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ABSTRACT
To explore the role of extracellular vesicles (EVs) in 
chronic lung diseases.
EVs are emerging as mediators of intercellular 
communication and possible diagnostic markers of 
disease. EVs harbour cargo molecules including RNA, 
lipids and proteins that they transfer to recipient 
cells. EVs are intercellular communicators within the 
lung microenvironment. Due to their disease-specific 
cargoes, EVs have the promise to be all-in-one complex 
multimodal biomarkers. EVs also have potential as drug 
carriers in chronic lung disease.
Descriptive discussion of key studies of EVs as 
contributors to disease pathology, as biomarkers and as 
potential therapies with a focus on chronic obstructive 
pulmonary disorder (COPD), cystic fibrosis (CF), asthma, 
idiopathic pulmonary fibrosis and lung cancer.
We provide a broad overview of the roles of EV in 
chronic respiratory disease. Recent advances in profiling 
EVs have shown their potential as biomarker candidates. 
Further studies have provided insight into their disease 
pathology, particularly in inflammatory processes across 
a spectrum of lung diseases. EVs are on the horizon as 
new modes of drug delivery and as therapies themselves 
in cell-based therapeutics.
EVs are relatively untapped sources of information in the 
clinic that can help further detail the full translational 
nature of chronic lung disorders.

INTRODUCTION
What are EVs?
Extracellular vesicles (EVs) are lipid-membrane 
bound vesicles released from almost all cell types 
and an increasing abundance of literature has 
demonstrated the numerous roles EVs play in 
intercellular communication and disease patho-
genesis.1 2 The cargo of EVs largely consists of 
miRNA, proteins and lipid molecules which they 
transfer to recipient cells.3 Chargaff and West first 
reported on the potential existence of EVs in 1946 
describing the presence of ‘lipoproteins of very high 
particle weight’ in serum.4 Further studies described 

lipid‐rich particles originating from the granules 
of platelets that accelerate coagulation.5 6 In the 
1980s, Harding et al7 reported on multivesicular 
endosomes which fused with the plasma membrane 
of reticulocytes and released cargo into the extra-
cellular space. Numerous studies were then under-
taken to better understand the vesicle trafficking 
process being displayed in numerous cell types.8–10 
Small vesicles emanating from the intracellular 
secretion pathway or multivesicular bodies became 
known as exosomes with larger particles shed from 
the plasma membrane described as microparticles.

The International Society for Extracellular Vesi-
cles (ISEV) currently provides guidelines on cate-
gorising EVs. The minimal information for studies 
of extracellular vesicles (MISEV) paper published by 
ISEV summarises the difficulty in including biogen-
esis and origin as classifications for EV subtypes as 
consensus has not yet been reached on appropriate 
markers.11 Doyle and Wang make the argument 
that markers associated with vesicle formation 
should be used with nomenclature such as exosome 
and microvesicle.12 According to MISEV, there are 
three appropriate ways to subcategorise EVs (1) 
size alone, for example, small EVs, medium/large 
EVs (2) by markers, for example, CD81±EVs or (3) 
by known cellular origin, for example, from breast 
cancer cell culture.11

Table  1 below summarises the different EV 
subcategories encompassing their definition by 
size and biogenesis with indicative markers.An 
important caveat noted (*) is that there is cross 
sectionality in markers for vesicles which have 
similar exit strategies.

Cellular origin of EVs is particularly important 
in the clinical setting. MISEV provides guidelines 
on marker proteins which are cell/tissue-specific, 
table 2 summarises these. The inclusion of cellular 
origin has expanded the EV field to include other 
large vesicles such as oncosomes. Oncosomes 
carry distinct protein cargo and are considered to 
be a separate functional class of tumour-derived 
vesicles.13

Table 1  Guide on extracellular vesicle (EV) subcategories by size, formation and formation-associated 
markers2 11 12 147

EV category Size (nm) Formation Marker

Exosome
(small EV)

30–150 Endosome fuses with the plasma membrane and 
releases exosome

ESCRT and associated proteins

Microvesicle
(medium/large EVs)

100–1000 Bud directly from the plasma membrane Cytoskeletal and plasma membrane proteins 
(actinin, tetraspanins*)

Apoptotic body
(larger EVs)

50–5000 Released by cells undergoing apoptosis Proteins associated with the nucleus, Golgi, 
endoplasmic reticulum and other cellular 
organelles

*indicates markers which are used in more then one subcategory
ESCRT, endosomal sorting complexes required for transport.
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In this review, we focus on EVs as both biological mediators of 
intercellular communication and biomarkers of disease, particu-
larly in response to respiratory stressors in COPD, CF, asthma, 
idiopathic pulmonary fibrosis (IPF) and lung cancer.14

METHODS OF EV ISOLATION AND ANALYSIS
Isolation
EV isolation methods commonly exploit the physical or chem-
ical properties of EVs. A challenge within EV research can be 
to obtain well-defined EV fractions of high quantity and purity 
to facilitate analytical characterisation. Table 3 summarises the 
most commonly used approaches and provides potential advan-
tages/disadvantages of each.

One of the biggest difficulties of EV research is the rela-
tively long sample isolation times and suffer from lower yield 
and purity.15 Therefore, combined isolation/analysis systems 
are gaining traction and are of particular benefit for use in the 
clinical setting.16 17 One such system is the NanoView which 
uses a ‘lab-on-a-chip’ set-up, with EV antibodies immobilised 
on silicon chips. The benefit of a system such as this is that; 
small volumes (35 µL) of unprocessed biological samples are 
used, without prior isolation.18 However, this system is limited, 
as prior knowledge of the target protein is required and limits 
exploratory characterisation.

Analysis
Characterisation of individual EVs can be achieved using different 
instruments. Nanoparticle tracking analysis (NTA) based on the 
illumination of nanoparticles in suspension with a laser beam is 
one of the most widely used methods of establishing the size and 
quantity of EVs in a sample.19 Resistive pulse sensing (RPS) is 
an increasingly common technique for determining the size and 
distribution of EVs.20 21 RPS allows for accurate size determi-
nation of single particles by measuring the change in resistivity 
as a particle of a certain size passes through a pore. However, 
the method is limited by the pore size range.21 Flow cytometry 
is another frequently used technique for single-particle analysis, 
particularly in clinical settings.22 Benefits of this technique over 
others, such as NTA, are that it incorporates a number of detec-
tion modes and arguably provides a more accurate analysis due 
to user-defined thresholds.23

Multifaceted ‘omics’ approaches which often include mass 
spectrometry (MS) (proteome, lipidome) and RNA sequencing 
analysis (transcriptome) have successfully enabled profiling of 
the EV in chronic lung diseases.24 25 RNA-Seq and microarrays 
are two of the most commonly used methods to sequence the 
transcripome.25 Specific studies analysing RNA profiles within 
EVs are highlighted in the disease sections. MS is a developing 
area used to characterise the protein and lipid content of EVs. 
Accurate protein identification and quantitation have dramat-
ically advanced due to high-performance MS technologies.26 
Bottom-up proteomics approaches which involve the proteo-
lytic digestion of proteins before MS analysis have enabled the 
identification of thousands of proteins in EVs.27 A bottom-up 
proteomic strategy is highlighted in figure 1. Alternative strat-
egies such as top-down proteomics, which sequences intact 
proteins without the need for proteolytic digestion and targeted 
proteomic approaches such as multiple reaction monitoring also 
hold promise in EV research.28 29

Proteomic profiling of EVs has successfully identified markers 
of acute exacerbation in COPD and unique protein fingerprints 
at different ages in persons with CF (PWCF), demonstrating the 
potential of EVs as markers for disease severity.30 31 MS analysis 

of EVs has successfully identified differential proteomes in 
patients with lung adenocarcinoma (ADC).32 Additionally, EVs 
isolated from nasal lavage fluid of asthmatic donors exhibited 
unique proteomes compared with controls.33

Lipidomics involves the specific characterisation of the 
lipid profile of a sample. As EVs are encapsulated in a lipid 
bilayer, understanding their lipid content and their potential 
as biomarkers is of increasing interest in lung disease.34 35 Both 
targeted or global MS analysis of lipids can be performed using 
high-resolution mass analysers enabling the identification of lipid 
species by accurate mass.35 A study on the role of CF-EV derived 
sphingolipids in inflammation showing that the lipid profile of 
CF-EVs was significantly different compared with controls.36 
Another study characterising the lipidome of EVs isolated from 
BALF from asthmatics and healthy controls identifying unique 
lipid EV profiles in patients with asthma.37

EVs as mediators of intercellular communication in the lung
It has been well established that EVs play a significant role in 
cellular communication.38 Cellular origin and microenviron-
ment directly influence EVs’ effect on the cells they communicate 
with.39 EVs can bind to recipient cells by interactions with tetra-
spanin proteins, integrins (ITGs), immunoglobulins and proteo-
glycans.40 Once bound they can deliver their message by entering 
the cell or by ligand–receptor activation. Mechanistically it is 
thought that EVs can directly interact with receptors on the 
plasma membrane of cells which may help target them to certain 
cells. Hoshino et al41 demonstrated tumour-derived exosomes 
could be directed to organ-specific cells by targeting the ITG, 
α6β.4, and concluded that exosomal ITGα6β4 activates the 
Src-S100A4 axis in lung fibroblasts during premetastatic niche 
formation. Our research demonstrated exosomes derived from 
bronchial epithelial cells caused activation of the receptor for 
advance glycation end-products (RAGE) receptor and mitogen 
activated protein kinase (MAPK) pathways in neutrophils.31

After entering the cell, the EV is endocytosed and releases its 
cargo by three hypothesised methods: by fusing with the plasma 
membrane, fusion with the endoplasmic reticulum, fusion 
with the endosome membrane or rupture of the endosome 
membrane.42 Cellular studies have traced the cellular uptake of 
labelled EVs with high-resolution microscopy to study the release 
of EV cargo. Joshi et al42 demonstrated that after endocytosis 
of green flourescent protein (GFP) labelled EVs into HEK293 
cells, internalised EVs fused with the membrane of endosomes/
lysosomes resulting in EV cargo exposure to the cell cytosol. A 
study by Tian et al43 investigated the fate of EVs following endo-
cytosis. By simultaneously labelling the EV membrane and cargo 
the authors demonstrated that inner EV localised proteins were 
trapped within the lysosome.43 The authors hypothesised that as 
the EVs originated from the same cell type as the recipient cell 
the abundance of existing proteins within the cell resulted in 
express expulsion.43 Additionally, the proinflammatory environ-
ment within the lung can subject EVs to degradation by prote-
ases and lipases.44 Degradation of the EV can release free ligands 
which can bind to cell surfaces in the localised area, inducing a 
signal.44

The lung is a unique organ providing defence and against 
viral and bacterial pathogens. Defence against respiratory 
pathogens requires communication between structural and 
immune cells. The lung airway epithelium acts as both a phys-
ical barrier and stimulates innate and adaptive immune mecha-
nisms important for maintaining lung homeostasis.45 EVs play 
a role in maintaining the lungs unique microenvironment’s 
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homeostasis through intercellular communication. Mast cell-
derived EVs have been shown to exhibit TGF-β on their 
surface and to induce epithelial–mesenchymal transition in 
airway epithelial cells within the lung.46 The presence of cyto-
kine suppressor molecules in CD8α+CD11c+ lung EVs and 
alveolar macrophage-derived EVs contributed to regulating 
immune balance in the respiratory tract in asthma and COPD 
models.44 47 48 A role for EVs in proinflammatory signalling is 
described further in this review and has been the topic of other 
reviews and studies.37 49 50

The source of EVs within the lung has a significant contri-
bution to the message they carry. Endogenous sources of EVs 
in the respiratory tract include epithelial cells and haemato-
poietic cells such as eosinophils, monocytes, macrophages 
and neutrophils. However, this is not an exhaustive list; 

EVs can be shed from endothelial cells. Zhao et al51 demon-
strated damaged pulmonary artery endothelial cells release an 
abundance of EVs.39 Bronchial epithelial cells are a primary 
source of reactive proinflammatory EVs in the lungs as they 
are most frequently exposed to insult and injury.49 EVs can 
also be released from bacterial sources. Exogenous bacterial 
EVs, expressed by pathogens in the lung, can create optimum 
growing conditions, encourage pathogen proliferation and 
prevent host immune responses52

EVs as biomarkers in lung disease
EVs can be found and isolated from most biological fluids 
in clinical disease cohorts. In respiratory research, bronchial 
lavage fluid (BALF) and blood are some of the more frequently 

Figure 1  Overview of EV isolation, digestion and reverse-phase liquid chromatography (RP-LC) mass spectrometry (MS) strategy. (i) Biofluids are 
collected and processed by standard and ultracentrifugation. (ii) The isolated EVs are lysed and digested with trypsin and the resulting peptides are 
then separated by RP-LC and analysed by MS. (iii) The MS scans generated are searched against databases using algorithms to produce qualitative 
and quantitative data. Bioinformatic tools enable identification of unique EV disease profiles. EV, extracellular vesicle.
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studied sources of EVs.53 In chronic lung inflammatory 
disease, stress-induced EVs are correlated to pathogenesis.54 
Examples of such studies are outlined within the individual 
disease sections. Chronic pulmonary disorders are among the 
most frequent causes of death, claiming the lives of at least 
four million people annually around the world.55 56 Shared 
characteristics of chronic lung disease are progressive reduced 
lung function and inflammation. Clinical symptoms include 
cough, chest tightness, shortness of breath and mucus produc-
tion. Acute exacerbations of chronic lung disease57 are often 
triggered by infection and contribute to disease progression 
and disease-associated mortality.58

There is a knowledge gap in the management of chronic 
lung diseases, including early identification, diagnostic 
biomarkers, and treatments.58 59 Biomarkers can be used as 
indicators of the presence and severity of a disease. They can 
help us understand the cause and progression of a disease, 
achieve early prognosis or predict treatment outcome. The 
search for useful biomarkers in the clinic can be difficult, with 
many biomarkers failing at verification and validation stages 
before they enter clinical practice.59 Many studies have been 

limited to examining the relationship between individual 
biomarkers and cross-sectional outcomes.60 However, recent 
investigations demonstrated that using multiple biomarkers 
can be more predictive of cross-sectional and longitudinal 
COPD outcomes.61

Due to EV cargoes’ disease-specific nature, these intercel-
lular communicators can be an all-in-one complex multimodal 
biomarker.62 Changes in the number and content of EVs have 
been reported during exacerbation in COPD, asthma and 
CF.31 63 64

EVs as therapeutic tools in lung disease
EVs have the potential to be novel drug delivery vehicles. 
Liposomal drug delivery systems, such as doxorubicin, a 
Food and Drug Adminstration (FDA)-approved chemothera-
peutic, are highly effective in reducing the toxic effects of the 
drugs they carry.65 However, liposome-based drug delivery 
has drawbacks, often the liposome is cleared from the system 
before reaching the target cell and can elicit adverse immune 
responses.66 Therefore, EVs have come to the forefront as 
they are naturally occurring molecular carriers. Biologi-
cally derived EVs are less likely to elicit an allergic immune 
response or be prematurely cleared and are considered to 
have a better safety profile than synthetic carriers.67 Cell and 
gene-based therapies are of particular interest in inherited 
disorders such as CF 68 A difficulty in effective RNA therapy 
is the relative instability of the nucleotides in circulation.69 
EVs are often chosen as delivery systems for RNA due to 
the aforementioned stability and role in communication.69 
However, EV mediated drug delivery can come with inherent 
difficulties due to the heterogeneity of biologic production.70 
Mesenchymal stem cell (MSC) derived EVs have shown 
potential in the area of regenerative medicine.71 Studies using 
MSC-EVs in chronic lung disease are discussed further in this 
review. In the vaccine arena, research has been conducted 
using bacterial EVs in vaccine development. One such study 
by Olaya-Abril et al used EVs from Streptococcus pneumo-
niae to inoculate mice and conferred protection from pneu-
mococcal infection.72

Table 2  Markers used for cellular origin of extracellular vesicles11

Cell/tissue type Marker

Epithelial cells EPCAM

Epithelial cells TSPAN8

Leucocytes CD37/CD53

Endothelial cells PECAM1

Breast cancer cells ERBB2

Mesenchymal stem cells CD90

Immune cells CD45

Platelets CD41/CD42a

Red blood cells Glycophorin A

Monocytes CD14

Neurons Amyloid β

Table 3  Summary of commonly used extracellular vesicle (EV) isolation methods

Technique Principle Advantage/disadvantage Ref

Differential ultracentrifugation EVs are isolated based on their 
sedimentation velocity in a centrifugal force

Currently most widely used and easy to 
perform
Difficulty achieving full separation of EV 
subcategories

148

Size exclusion Separates EVs based on size Well characterised kits available
Requires extensive postisolation processing

149

Affinity separation A molecule with affinity to a surface marker 
on the EV is suspended in a resin or bead 
which ‘pulls’ EVs from complex matrices

Can be highly specific for EVs
Elution of the EV from the tagged resin 
requires harsh buffers which can degrade 
the EV membrane

150

Precipitation High molecular weight polymers are 
complexed with EVs and isolated by either 
size or density-based methods

Reduces complexity of isolation protocol
Commercially available kit—ExoQuick
Requires postisolation decomplexation

53

Density ultracentrifugation A form of ultracentrifigation (UC) where 
viscosity gradients are employed to create 
a cushion which separates molecules into 
defined layers

Greatly reduces copelleting substances such 
as cellular lipoproteins
Lower EV yields are often reported 
compared with differential UC

151

Microfluidic system Acoustic, electric, optical, magnetic and 
immunoisolation of EVs from whole material

High purity isolation with qualitative and 
quantitative potential
Low volumes result in lower yield and 
throughput

16
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EVS IN RESPIRATORY DISEASE
COPD
COPD is a group of inflammatory lung diseases characterised 
by emphysema, bronchitis and obstructive airway.73 It is the 
third most frequent cause of death globally55 and EVs have been 
demonstrated to be functionally significant in COPD.74 They have 
shown biomarker potential, capable of distinguishing between 
stress-induced states and periods of exacerbation.75 They have 
also been associated with the inflammatory response in COPD 
airways.76 Mechanistic in vitro studies of EV roles in fibroblast 
accumulation in COPD have provided valuable insights into the 
pathophysiology of this disease. Fujita et al77 investigated the 
contribution of EVs in airway remodelling in COPD. They found 
that EVs carrying miR-210 could suppress autophagy responses 
and induce myofibroblast differentiation suggesting a potential 
therapeutic target.77 Similarly, miR-21, derived from bronchial 
epithelial EVs, was shown to mediate myofibroblast differentia-
tion and contribute to airway remodelling.78 Genschmer et al79 
studied the enzymatic cargo of polymorphonuclear neutrophil 
derived EVs and found they transport highly potent neutrophil 
elastase (NE). NE can degrade the extracellular matrix (ECM), 
causing significant damage and the hallmarks of COPD.79

There have been several studies on the proinflammatory role 
of EVs in COPD. A study by Kim et al80 demonstrated that EVs 
from Escherichia coli could induce emphysema via IL-17A-
mediated neutrophilic inflammation. Tan et al grouped patients 
according to the global initiative for COPD (GOLD) criteria for 
COPD exacerbations, they observed that elevated levels of circu-
lating EVs in patients with COPD are associated with markers 
of systemic inflammation including C-reactive protein (CRP), 
sTNFR1 and IL-6.75 However, in a prospective study of patients 
with COPD, Takahashi et al81 found that there was a negative 
correlation between increased circulating EVs and forced expiry 
volume (FEV)1 levels. An earlier study by Takahashi et al63 
showed increased levels of circulating endothelial microparticles 
in patients with COPD correlated with a decrease in FEV1/FVC 
ratio percentage.

There have been numerous studies into using EVs as biomarkers 
for COPD progression. Several studies have examined differen-
tial miRNA and protein expression after smoking.82 One such 
study by Sundar et al83 performed differential expression anal-
ysis on miRNAs derived from the EVs of smokers, patients with 
COPD and non-smokers to investigate the potential unique and 
common nucleotides between the groups. In a comparison of 
non-smokers versus COPD groups, they found miR199a-5p was 
upregulated and a previous study by Mizuno et al84 had shown 
that there was a negative correlation between miR199a-5p levels 
and lung function (FEV1)). Héliot et al85 conducted a study on 
the effects tobacco smoke had on EVs’ miRNA content. This 
study found that while EV diameter and concentration showed 
no variation between smokers and non-smokers, there was a 
significant downregulation of the let-7 family of miRNA.85 
Though this study used clinical samples there was no compar-
ison drawn between the clinical measurements of the effects of 
cigarette smoking and let-7 miRNA.

Carpi et al86 investigated the differential expression of skel-
etal muscle-specific miRNA cargo in EVs derived from serum of 
patients with COPD. Patients were grouped into four groups (A, 
B, C and D) relevant to disease severity by GOLD criteria. This 
study found that key miRNAs were upregulated in GOLD group 
D compared with other groups with clinical characteristics of 
dyspnoea, COPD assessment test, FEV1 and FEV1 predicted 
percentage all being significantly different in this group.86

Cystic fibrosis
CF is a life shortening disease caused by dysfunction in the cystic 
fibrosis transmembrane receptor resulting in impaired mucocil-
iary clearance, inflammation and recurrent bacterial infection.87 
A role for EVs as modulators of inflammatory cell activation in 
CF is emerging. An early study by Porro et al88 demonstrated that 
microparticles obtained from CF sputum are proinflammatory 
when injected into the murine lung and illicit a strong neutro-
phil response. Analysis of EVs isolated from BALF of PWCF 
and primarily ciliary dyskinesia demonstrated that disease state 
EVs contained higher levels of proteins involved in leucocyte 
chemotaxis than controls.89 We demonstrated that CF epithelial-
derived EVs were enriched with inflammatory markers such as 
S100 A12 that could regulate neutrophil migration.31

Our group and others have explored the biomarker poten-
tial of EVs in CF. Zulueta et al showed that the lipid profile 
of CF-EVs was significantly different than controls.36 Enhanced 
ceramide production leads to the release of EVs that export 
proinflammatory ceramide to the recipient cells, maintaining the 
unresolved inflammatory status of CF.36 Our group performed a 
study on EVs from BALF of four different age groups of PWCF 
and CF cell lines.31 We identified unique protein fingerprints and 
pathways between CF and control groups. Significant changes in 
EV number and protein content in CF adults undergoing exacer-
bation relative to controls were also observed.31 We also investi-
gated the correlation between clinical markers such as IL-8 and 
NE found in BALF and protein expression in EVs from PWCF. 
A significant correlation between IL-8 levels and 29 EV proteins 
was found.

The therapeutic potential of lung MSC EVs was investigated 
as a potential anti-inflammatory treatment in CF.90 Using an in 
vitro model, Zulueta et al found that MSC EVs downregulated 
the expression of proinflammatory cytokines IL-1β and IL-6.90

Asthma
Asthma is a chronic inflammatory disease of the airways with 
a complex pathophysiology. There are multiple endotypes of 
asthma making the development of diagnostic and therapeutic 
tools a challenge.91 EVs play a role in the pathology and progres-
sion of asthma by eliciting proinflammatory responses.92 EVs 
isolated from nasal lavage fluid of asthmatic donors exhibited 
chemotaxis of monocytes, natural killer cells and neutrophils.33 
Profiling of EVs from BALF of patients with asthma identified 
proteins involved in toll-like receptor (TLR) signalling, orches-
trating the inflammatory response.89 A study by Kim et al showed 
EVs from Staphylococcus aureus stimulated neutrophilic inflam-
mation via TLR signalling.93 The functional effects EVs have in 
asthma has been recently investigated in several studies. Hough 
et al characterised the lipidome of EVs isolated from BALF of 
asthmatics and healthy controls, identifying unique lipid EV 
profiles in patients with asthma concluding that the altered 
lipidome could drive chronic inflammation.37 Hough et al also 
found positive correlations between plasma eosinophilia and EV 
particle count and IgE titre and particle count.37

EVs from nasal polyps were found to have increased proteins 
associated with cell proliferation and thus remodelling of mucosal 
membranes.94 Treatment of human bronchial epithelial (HBE) 
cells with proinflammatory cytokines, specific to two subsets of 
asthma, T2 and T17 (T2 treated IL-4 and IL-13, T17 treated 
IL-17A and TNFα) increased EV release.95 EVs isolated from a 
murine model of asthma were found to have increased levels of 
immune cell-derived miRNA, such as miR-223 and miR-142a.96 
Interestingly, compared with controls, the dominant cell type 
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origin of EVs changed from largely epithelial cells to haemato-
poietic cells on allergen exposure.96

The use of EV miRNA cargo for potential biomarkers for 
pulmonary diseases has been discussed here concerning other 
conditions. Levänen et al97 investigated the miRNA content of 
BALF EVs from patients with asthma. They found that there 
was a significant difference between asthmatic miRNA and 
that of controls and a significant correlation to EV miRNA and 
decreased FEV1. Similarly to the Héliot study of COPD, Levänen 
found that the let-7 family of nucleotides were among the most 
significantly downregulated in asthmatics.97 Mendes et al98 used 
breath condensate to investigate a potential miRNA based plat-
form for asthmatic endotyping. Let-7 and other miRNAs were 
shown in exhalate, in sufficient quantity and with a significant 
difference, to enable potential phenotyping of asthmatic chil-
dren.98 Duarte et al64 conducted one of the first investigations of 
EVs as biomarkers for asthma. They found that EVs levels were 
significantly increased in asthmatics and found strong but not 
significant indications of inflammatory markers.64 In the study by  
Ax et al,95 several genes and proteins were differentially expressed 
in the two models compared with controls. In a recent commu-
nication, Bahmer et al99 indicated that miR-122-5p had poten-
tial to differentiate endotypes of asthma. They isolated miRNA 
from the plasma EVs of people with mild‐to‐moderate or severe 
eosinophilic asthma and healthy controls and found that counts 
of miR-122-5p positively correlated with blood eosinophils, 
neutrophils and lymphocytes.99 Investigating the same miRNA 
in sputum EVs from patients with asthma and healthy controls 
showed promising indications of an increase in asthamtics.99

Idiopathic pulmonary fibrosis
IPF is a progressive lung disease that occurs due to increased 
fibrosis of lung tissue in response to chronic injury of the epithe-
lium.100 Increased fibroblast activity and ECM accumulation in 
the lung are characteristics of the disease.101

Cellular senescence is a feature of the epithelial response to 
IPF.102 EVs released from senescent cells have been linked to 
reduced reparative stem cell activity.103 As intercellular commu-
nicators, EVs recruit fibroblasts to the ECM of the IPF lung. 
Chanda et al104 showed that fibroblast EVs had high ECM 
protein levels, including fibronectin. Lacy et al105 demonstrated 
that normal lung EVs are enriched in antifibrotic prostaglandin 
and inhibit myofibroblast differentiation. They demonstrated 
that reduction of antifibrotic prostaglandin could trigger an 
exacerbation of IPF.105 Parimon et al conducted a study of 
IPF phenotype mouse lung EV’s profibrotic qualities.100 Using 
RNA-seq technology, they found that TGF-β and Wnt signal-
ling pathways were upregulated in mouse lungs inoculated with 
IPF EVs.100 Martin-Medina et al106 investigated the clinical rele-
vance of EV-mediated WNT5A expression in IPF fibrogenesis. 
They found increased levels of WNT5A in EVs of people with 
IPF compared with non-IPF controls and a correlation between 
EV-associated CD81 and WNT5A.106

Biomarker discovery in IPF is a clinically important field due 
to the disease’s multiple origins.101 Makiguchi et al tracked 
the expression of serum EV miR-21-5 across 41 patients with 
IPF, over 30 months.107 They observed that baseline levels of 
miR-21-5 could predict mortality in IPF over the 30-month 
period and could be used as an effective indicator of disease 
exacerbation.107 They found that there was a significant correla-
tion between the levels of EV miR-21-5p and the rate of decline 
in predicted vital capacity of the lung over 6 months.108 Carleo 
et al109 investigated potential biomarkers for familial IPF. They 

showed protein associated with clathrin-coated vesicles were part 
of a group of proteins upregulated in familial IPF.109 Njock et al 
have recently published two clinical studies investigating the role 
of EV-derived miRNA in the progression of IPF.110 111 Analysing 
the miRNA content of sputum-derived exosomes, the authors 
found seven upregulated miRNAs, and found a negative correla-
tion between miR-142-3p and diffusing capacity of the lungs 
for carbon monoxide/alveolar volume.111 A further study by the 
group showed strong indications that upregulated miR-142-3p, 
derived from sputum and plasma exosomes of patients with IPF, 
were of macrophage origin.110 Guiot et al110 also found that over 
expression of miR-142-3p could reduce expression of TGFβ-R1 
and ultimately have an antifibrotic effect.

Using EV associated proteins for targeted therapies is rela-
tively understudied. Marchetti et al108 developed antiplasma-
lemma vesicle-associated protein (PV1) antibodies to enhance 
therapeutic delivery to the lungs. The PV1 antibody was conju-
gated to an antifibrotic small molecule and showed increased 
localisation of the small molecule to the lung and kidneys.108 
Wan et al112 investigated bone marrow stem cell (BMSC) derived 
EVs as a potential treatment for IPF. They found that BMSC 
EVs with over-expressed miR‐29b‐3p could inhibit fibroblast 
activity.112 Mansouri et al113 demonstrated the ability of MSC-
EVs to alter the phenotype of bone-marrow monocyte, aiming to 
elicit the same anti-inflammatory phenotype in lung monocytes 
as a treatment for IPF. Dinh et al114 used treated murine models 
of IPF with lung spheroid cell (LSC)-derived exosomes. This 
study found that LSC-exos were enriched with miRNAs largely 
conserved in stem cells and promoted lung repair in the murine 
IPF model.114

Lung cancer
Lung cancer is the leading cause of cancer death worldwide.115 
Although traditionally not considered a chronic disease, advances 
in biopharmaceuticals and surgical techniques for lung cancer 
treatment have created cohorts of long-term survivors.116 It is 
well established that EVs have numerous roles in lung cancer, 
including carcinogenesis, as biomarkers, as treatments and in 
treatment resistance.117 In the seminal paper by Fabbri et al, 
the authors investigated the prometastatic functionality of lung 
cancer-derived EV mRNA.118 They showed that mRNA could 
function as a ligand to TLR and induce inflammatory cells to 
create a metastatic niche.118 More recent studies have shown the 
significant and wide-ranging impact cancer EV-derived mRNA 
has on promoting cancer progression in the lung.119–121 Explor-
ative approaches for integrating liquid biopsy into managing 
common cancer types have been developed, including 32 studies 
focusing on EVs.122 Here, we concentrate on EV studies that 
identified biomarkers between control and disease states and 
targets contributing to lung cancer progression.

Profiling EV proteins from sera in patients with early and 
advanced non-small cell lung carcinoma (NSCLC) identified 
fibronectin as a potential marker for clinical use.123 Qiao et al 
identified several EV targets in metastatic lung cancer, func-
tionally important in driving metastasis, including hepatocyte 
growth factor.124 Salivary exosomes from patients with lung 
cancer were isolated, and several candidate diagnostic biomarker 
proteins such as SPARCL1, ENO1, IQGAP1 and BPIFA, all 
of which have roles in the survival and proliferation of lung 
cancer.125 EVs derived from patient with lung ADC serum were 
analysed and compared with healthy controls.32 Four proteins 
could distinguish ADC from controls, SRGN, TPM3, THBS1 
and HUWE1 are primarily vesicle-associated and support EVs 
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as enrichment sources for biomarkers.32 Cazzoli et al used EV 
microRNA to differentiate between ADC, granuloma and healthy 
controls.126 Comparing the small RNA cargo of ADC, NSCLC 
and control derived serum EVs showed differential expression 
of sRNA between the groups.127 Interestingly, comparison of 
sRNA from NSCLC cell lysate to serum EVs showed that miR-
451a and miR-122-5p were significantly downregulated in 
lysate but significantly upregulated in EVs.127 A study of serum 
exosomes from metastatic and non-metastatic NSCLC showed 
that lipopolysaccharide-binding protein was a highly sensitive 
and specific marker for metastasis.128 Exosomes, isolated from 
pleural exudate of patients with lung cancer, contained protu-
mour survival factors.129 The study found that exosomes from 
patients with lung cancer contained γ-glutamyl transpeptidase 
1, which converts exogenous leucotrienes to a protumorigenic 
form.129 Choi et al recently investigated the correlation between 
circulating levels of EVs in pulmonary and peripheral blood and 
stages of lung cancer.130 They found that EVs were increased 
10-fold in the peripheral blood of patients with lung cancer and 
19-fold in the pulmonary blood, further they found a significant 
correlation between advancing cancer stages and EV counts in 
pulmonary blood.130

Research into effective and safe cancer therapies is a contin-
ually growing field, as is research into keeping therapies potent 
and reducing resistance. Ma et al conducted a study into the role 
EVs have in chemo-resistance.131 Increased EV miR-425-3p was 
found in serum of patients with NSCLC during chemotherapeutic 
treatment.131 In vitro, chemoresistant EVs induced a resistant 
phenotype in untreated cells, miR-425-3p drove this process.131 
There have been numerous studies in EV associated resistance, 
and they are reviewed in greater depth elsewhere.132–134

As discussed previously, EVs can be drug carriers. Garofalo et 
al combined an oncolytic adenovirus and a chemotherapeutic 
within ADC EVs.135 Though the treatment showed accumula-
tion in both the liver and lungs, a subsequent study by the group 
posited that an intravenous administration was preferential to 
intraperitoneal and could reduce accumulation.136 Similar to 
other respiratory diseases, cell-based therapies are also a viable 
therapeutic route in lung cancer.137 138

The future of EVs and EV profiling in clinical respiratory 
medicine
There is a role for EVs in both clinical research and diagnosis. As 
evidenced in this review, EVs can provide new insight into the 
pathology of respiratory disease. Their role as cellular commu-
nicators is key to their contribution to pathogenesis. They coor-
dinate ECM remodelling in COPD and IPF.74 104 In CF, they 
induce chemotaxis of leukocytes.31 They influence TLR signal-
ling in asthma and cancer, orchestrating inflammatory responses 
and preparing metastatic sites.89 118

Profiling of EVs in the clinical arena could lead to a refined 
diagnosis for individual patients, directing the right therapies to 
the right patients.139 Response to treatments, particularly person-
alised treatments, often give insight into disease processes. The 
availability of clinical cohorts now receiving personalised treat-
ments for respiratory diseases presents a unique opportunity to 
gain a greater understanding of EVs. Novel model systems such as 
organoids are being employed in the drive towards personalised 
medicine and offer opportunities in more physiologically rele-
vant in vitro states to understand the functional role of EVs.140 
However, challenges remain in the analysis of EVs within clinical 
studies. To date, studies of EVs in lung diseases have recruited 
modest numbers of patients. More large scale, prospective, 

multinational studies are required to precisely define the bene-
fits of EV profiling in specific lung disorders. Where applicable 
the clinical parameters in EV studies discussed here have been 
stated above. However, further correlations between EV count 
or content and the clinical indicators of lung disease need to be 
performed. Additionally, the field lacks in clinical studies with 
the many investigations performed ex vivo, in vitro and using in 
vivo murine models.

A further issue is that pulmonary diseases are physiologically 
complex and occur on a spectrum of severity, which adds an 
additional layer of difficulty.62 Identifying robust biomarkers 
that can distinguish between exacerbated and steady states 
will be beneficial. Though caution is warranted, as the field 
of EV research grows rapidly, there is a tendency to focus on 
target cargo molecules while the broader landscape goes under-
reported. Studies cited here have achieved this to some extent, 
but there is still much to be understood. Advances in omics tech-
nologies such as the advent of high-end mass spectrometers and 
new RNA sequencing technologies will enable deeper profiling 
of EVs enabling greater discovery of EV biomarkers.141 142 Iden-
tification of novel EV markers will also contribute towards better 
classification of EVs subpopulations addressing the challenge of 
EV heterogeneity.

Standardisation of EV methods is essential for the field to 
move forward and positively impact patient care. However, until 
there is consensus on isolation protocols analysts are required 
to balance the advantages and disadvantages, as discussed in 
table 3, of each method. Transparent reporting and centralising 
knowledge in EV research (EV-TRACK) platform is a collective 
effort to bring standardisation to EV studies by ‘scoring’ a study 
based on the techniques used in isolation and characterisation.143 
Continued guidelines from organisations, such as ISEV, and 
evolution of platforms such as EV TRACK, will increase unifor-
mity and improve standardisation.11 143–146 There are inherent 
difficulties in EV isolation that will require more than standardi-
sation to resolve namely the large amounts of sample required to 
yield ‘useable’ quantities of EVs and the limitations of acquiring 
fresh samples in a longitudinal study. Though many groups, 
including our own, have gained valuable information from EV 
derived from deep-frozen samples the effects of freeze-thaw on 
the lipid-membrane are not fully understood.

The complexity and variety of chronic respiratory diseases 
call for more effective targeted therapies. MSC EVs have shown 
promise in reversing inflammatory environments of chronic lung 
disease.90 112 EVs have been shown to safe, effective carriers of 
drugs due to their specific cell targeting properties and stability. 
Although EVs have not elicited allergic responses in studies to 
date further investigations are needed to examine their immuno-
genicity profiles and potential to generate autoantibodies which 
could reduce the effectiveness of therapy.67

The future for EV biology is bright and where the advent of 
new EV technologies will provide greater insights into different 
disease states in respiratory medicine ranging from early iden-
tification and diagnosis, to the prediction of exacerbation and 
effects of disease-modifying treatments.
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