat CCND1
gene sequence (forward primer: 5-CCTGACTGCCGAGAAGTTGT; reverse primer: 5°-TCAT
CCGCCTCTGGCATTTT), the rat RB1 gene (forward primer: 5-AACTCTGGGGCATCTGC
ATG; reverse primer: 5-TTGCAGCTGTTTTGTACGGC), human HO-1 gene (forward
primer. 5’-TCCGATGGGTCCTTACACTC; reverse: 5-ATTGCCTGGATGTGCTTTTC),[26]
and human NRF gene (forward primer. 5-CGGTATGCAACAGGACATTG,; reverse: 5-ACT
GGTTGGGGTCTTCTGTG). Oligonucleotide primers were purchased from Bioneer (Seoul,
Korea). PCR products were resolved in 2% agarose gel via electrophoresis.

Western blotting

VSMCs and HUVECs were lysed and prepared for Western blot analysis using antibodies against
MMP-2, phospho-AKT, AKT, VCAM-1, ICAM-1, phospho-MAPK, and phospho-NF«B as
described earlier. After incubation with a specific secondary antibody coupled to horseradish per-
oxidase, blots were visualized using enhanced chemiluminescence (Ab-frontier, Seoul, Korea).

In vitro assays

Propidium iodide staining for cell cycle analysis. Procedures were performed as
described in an earlier report. VSMCs were stained with PI staining solution at room tempera-
ture for 30 min. Cell cycle analysis was evaluated using a flow cytometer (Becton Dickinson,
FACS Calibur) and analyzed with the Flow]Jo program.

Cell migration assay. When VSMCs and HUVECs reached 80% confluence in 6-well
plates, the single-cell layer was scratched with a sterile plastic 1000-pl tip. After, media was
changed into serum free media for 24 h and then, cells were pretreated with 3-HBA for 24 h.
Cell migration was photographed using a Nikon microscope system (Nikon Instrument). The
area of wound healing was measured using Image J software.

Cell viability and proliferation assay. MTS assay procedures were modified from previ-
ous reports.[26, 27] VSMCs and HUVECs were serum deprived, and then 3-HBA in serum-
free media was added to each group. After 24 h of 3-HBA treatment, the media was replaced
with PDGF added to 3-HBA-containing media in all except the control group. After 24 h, MTS
reagent concentration was measured as absorbance. BrdU incorporation analysis was per-
formed for further investigation. All procedures were performed according to the manufactur-
er’s instructions. Absorbance was measured at 450 nm. Data were analyzed with t-test by SPSS
program.

Measurement of reactive oxygen species in HUVECs and VSMCs. Reactive oxygen spe-
cies (ROS) procedures were performed as described in a previous report. Levels of cellular reac-
tive oxygen species were measured using the fluorescent probe 5-(and-6)-chloromethyl-2’, 7’-
diflurodihydrofluorescein diacetate (CM-H2DFFDA). To prepare samples for ROS assay,
HUVECs were cultured in EBM-2 supplemented with serum kit and then it was changed in to
serum free media with 0.1% serum. 3-HBA is treated for 24 hours and then, 1 hour of H,0,
100 uM is added. Samples were analyzed via FACS Calibur flow cytometry.

Ex and in vivo assays

Blood aggregation. The sample blood for ex vivo analysis was obtained from 6-week-old
male SD rats (Orient-Charles River Technology, Gyunggido, Korea) and collected in 1.0%
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heparin to prevent coagulation.[28] Sample blood for in vivo testing was obtained from the ani-
mals treated with i.p. 100 mg/kg 3-HBA (n = 6) and 100 mg/kg aspirin (n = 6) daily for 1 week.
Platelet aggregation was induced by the addition of 20 uM ADP (Sigma-Aldrich Co., MO,
USA) and was later evaluated with an impedance aggregometer (Chrono-log model 700,
Chronolog Corporation, Havertown, PA, USA).

SD rat models for tail vein thrombosis. To evaluate the effect of 3-HBA on thrombosis
formation, tail thrombosis was induced in 6-week-old male SD rats that were treated with 100
mg/kg 3-HBA for 1 week, as described earlier. Animals were injected intravenously with 1 mg/
kg k-carrageenan in order to induce tail vein thrombosis. After injection, the tail region 13 cm
from the tip was ligated for 10 minutes and then freed. The heparin group (n = 6) was injected
with 200 IU of heparin and used as the positive control.

Animal model-common carotid balloon injury. Male SD rats weighing 200~225 g were
randomly divided into three groups as follows: Group 1 —~Sham operated; Group 2 —Balloon
injury; Group 3-3-HBA (100mg/kg) with balloon injury. For operative procedures, SD rats
were anesthetized with 5% isoflurane in a mixture of 70% N,O and 30% O, that was main-
tained in 2% isoflurane.[12] Animals were i.p. injected, with specific formulation and volumes
as it was previously reported[12], for 2 weeks before the operative procedure and an additional
4 weeks after 2 days of recovery. In order to obtain the aortas for analysis, the animals were
anesthetized using Zoletil (30 mg/kg) and Rompun (10 mg/kg) by i.p. injection and were sacri-
ficed by carbon dioxide inhalation.

Sprout ring assay. Male Sprague Dawley Rats (100g) were housed in a controlled environ-
ment and after one week of stabilization, under anesthesia with Zoletil (30 mg/kg) and Rom-
pun (10 mg/kg) by i.p. injection, rats were sacrificed and thoracic aortas were obtained.
Thoracic aortas were chopped into several pieces and placed on Cell Culture Insert
(PICMO03050) purchased from Millicell (Billerica, MA, USA) in 6-well plate. EBM-2 serum
media was added into the dish and incubated for 3 days. Then, 3-HBA was added, and the
media was replaced every 2 days with substances. At day 7, aortas were photographed using an
Olympus microscope at an appropriate magnification.

In vivo Matrigel plug assay. The Matrigel plug assay was performed as previously
described.[9] In brief, 20-g and 7-week-old C57BL/6 mice (Orient Technology, Seoul, Korea)
were injected subcutaneously with 0.6 ml of Matrigel containing the indicated amount of 3-
HBA and 100 ng/ml of endothelial cell growth (ECG) supplement (354006, BD Bioscience,
Bedford, MA, USA). After 6 days, the mice were anesthetized using Zoletil (30 mg/kg) and
Rompun (10 mg/kg) by i.p. injection. Then, the skin of the mouse was pulled back to expose
the Matrigel plug, which remained intact. The animals were then euthanized by carbon dioxide
inhalation. Hemoglobin obtained from the Matrigel was measured using the Drabkin reagent
kit 525 (Sigma-Aldrich) in order to qualify blood vessel formation. The concentration of hemo-
globin was calculated in comparison to a known amount of hemoglobin assayed in parallel. To
identify infiltrating endothelial cells (ECs), immunohistochemistry was performed using anti-
CD-31 antibody (Santa Cruz).

Vascular histology and immunohistochemical procedures

Rat aortas were prepared for immunohistochemical analyses in 4-um paraffin cross-sections
and were stained with hematoxylin and eosin using a standard protocol.[12, 29] Sections were
blocked with 5% donkey serum (017-000-121, Jackson ImmunoResearch, West Grove, PA,
USA) in antibody diluent (52022, Dako, Glostrup, Denmark) for 30 min. Then, sections were
incubated overnight at 4°C with the following antibodies: ICAM-1, CD31, and VCAM-1
(1:150). Slides were incubated for 1 h with a biotinylated secondary antibody (Vector
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Laboratories, Burlingame, CA, USA). After rinsing three times in TBS-T, RTU horseradish per-
oxidase streptavidin (SA5704, Vector Laboratories) was applied, and the slides were incubated
for 10 min. For color development, 3,3’-diaminobenzidine (DAB, D5637, Sigma) was used.

Statistical analysis for in vitro results

For in vitro results, PCR and Western blots were measured by using densitrometer (MiniBIS
Pro). The images were then quantify ed by using Genetools (Syngene) software. After the blots
were quantified, results and t-tests were evaluated and analyzed using SPSS 18.0 software.

Stastical analysis for ex vivo and in vivo results

To perform image analysis for ex vivo and in vivo results, all images were collected under the
same observation conditions (light, contrast, magnification). Differences between groups for
both in vivo and ex vivo results were evaluated using SPSS 18.0 software. For morphologic anal-
ysis of neointimal formation, Scion Image software was used.,The results are expressed as
mean + SEM.six round cross-sections (4-um thickness) were cut from the approximate middle
of the artery. The intimal and medial cross-sectional areas of the carotid arteries were measured
to calculate neointima size (inches squared). Graphs of the balloon injury and sprout ring
assays were produced using the MedCalc software program.

Ethics statement

All animal procedures were reviewed and approved by the Institutional Animal Care and Use
Committee (IACUC) of Yonsei University Health System (approval number: 2010-0268) and
were performed in strict accordance with the Association for Assessment and Accreditation of
Laboratory Animal Care and the NIH guidelines (Guide for the Care and Use of Laboratory
Animals).

Results
3-HBA inhibits VSMC proliferation and cell cycle

To confirm the anti-proliferative and vasoprotective effect of 3-HBA (Fig 1A) on PDGF-
induced VSMC proliferation, BrdU assay was performed. Firstly, we checked with MTS assay
whether concentration of 3-HBA (0, 25, 50, 100 (M) is not toxic to the cell at different incuba-
tion time and concentration (Fig 1B). Treatment of 3-HBA showed low toxicity in VSMC for
both 48 and 144 h. Also, recent reports show that NSAID (nonsteroidal anti-inflammatory
drugs) taken in large dose could cause some severe damage to individuals by affecting on the
cell cycle.[30] Comparison between 3-HBA and control groups showed similar cell cycle condi-
tion indicating that the treatment of 3-HBA did not alter VSMC cell cycle (Fig 1E).

Inhibition of VSMC proliferation is essential to treat atherosclerosis that BrDu assay and PI
staining were performed. 3-HBA has decreased the BrdU incorporation in comparison to
PDGEF (Fig 1C). Consistent with these data, 3-HBA inhibited AKT phosphorylation (Fig 1D).
Based on these results, 3-HBA shows suppressive effects on PDGF-induced VSMC prolifera-
tion. PI staining show that 3-HBA could arrest the S phase and G0/G1 phase, which were
increased by PDGF (Fig 1E). Furthermore, the expression levels of cyclin D1 (CD1) and retino-
blastoma (Rb1) mRNA, the representative markers of cell cycle regulation,[31] were increased
by PDGF stimulation; however, 3-HBA treatment lowered these expression levels in VSMCs
(Fig 1F).
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Fig 1. (A) Chemical structures of 3-HBA, PCA,

and aspirin. (B, C, D) The inhibitory effect of 3-HBA on PDGF-induced proliferation in rat VSMCs. VSMCs

were prepared for experiments before 24 h serum starvation. (B) For MTS assay, VSMCs were pretreated with 3-HBA (0, 25, 50, 100 uM) in a concentration-
dependent manner for 24 h and then stimulated with PDGF (25 ng/ml) for 48 and 144 h. (C) For BrdU assay, VSMCs were pretreated with 3-HBA (0, 100 pM)
for 24 h and then stimulated with PDGF (25 ng/ml) for 48 h. (B, C) Cell proliferation was measured at 490 nm. (D) Phosphorylation of AKT was determined by
Western blot analysis. (E, F) The inhibitory effect of 3-HBA on the cell cycle of rat VSMCs. VSMCs were serum starved for 24 h and then pretreated with 3-
HBA (0, 100 pM) for 24 h. VSMCs were then stimulated with PDGF (25 ng/ml) for 24 h. (E) Cell cycle distribution was measured with Pl staining. (F) Gene
expression was analyzed by RT-PCR. Each result is expressed as the mean + standard error. * indicates p < 0.05 compared to the PDGF group. **
indicates p < 0.005 compared to the PDGF group. Values represent the mean + SEM of three independent sets of experiments.

doi:10.1371/journal.pone.0149394.g001

3-HBA inhibits VSMC cell migration

Assessment of the migration of VSMCs is an important criterion to evaluate vasculoprotective
effect of 3-HBA, we performed wound-healing experiments. The results in representative
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and eosin and scored using Image J. (B) MMP-2 protein levels were determined by Western blot analysis. ** indicates p < 0.005 compared to the PDGF
group. Values represent the mean + SEM of three independent sets of experiments.

doi:10.1371/journal.pone.0149394.9002

images show that 3-HBA inhibited the migration of VSMCs (Fig 2A). In accordance with the
image, the graph shows that 3-HBA decreased the number of migrated cells. Moreover, the
production of MMP-2, an important protein marker of the migration of cells,[4] was also sig-
nificantly decreased in the 3-HBA-treated group (Fig 2B). However, the treatment of 3-HBA in
HUVECs did not show any effects in migration of endothelial cells (S1 Fig)

3-HBA inhibits inflammatory signaling in HUVECs

To assess whether 3-HBA has vasoprotective and anti-inflammatory effects in HUVECs, we
first evaluated the effect of 3-HBA on ROS production. HUVECs were pretreated with 3-HBA
for 24 h, followed by H,O, (100 pM) treatment for 1 h. Results show that 3-HBA has ROS
inhibitory effects (Fig 3A). Also the expression of NRF-2 and HO-1, which are closely related
with ROS inhibition, have been increased by the treatment of 3-HBA in HUVECs (S2 Fig).
However, no effects were observed from VSMCs on HO-1 and NRF2 (data not shown). These
data show that 3-HBA exhibits its anti-inflammtory effects uniquely through endothelial cells.
As it is well known that ROS is one of the factors causing inflammation, we further assessed
the effect of 3-HBA on inflammatory protein production. HUVECs were pretreated for 24 h
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Fig 3. 3-HBA inhibits inflammation induced by TNF-a in HUVECSs. (A, B, C, D) HUVECs were pretreated
with 3-HBA (100 pM) for 24 h. Treatment with H,O, (100 pM) for 1 h (A) and with TNF-a (10 ng/ml) for (B) 6 h,
(C)3h,and (D) 1 h. (B, C) Densitometric analyses are presented as the relative ratio of VCAM-1, ICAM-1, or
phospho-p38 to B-actin. (D) Densitometric analyses of phospho-NF-kB are presented as the relative ratio to
NF-kB. Values represent the mean + SEM of three independent sets of experiments; ** indicates p < 0.005.

doi:10.1371/journal.pone.0149394.g003

with 3-HBA, followed by treatment with TNF-o (10 ng/ml) for 1, 3, and 6 h depending on the
different targets (VCAM-1, ICAM-1, p-NF-kB, or p-p38). TNF-a stimulated ICAM-1 and
VCAM-1 within 3 h and in 6 h, respectively. However, 3-HBA pretreatment significantly
downregulated these production levels in HUVECs (Fig 3B and 3C). To investigate the signal-
ing pathway used by 3-HBA to downregulate these inflammatory proteins, we analyzed the
production of p-NF-«B and p-p38. HUVECs were pretreated under the same conditions as
before and then treated with TNFo. (10ng/ml, 1h). Data show that the increased production
levels of p-NF-xB and p-p38 induced by TNFa were inhibited by pretreatment with 3-HBA in
HUVECs (Fig 3D).

3-HBA inhibits ex vivo and in vivo angiogenesis

Previous results have shown that 3-HBA has vasoprotective effects in vitro. We next investi-
gated the anti-angiogenic activity of 3-HBA in both ex vivo and in vivo angiogenesis models.
Ex vivo model of Sprout ring assay shows that serum condition could increase the growth of
aortic sprouts. However, treatment with 3-HBA significantly prevented the growth of aortic
sprouts compared to the serum control group. Consistent with this observation, sprout length
was significantly decreased (Fig 4A).

To confirm the anti-angiogenic effect of 3-HBA in vivo, we performed Matrigel plug assays.
Matrigel plugs containing ECGs were red in color as the result of neovascularization, but the
Matrigel plugs treated with 3-HBA were white in color, like the sham-operated control (Fig
4B). To confirm this observation, hemoglobin was quantified in each Matrigel plug. The results
show that the Matrigel plugs containing ECGs had more hemoglobin than the sham-operated
control. Furthermore, treatment with 3-HBA in ECG-containing Matrigel plugs decreased the
hemoglobin content (Fig 4C). The Matrigel plugs were immunohistochemically stained with
anti-CD31 for vessel density analysis. The results showed a lower functional vasculature den-
sity in the 3-HBA-treated plugs than the ECG-treated control plugs (Fig 4D). Interestingly,
4-HBA, a stereoisomer of 3-HBA, showed higher intensity of redness than the ECG containing
Matrigel (S3 Fig). This suggest the position of~OH in hydroxylbenzaldehyde might play a key
role in the exhibition of vasculoprotective effects.

3-HBA exhibits anti-thrombic effects

To evaluate the vasculoprotective effect of 3-HBA on rat blood aggregation, ex vivo and in vivo
experiments were performed. For the ex vivo experiment, sample blood was collected from SD
rat whole blood and mixed with 3-HBA before aggregation. 3-HBA decreased aggregation
velocity in ADP (20 uM)-induced platelet aggregation in a dose-dependent manner (Fig 5A).
For the in vivo experiment, 3-HBA was introduced to rats for 1 week, and the results show that
3-HBA has the potential to act as an anti-coagulant, similar to aspirin (Fig 5B).

To evaluate the anti-thrombic effect of 3-HBA, Bekemeier’s modified tail vein thrombosis
assays were performed. Three different SD rat groups were injected with substances for 1 week,
including 3-HBA (100 mg/kg, n = 6), heparin (positive control, 200 IU, n = 6), and normal
saline (sham-operated, n = 6). For the positive control group, heparin was injected one time
along with a 1 mg/kg k-carrageenan injection. Representative images show the average
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g. For analysis and quantification, three aortic segments were used for each group (n = 3). Harvested aortic
segments in Matrigel were stimulated with FBS (10%) for 3 days. Then, the segments were treated with 3-
HBA (100 pM) for 48 h in media supplemented with FBS (10%). Quantification of sprouting was measured
using Scion Image software. Values represent the mean + SEM of three experiments. *** indicates p < 0.005
compared to the serum-free group. ### indicates p < 0.005 compared to the serum group. (B) Representative
Matrigel plugs were photographed (n = 3 in each group). (C) Quantification of hemoglobin content was
conducted in Matrigel plugs that were stained for infiltrating ECs with anti-CD31 antibody. * indicates p < 0.01
compared to the sham group. ## indicates p < 0.05 compared to the ECG group. (D) The graph shows
quantitative assessment of CD31* ECs. Values represent the mean + SEM of three experiments.

doi:10.1371/journal.pone.0149394.g004

thrombotic region of each group after 72 h. The black line indicates the tail position 13 cm
from the tip. At this position, the tail was tied to induce tail vein thrombosis. The dot plot rep-
resents the length of the thrombotic region throughout the different time intervals (Fig 5C).

3-HBA inhibits neointima formation in balloon-injured common carotid
arteries (CCAs)

The surgical procedure for balloon injury was followed as it is previously described.[12] 3-HBA
was tested for its anti-atherogenic effect against neointima formation. Treatment with 3-HBA
effectively inhibited the formation of neointima compared to vehicle-treated aortas (Fig 6A).
Consistent with this observation, neointima size was greatly inhibited in 3-HBA-treated rats
compared to vehicle-treated rats (Fig 6A). Each neointima size was measured by calculating
media to lumen ratio of rat aorta. Results show that BI+3-HBA aorta has greatly decreased
media to lumen ratio compared to BI+Vehicle. The CCAs of rats were immunohistochemically
stained with anti-VCAM-1, anti-ICAM-1, and anti-CD31 antibody to determine whether they
corresponded with the in vitro data obtained from HUVECs (Fig 3B and 3C). VCAM-1 and
ICAM-1 staining showed that 3-HBA treatment dramatically inhibited the inflammation.
CD31 staining shows that BI+vehicle group does not have endothelial cells compared to sham
group, because of endothelial denudation by balloon injury. However, the treatment of 3-HBA
shows partial protection and survival of endothelial cells from balloon injury (Fig 6B).

Discussion

For the development of therapeutic drugs, compound toxicity must be considered. Toxicity
can cause diarrhea, skin irritation, and respiratory issues in addition to other symptoms that
were not observed under our 3-HBA concentration (100 mg/kg/day) conditions. Several find-
ings suggest that the 3-HBA concentration used in this study is well below toxic conditions.
Kluwe et al.[32] have shown that the no-observed-toxic effect dose of benzaldehyde is 300 mg/
kg/day in rats and mice, which is three times higher than the concentration used in the present
study. Anderson et al.[10] have reported that the intraperitoneal LD(50) for 3-HBA in rats is
3,265 mg/kg, and the no-observed-adverse-effect level (NOAEL) is 400 mg/kg.

Recent evidence suggests that vascular endothelial inflammatory processes are critical in the
initiation of atherosclerosis.[33] Thus, it was necessary to assess the vasoprotective effect of
3-HBA in endothelial cells. Our findings suggest that 3-HBA dramatically inhibits the inflam-
matory responses provoked by TNFa treatment through inhibition of VCAM-1, ICAM-1,
p-NF-xB, and p-p38. Inflammation experiments in VSMCs showed additional therapeutic
advantages of 3-HBA in cell migration. No inhibitory effects were observed in ROS assays of
VSMC:s (data not shown). However, 3-HBA showed inhibitory effects on MMP-2 (Fig 2B),
which is known to be involved in neovascularization, repair of damaged cells, and inflamma-
tion in VSMCs,[34, 35] Further researches are needed to verify the downstream molecules
influenced by 3-HBA in VSMCs.
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Fig 5. The blood thinning and restoration effect of 3-HBA on SD rats after aggregation. (A, B) The sample blood was collected from 7-week-old male
SD rats. 3-HBA and aspirin were administered at a dose of 100 mg/kg/ for 1 week by i.p. injection (n = 6 in each group). ADP was induced for platelet
aggregation after 3-HBA treatment in (A) ex vivo and (B) in vivo conditions. The top graph shows the impedance aggregometer mean value of each group,
and the bottom bar graph represents aggregation velocity. (C) 3-HBA (100 mg/kg/d) was administered for 1 week via i.p. injection, and heparin (200 IU) was
administered once via i.p. injection. Gross changes in the tail vein 72 h after k-carrageenan injection. The black bar indicates the position 13 cm from the tail
tip. The dot graph represents the change in gross length. Results are expressed as the mean + standard error. * and ** indicate p < 0.05 and p < 0.005
compared to the control group, respectively.

doi:10.1371/journal.pone.0149394.9005

As described earlier, angiogenesis and inflammation are closely associated, and pathologic
angiogenesis has been linked with the development of chronic inflammatory diseases. [9] The
interaction between angiogenesis and inflammation allows a greater opportunity for leukocyte
infiltration to inflammatory sites. Subsequently, this leukocyte infiltration leads to atheroscle-
rosis.[9, 36] The relationship between pathologic angiogenesis and inflammation is best under-
stood through increased vascular permeability, which is observable in chronic inflammation,
diabetic retinopathy, solid tumors, myocardial infraction, and wounds.[37] Angiogenic factors
such as PDGF and VEGF increase the vascular permeability of microvessels to circulating mac-
romolecules, creating greater probability of inflammation.[9] Our findings on the anti-migra-
tive and anti-angiogenic activity of 3-HBA in cell migration assay and sprout ring assays, but
further researches are needed to confirm the inhibitory effect of 3-HBA on PDGF signaling
and TNFa-induced angiogenesis.

Flavonoids are well-known compounds that readily exhibit antioxidant activity and are eas-
ily synthesized from benzaldehyde.[38, 39] A recent report showed that the three ring-struc-
tured flavonoids differ in antioxidant activity depending on the number of OH groups. It is
reported that OH groups of flavonoids an important role in electron resonance and in electron
donation to the oxidizing agent.[21] Other studies have reported that the 3,4—ortho-dihydroxyl
group is an important structural requirement for antioxidant activity. These reports suggest
the importance of OH group of 3-HBA in exhibiting vasculoprotective effects. Also, some
reports have shown the substitution of OH group by methylation or glycosylation leads to the
loss of antioxidant and antiradical activities in flavonoids. This fact is an important clue
emphasizing that the presence of the C3-OH is critical in the therapeutic effects of 3-HBA. Our
data also support this conclusion, showing that the C4-OH of 4-HBA has no therapeutic effects
(S3 Fig). Another interesting report showed that the different OH group positions alter oxygen
reactive absorbance capacity values. Other reports showed that flavonoids containing
3,4-ortho-dihydroxyl or 3-hydroxyl groups have stronger intracellular antioxidant activity
than flavonoids that do not have or have fewer OH groups.[21, 40] This fact corresponds with
our previous and current data, in which 3,4-diHBA and both 3-HBA showed antioxidant
activity.

The interaction between 3-HBA and G protein-coupled estrogen receptor-1 (GPER-1)
could be possible as it was previously reported from previous reports on protocatechuic alde-
hyde (PCA) and GPER-1. GPER-1 is an important receptor that has been reported to have
involvement in cardiovascular diseases, especially atherosclerosis. Notably, there is structural
similarity between PCA and 3-HBA, differing by only one OH group at the para position. Fur-
ther studies are needed to determine the relationship between GPER-1 and 3-HBA.

In the present study, we demonstrated for the first time that 3-hydroxylbenzaldehyde (3-
HBA) 1) prevents PDGF-induced VSMC migration and proliferation, 2) arrests the S and G0/
G1 phases of the cell cycle through Rb1 and CD1, 3) inhibits inflammatory markers (VCAM-1,
ICAM-1, p-NF-«B, and p-p38) in HUVECs, 4) prevents ADP-induced thrombus generation
and increases blood circulation after formation of thrombus, 5) inhibits angiogenesis ex vivo
and in vivo, and 6) attenuates balloon-injured formation of Neointima.
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arteries (CCAs) from the rats were balloon-injured. The chosen substance was injected for another 4 weeks,
and then the rats were sacrificed for (A) hematoxylin and eosin staining of CCAs. The graph shows the
percentage of neointima area in SD rats from each group (n = 7). Measurements were performed using Scion
Image software. (B) Immunohistochemistry staining of rat aortas show CD31, VCAM-1, and ICAM-1
production in the linings of the aorta from the same tissues used in Fig 6A. Data are presented as the

mean + SEM. Values represent the mean + SEM of three experiments; *** indicates p < 0.001 compared to
the sham group. ### indicates p < 0.001 compared to the vehicle group.

doi:10.1371/journal.pone.0149394.g006

Supporting Information

S1 Fig. The vasoprotective effect of 3-HBA on rat VSMCs and HUVECs migration. VSMCs
were serum starved for 24 h and then pretreated with 3-HBA (0, 100 uM) for 24 h. VSMCs
were stimulated with PDGF 25 ng/ml for 24 h. Before stimulation, wells were scratched, and
scored using Image J. HUVECs were pretreated with 3-HBA (0, 100 uM) for 24 h and cells
were scratched. The migration index score was measured by using Image J. ** indicates

p < 0.005 compared to the PDGF group. Values represent the mean + SEM of three indepen-
dent sets of experiments.

(TIF)

S2 Fig. HO-1 and NRF-2 expression by 3-HBA treatment in HUVECs. HUVECs were
serum starved for 24 h and then pretreated with 3-HBA (0, 100 uM) for 24 h. HO-1 and NRF2
gene expression was analyzed by RT-PCR. Values represent the mean + SEM of three indepen-
dent sets of experiments.

(TIF)

S3 Fig. Representative Matrigel plugs were photographed (n = 3 in each group). Method for
4-HBA treatment of Matrigel plug assay was followed as it is indicated in the Materials and
Methods.

(TTF)
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