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Currently available genetic tools effectively distinguish between different continental
origins. However, North Eurasia, which constitutes one-third of the world’s largest
continent, remains severely underrepresented. The dataset used in this study
represents 266 populations from 12 North Eurasian countries, including most of the
ethnic diversity across Russia’s vast territory. A total of 1,883 samples were genotyped
using the Illumina Infinium Omni5Exome-4 v1.3 BeadChip. Three principal components
were computed for the entire dataset using three iterations for outlier removal. It allowed
the merging of 266 populations into larger groups while maintaining intragroup
homogeneity, so 29 ethnic geographic groups were formed that were genetically
distinguishable enough to trace individual ancestry. Several feature selection methods,
including the random forest algorithm, were tested to estimate the number of genetic
markers needed to differentiate between the groups; 5,229 ancestry-informative SNPs
were selected. We tested various classifiers supporting multiple classes and output values
for each class that could be interpreted as probabilities. The logistic regression was chosen
as the best mathematical model for predicting ancestral populations. The machine learning
algorithm for inferring an ancestral ethnic geographic group was implemented in the
original software “Homeland” fitted with the interface module, the prediction module, and
the cartographic module. Examples of geographic maps showing the likelihood of
geographic ancestry for individuals from different regions of North Eurasia are
provided. Validating methods show that the highest number of ethnic geographic
group predictions with almost absolute accuracy and sensitivity was observed for
South and Central Siberia, Far East, and Kamchatka. The total accuracy of prediction
of one of 29 ethnic geographic groups reached 71%. The proposed method can be
employed to predict ancestries from the populations of Russia and its neighbor states. It
can be used for the needs of forensic science and genetic genealogy.
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INTRODUCTION

Now and then, criminal investigators are faced with the need to
infer the ancestral geographical origin of an individual from
their genotype. Advances in genome analysis technologies and
customization of genotyping arrays have shaped the diversity
of currently available platforms for biogeographical ancestry
prediction from individual DNA samples. Some of them rely
on only dozens or hundreds of SNPs and can predict the
continent of a person’s origin (or a large region at best) rather
than a specific population (Mehta et al., 2017; Lan et al., 2019;
Pakstis et al., 2019). Such platforms are in high demand in
countries where individuals of different continental or
subcontinental origins constitute the population majority.
They are designed to account for human genetic variation
at the global rather than local level, even at the cost of
sacrificing the number of informative ancestry markers
(Phillips et al., 2019). Other arrays can generate more
specific predictions, but the markers they use are
geographically limited to large regions or subcontinents, like
East or South Asia, Oceania, North Africa, Middle East, and
Europe (Al-Asfi et al., 2018; Pereira et al., 2019; Lan et al., 2020;
Xavier et al., 2020). One of such panels featuring 48 SNPs has
proved to be powerful enough to successfully differentiate
between three Chinese populations with very different
ancestries: Mongol, Uighur, and Han (Jin et al., 2019).
However, it is unclear whether the same set of markers can
accurately predict the 40 remaining East Asian Chinese
populations.

Commercial arrays for genealogy tracing comprise
hundreds of thousands of SNPs and produce accurate
results, but high costs preclude their use in routine forensic
practice, which is limited to dozens or hundreds of SNPs.

Although the arsenal of tools for ethnic geographic ancestry
prediction is continuously expanding and more regions are
getting covered, one-third of the world’s largest continent
remains severely underrepresented. The population of
North Eurasia, which spans, among other states, post-Soviet
countries, and Mongolia, is incredibly culturally diverse (200
peoples and ten language families) and highly genetically
heterogeneous. The immenseness of its genome-wide
variation was clearly visible on principal component plots
for worldwide population datasets in the early days of SNP-
based biogeographic ancestry studies (Li et al., 2008). Using a
Humans Origins array featuring 600,000 autosomal markers,
Jeong et al. (2019) demonstrated that the composition of the
North Eurasian gene pool had been shaped by three major
genetic components geographically linked to three ecoregions:
forest-tundra, forest-steppe, and steppe. Notably, patterns
revealed more than 50 years ago by research studies that
relied on classic markers are reproduced today with
genome-wide SNP arrays (Balanovskaia and Rychkov,
1990a, Balanovskaia and Rychkov, 1990b; Rychkov and
Balanovska, 1992). According to the cited studies, genetic
markers characterizing the North Eurasian gene pool occur
at different frequencies across populations of North Eurasia.
The populations of neighboring regions may not necessarily

share them. So, commercial arrays for indigenous ancestry
prediction based on dozens of SNPs will provide only rough
estimates of European and Asian genetic components for
Russian individuals, which is not enough for practical work.

There were attempts to describe the populations of Russia
using autosomal STRs and to create an STR-based database for
forensic needs. However, the array turned out to have only
limited ability to predict ethnic geographic ancestry. The
largest dataset representing this region was published in
(Stepanov et al., 2011). It consisted of 1,156 samples from
17 populations genotyped for 15 autosomal STRs (Promega
PowerPlex16 kit). The dataset represented six Russian cities,
nine ethnic groups from Russia, and populations from two
other North Eurasian countries (Ukraine and Belarus). The
urban populations were shown to be virtually
indistinguishable genetically, whereas many ethnic
populations differed significantly from each other.

Russia is a vast country with a highly heterogeneous
population. At present, there are no SNP arrays to match
its diversity. Even the Humans Origins array turned out to be
insufficient for the correct differentiation of the population of
Northern Eurasia, since it is focused on the world gene pool as
a whole. This study was an endeavor to improve the accuracy
of biogeographic ancestry predictions for the populations of
Inner Eurasia. To that end, the population of this region was
divided into 29 ethnic geographic groups that fairly adequately
represented its diversity. We determined the range of the most
informative autosomal markers that effectively characterize
North Eurasian populations and developed a model and
software for ancestry inference based on these markers. For
the sake of the end user’s convenience, we supplied the
software with a cartographic module that shows the most
probable area of a person’s ancestral origin on the
geographic map.

MATERIALS AND METHODS

Samples
Genotype data was generated from samples representing
North Eurasian populations using genome-wide SNP
arrays. Most of the analysis was conducted on the data
generated by an Infinium Omni5Exome-4 v1.3 BeadChip
Kit (Illumina; United States) featuring 4.5 M SNPs. The
dataset consisted of 1,883 samples from 266 populations of
Russia and its neighbor states. The samples represented 92
ethnic groups from 12 North Eurasian countries: Armenia,
Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Lithuania,
Moldova, Mongolia, Russia, Turkey, Ukraine, and
Uzbekistan. The samples were provided by the Biobank of
North Eurasia (Balanovska et al., 2016). To avoid
terminological confusion when using the words
“population”, “people”, “sub-ethnic group”, “geographic
group”, “region”, etc., we propose the term “ethnic
geographic groups” (EGG) to denote groups of populations
that in their totality represent an entire geographic region in
such a way that each EGG is relatively genetically
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homogeneous, but at the same time, its gene pool differs from
that of other EGGs.

The study was approved by the Ethics Committee of the
Research Centre for Medical Genetics, Moscow, Russia. All
procedures performed in studies involving human participants
were in accordance with the ethical standards and with the
Helsinki declaration (1964).

The written informed consent was obtained from all
individual participants included in the study.

Datasets
Quality control was performed with PLINK 1.9 (Chang et al.,
2015). The following filters were applied to create datasets for
PCA plots: --geno 0.05 (filters out SNPs with a missing rate
over 5%), --maf 0.01 (filters out SNPs with a minor allele
frequency below 0.01), --mind 0.1 (excludes individuals with
over 10% missing genotype data), and --indep-pairwise
1500 150 0.2 (removes SNPs that are in high linkage
disequilibrium with each other). The same filters were
applied to create a dataset for SNP selection. The output
data were converted to vcf and then to a csv file in which 0
denoted the 0/0 genotype, 1 denoted the 1/0 genotype, and 2
denoted the 1/1 genotype. Finally, missing genotypes were
imputed. Imputation is needed because of the inability of a lot
of machine learning algorithms to work with missing data.
While we have a lot of markers in the initial dataset, we develop
the software for the prediction that uses only a limited number
of markers. Although haplotype imputation is more accurate,
five thousand markers are not enough for this kind of
approach. We decided that using a single method for all the
data would be more appropriate, so that the training and the
test datasets, as well as any newly generated data in the future,
would undergo the same preprocessing. Thus, missing
genotypes were imputed by replacing a missing value with
the most frequent genotype for a given SNP across all 1883
profiles.

After raw data filtering, 51 samples were excluded.
Additionally, we removed 19 related samples using KING
2.2.4 software (Manichaikul et al., 2010); all settings were
set to default, relatedness was estimated using the --related
option. The final dataset consisted of 1813 samples.

PCA and FST
PCA and FST were conducted using the smartpca tool from the
EIGENSOFT software package (Price et al., 2006). Default
parameters were used except for the number of iterations for
outlier removal in PCA set to 3. The filtered dataset after
quality control and pruning described in the previous section
was used as input data.

Machine Learning Algorithms
All machine learning algorithms were used as implemented in
the Python 3 Scikit-learn module (Pedregosa et al., 2011). The
metrics used are also those implemented in Scikit-learn. All
parameters were set to default values if not said otherwise in
the Results section. The random seed was fixed for all of the
methods to ensure the reproducibility of the study.

RESULTS

Workflow Overview
The dataset included 266 populations from 12 North Eurasian
countries: Armenia, Azerbaijan, Georgia, Kazakhstan,
Kyrgyzstan, Lithuania, Moldova, Mongolia, Russia, Turkey,
Ukraine, and Uzbekistan. The studied populations represent
most of the ethnic diversity across this vast territory
(Figure 1, Supplementary Table S1). A platform for
biogeographic ancestry identification was developed in 5 steps.
We started by identifying “ancestry groups”, or “ethnic
geographic groups”, i.e., groups of populations that are
genetically distinguishable enough to trace individual ancestry.
Then, we estimated how many SNPs were needed to differentiate
between these groups and chose 5,000 most informative SNPs
from the Illumina array of 4.5 M markers. In the third step, we
developed a machine learning algorithm for inferring an ancestral
EGG. After that, we implemented this algorithm in the original
software supplied with a cartographic module for constructing
geographic maps of ancestry probabilities. Finally, we validated
the proposed method and evaluated its precision.

Subdividing North Eurasia Into 29 Ethnic
Geographic Groups
We aimed to achieve the highest possible geographic
resolution of ancestry estimates relying on the limited
number of SNPs. There were 266 populations in our dataset
(Figure 1), and obviously, it was impossible to genetically
distinguish between closely related geographically neighboring
populations. This raised the need for clustering the studied
populations into groups that would be genetically
distinguishable yet relatively internally homogenous.
However, the populations were grouped by their genetic
characteristics. Below, the groups will be referred to as
ethnic geographic because most of them comprised
ethnically and linguistically related populations that occupy
contiguous territories. In addition to relative genetic
homogeneity within a group and apparent differences
between the groups, each group had to be represented by at
least 25 samples.

The grouping procedure was previously detailed in (Gorin
et al., 2020). Briefly, three principal components were
computed for the entire dataset of 1,813 samples (after raw
data filtering) using three iterations for outlier removal. For
each population, the mean value of each principal component
was calculated, and the K-means algorithm was applied to
these mean values to partition them into clusters. To obtain
clusters with a desired average size, K was set to 30. The
method produced 30 imbalanced EGGs (4 samples in the
smallest group and 294 samples in the largest). To reduce
the imbalance, some of the EGGs were merged while others
were broken down into smaller groups so that their size was
neither too small (<25 samples) nor too large (>150 samples).
The validity of these changes was tested using additional PCA
plots for the merged/divided populations and by calculating
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FST for all pairs of populations. We were not able to merge
some of the smaller populations due to their size and genetic
difference from other populations, so we removed them from
the dataset (40 samples in total). We ended up with 29 groups
of populations (EGGs) identified from a set of 1,773 samples
(Table 1). Figure 2 shows the area on the map occupied by
these groups. Figure 3 and Supplementary Figure S1 show
PCA plots for the entire dataset, i.e., 4.5 M SNPs; the color of
each sample coincides with the color of the ethnic geographic
group it represents.

SNP Selection
Various methods of SNP selection were tested. The results were
compared using an F1-score metric, which is a harmonic mean of
precision and recall and therefore ensures a balanced evaluation
of predicting power of the model. There were over 817,120
candidate SNPs after raw data filtering, which, considering the
small number of samples (1,773), is overwhelming for most
feature selection algorithms. At first, we tried the lasso method
without univariate feature selection. The resulting F1 score was
only 0.42 on average. So, univariate feature selection was
performed as a preprocessing step. The chi-square test was
applied to each SNP within each class, i.e., EGG. For each

class, SNPs with the highest chi-squared values were selected
for further analysis. Besides, we experimented with various
numbers of SNPs to represent each class and finally settled on
2,000 SNPs. This approach allowed us to reduce the number of
candidate SNPs to 50,000–60,000, which is high enough to
prevent significant SNPs from being left out and low enough
for feature selection algorithms to process the dataset.

For further feature selection, various models were tested. To
choose the best feature selection model, we trained a few logistic
regression models with identical parameters on the samples of the
selected SNPs. The F1 scores obtained by the models were
averaged between EGGs and compared to each other. The first
tested model was the lasso method without univariate feature
selection, which produced an average F1-score of 0.42. By
applying the chi-square test, we were able to increase the score
to 0.62. Further improvements were achieved by adding size-
appropriate weights to classes (EGGs) during model training; this
produced an F1 score of 0.65. The procedure was severely affected
by overfitting, so we tested the models with less tendency to
overfit. The best result was demonstrated by the ExtraTrees
classifier less affected by overfitting due to the randomness of
the algorithm. Besides, ExtraTrees assigns a score value to each
feature and thus can be used to select SNPs with the best score. By

FIGURE 1 | A map of the 266 populations of North Eurasia used for the analysis. Notes. Dots of different colors on the map are languages spoken by the
representatives of the studied populations (the color legend is provided at the top of the map).
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adjusting a score threshold, the number of SNPs that get into the
final list can be changed. Using the random forest algorithm, we
were able to achieve an F1-score of 0.75.

Stratified k-fold cross-validation was applied to further reduce
the influence of overfitting. The dataset was split into five subsets
(k folds), and the random forest algorithm was trained on these
five subsets. An SNP was included in the final list of selected SNPs
if its score was above the threshold value in all five models. This
allowed us to increase the F1 score to 0.79.

The model performed well for most EGGs, but there were two
EGG pairs and one triplet that were often confused by the
algorithm: “Northern Russians” and “Southern Russians”;
“Mordovians” and “Ukrainians”;
“Kazakh&Karakalpak&Uigur&Nogai”, “Kyrghyz” and
“Mongols&Kalmyks”. However, all these EGGs were clearly
distinguishable on the PCA plots, so we decided to expand the
list of optimal SNPs with extra 100 markers with the highest
weight that distinguished EGGs in the pairs. To overcome the
problem with the triplet, we added 100 SNPs that distinguished
two EGG in the triplet from the third and 100 more SNPs that
distinguished the two EGGs from each other. This improved the
average F1 score to 0.81.

To determine the optimal number of SNPs to be included in
the final list of markers, the described workflow was run several
times with various numbers of SNPs. Then the logistic regression
model was trained on each of the SNP sublists and the
performance of the models was compared based on the F1

score. The F1 plot for different numbers of SNPs chosen for
ancestry prediction is shown in Supplementary Figure S2.

As seen from Supplementary Figure S2, 4,000 SNPs should be
enough to achieve a prediction close to the best possible
prediction that can be generated by this model. However, to
compensate for imperfect genotyping, we expanded the list to
5,000 SNPs.

After preliminary experiments, we ran the final SNP selection
process. First, we selected 2,000 SNPs for each EGG using the chi-
square test. Due to the overlap of these SNP sets, our list was
narrowed down to 54,522 SNPs. Then, we used
ExtraTreesClassifier with balanced class weights and
determined the optimal number of estimators to use with
cross-validation (CV) and trained one-vs-rest logistic
regression. The best results were achieved with 320 estimators.
After training the model and selecting SNPs with scores above
0.000027 in all CV splits, we ended up with 4,851 SNPs. Then, we
added 400 SNPs from the principal components of problematic
pairs and triplets to the dataset. The final list comprised 5,229
selected SNPs. The dataset with 1,883 samples and 5,229 SNPs is
available in a PLINK format via correspondence; characteristics
of the samples are provided in Supplementary Table S1. The
flowchart of the final SNP selection process is shown in
Supplementary Figure S3.

To check whether the selected SNPs adequately reflected the
population structure, we constructed PCA plots based on 5,229
SNPs included in the final list (Supplementary Figure S4 and

TABLE 1 | Populations and sizes of EGGs.

No EGG Populations Size

1 Amur_Nanais&Nivkhs&Orochi&Ulchi Nanais, Nivkhs, Ulchi, Orochs 55
2 Bashkirs Bashkirs 44
3 Buryats&Khamnegan&Yakuts Buryats, Khamnegan, Yakuts 59
4 Chechens&Ingush Chechens, Ingush 39
5 Chukchi&Koryaks&Itelmen Koryaks, Itelmens, Kamchadals, Chukchi, Itelmens 75
6 Dagestan Avars, Kubachins, Dargins, Tabasarans, Laks, Lezgins, Rutuls 74
7 Evenks&Evens Evens, Evenks 49
8 Karelians&Veps Karelians, Vepsa 38
9 Kazakh&Karakalpak&Uigur&Nogais Karakalpaks, Nogais_Astrakhan, Nogais_Stavropol, Uyghurs, Kazakhs 33
10 Khakass&AltaiSouth Khakass, Altaians 46
11 Khanty&Mansi&Nenets Khanty, Nenets, Mansi 53
12 Komi&Udmurts Komi Permyaks, Komi Zyrians, Udmurts, Besermyan 84
13 Kyrghyz Kyrghyz 43
14 Mari&Chuvash Chuvashes, Mari 53
15 Mongols&Kalmyks Mongols, Kalmyks 127
16 Mordovians Mordovians Moksha, Mordovians Erzya, Mordovians Shoksha 41
17 Ossets Ossetians 36
18 Russians_North Russians, Izhora, Vod 81
19 Russians_Southern Russians, Belorussians 240
20 Russians_VeryNorth Russians 35
21 Shors&AltaiNorth Shors, Altaians 37
22 Siberian Tatars Tatars Siberian 68
23 Tajiks&Pomiri&Yaghnobi Pomiri, Tajiks, Yaghnobi 72
24 Tatars Tatars Krayshen, Tatars Kazan, Tatar _Mishar, Tatars from Bashkortostan, Tatars Astrakhan 60
25 Transcaucasia&Crimea Armenians, Azeri, Tatars_Crimean, Karaites, Turks, Kurds, Ezids, Georgians 113
26 Tuvinians&Tofalars Tuvinians, Mongols, Tofalars 64
27 Ukrainians Ukrainians 79
28 Uzbeks&Turkmens Turkmens, Uzbeks 55
29 West_Caucasus Adyghe, Kabardinians, Shapsug, Karachays, Abkhazians, Circassians, Abazins, Balkars 87
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Supplementary Figure S5). Other PCA plots were constructed
for the same population sample using the entire set of 4.5 M SNPs
from the Illumina panel (Figure 3 and Supplementary Figure
S1). The two sets of plots were compared, revealing similar
patterns. There was a greater overlap of some population
clusters in the second pair of plots, and the distances between
some clusters were shorter. However, a decrease in resolution is
inevitable with fewer SNPs. By reducing the number of SNPs
1,000-fold, genotyping is made a lot simpler, while the general
pattern of genetic similarities between populations remains the
same, and the selected set of SNPs allows ancestries to be inferred.

Building the Prediction Model
After SNP selection was completed, the best mathematical
model (classifier) for predicting ancestral populations was
chosen and trained. We tested various classifiers supporting
multiple classes and output values for each class that could be
interpreted as probabilities, including logistic regression,
multilayer perceptron (MLP), different variants of Support
Vector Classifiers, Naive Bayesian classifiers, and some types
of bagging and boosting random forest methods. Their
performance was compared based on the average F1-score
in all EGGs in 5 CV splits. The best results were demonstrated

by MLP and logistic regression (the average F1-score was 0.81).
We made an attempt to tune both models. Adjustment of MLP
parameters did not improve the score. By tuning the logistic
regression model, a slight improvement of the F1 score was
achieved, but the score was lower than that obtained with MLP.
However, logistic regression is more straightforward and
trains much faster than MLP, so we opted for one-vs-rest
logistic regression with the following parameters: L2 penalty, C
equal to 1, and balanced class weight.

This model was trained on 1,773 population samples using
previously selected 5,229 SNPs.

Developing Software for Ancestry
Prediction and Mapping the Results
As a part of this study, we developed software for ancestry
prediction. The software named Homeland (available via
correspondence) consists of 3 modules: the interface
module, the prediction module, and the cartographic module.

The interface module aggregates data from other modules
and translates it into a user-friendly format. The module
allows the user to submit genotype samples and returns the
result of biogeographic ancestry estimation, which can be

FIGURE 2 | North Eurasia divided into genetically distinguishable ethnic geographic groups. Notes. Colored zones on the map designate areas occupied by the
identified ethnic geographic groups. Groups are numbered according to their geographic coordinates. Black stars represent local populations (coincide with the
populations in Figure 1).
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subsequently printed out as a report or visualized on a
savable map.

The prediction module estimates a person’s biogeographic
ancestry from a submitted genotype. The result is a set of
geographic points with different probabilities of ancestral
origin.

The cartographic module builds JPG maps of probable
biogeographic ancestry using the geographic points received
from the prediction module and hard-wired settings
(cartographic base, scale types, parameters of probability
interpolation). The module shows the area of probable
ancestral origin predicted from the submitted genotype on the
geographic map, which is very convenient for practical work.

Besides, the accuracy of prediction can be improved using
interpolation: the module will highlight the area where the
submitted genotype occurs (Figure 4).

Validating the Method
To evaluate the prediction power of the model, we trained it
on 1,241 population samples from our dataset and then tested
it on the remaining 532 samples. The results are presented in
Table 2. The EGG prediction heatmap is shown in
Supplementary Figure S6. The Figure shows a bright
diagonal reflecting the effectiveness of the model: most of
the EGG predictions were correct (weighted average
precision: 0.85; weighted average recall: 0.84; Table 2). The

FIGURE 3 | A plot of the first and the second principal components based on the entire 4.5 M SNP panel.
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model made correct predictions about the geographic
ancestry of absolutely every individual sample from the
following populations: Mari&Chuvash, Ukrainians,
Khanty&Mansi&Nenets, Chukchi&Koryaks&Itelmen,
Evenks&Evens, Amur_Nanais&Nivkhs&Orochi&Ulchi,
Tuvinians&Tofalars, Shors&AltaiNorth (Supplementary Figure
S6). There were a few cases when the sample was assigned to 2
EGGs (one correct + one false). These errors occurred with the
following groups: Russians_VeryNorth, Karelians&Veps,
Russians_North, Russians_Southern, Komi&Udmurts, Mordovians,
Buryats&Khamnegan&Yakuts, Mongols&Kalmyks,
Khakass&AltaiSouth, Tajiks&Pomiri&Yaghnobi, Ossets,
Transcaucasia&Crimea.

False ancestry predictions occurred when the falsely predicted
EGG was genetically or regionally close to the actual EGG. For
example, 4 individuals from the Russians_Southern population were
wrongly recognized by the model as Ukrainians, and Ukrainian
ancestry was falsely predicted for 4Mordovians, 3 Karelians&Veps, 4
Tatars and 3 representatives of the West_Caucasus group
(Supplementary Figure S6). Following formal evaluation criteria,
this could be interpreted as a reduction in precision. However, all of
these falsely predicted EGGs either neighbor the Ukrainian group on
the map (Russians_Southern) or inhabit the same region of Eastern
Europe so that the false predictionsmay be due to the high frequency
of genotypes inherited from the common ancestor protopopulaton
and now spread across this region.

A reduction in sensitivity (low recall) was observed when the
sample was assigned to the wrong EGG within the actual
ancestral geographic region. Such errors most frequently
occurred for the populations of Ural, West Siberia, Central
Asia, and Caucasus (Supplementary Figure S6). According to
earlier population genetics studies, these territories are highly
genetically diverse, which is illustrated by the maps of genetic
borders (Pagani et al., 2016; Jeong et al., 2019). This may be due to
the vast variety of population sources for these regions. Their
contribution differs significantly even between two neighboring
populations: being dominant in one population, the contributing
genetic component can be very low in another. Therefore, larger
sample size and further division of heterogeneous EGGs into
more homogenous groups may be needed to ensure more
accurate predictions within these regions.

Notably, the highest number of EGG predictions with (almost)
absolute accuracy and sensitivity was observed for South and
Central Siberia, Far East, and Kamchatka (Supplementary
Figure S6).

DISCUSSION

Forensic science may benefit from a tool for predicting the
geographic area of a person’s ancestral origin based on no
more than a few thousand SNPs. Studies exploring the gene

FIGURE 4 | Example of the map generated by the Homeland software.
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pools of the western (Western Europe) and eastern (Central
and East Asia) poles of Eurasia have generated a massive body
of evidence, which, unfortunately, only partly explains the
characteristics of the North Eurasian gene pool. They could be
better understood using data on the populations of North
Eurasian countries that share a history of strong migration
flows in the past and present. We determined the range of the
most informative autosomal markers in this study that
effectively characterize North Eurasian populations and
developed a model and software for ancestry inference
based on these markers.

Preliminary tests of the proposed model for ancestry prediction
allowed us to quantitively evaluate its performance. The analysis of
tables generated by the software revealed that the proportion of
correct predictions (matches between the actual EGG and the most
probable EGG) was 71%. On the maps, the proportion of correct
predictions (the actual geographic location being within the most
probable predicted region) reached 61% for more likely areas of
origin and 81% for less likely areas of origin. Considering the
plethora of ethnic geographic groups and the complex population
structure of North Eurasia, the proposed method for biogeographic
ancestry prediction has demonstrated very good performance.

Merging ethnic geographic groups into larger clusters or
expanding the geographic area of probable ancestry improves
the accuracy of the model (the proportion of correct predictions)
but adversely affects the informative value of the method
(geographic precision). This raises the need for further
refinement that can be achieved by finding the right balance
between accuracy and informative value. Almost absolute
accuracy was demonstrated for the majority of EGGs from
Siberia, Far East, and Kamchatka. Quite accurate ancestry
predictions were achieved for the populations of East Europe,
Ural, West Siberia, Caucasus, and Central Asia, and the observed
minor deviations in accuracy suggest high genetic heterogeneity
in these regions. In our opinion, improvements in prediction
accuracy can be achieved by increasing the sample size of the
training dataset.

In its current state, the proposed method can be employed to
predict ancestries from the populations of Russia and its neighbor
states. It can be used for the needs of forensic science and genetic
genealogy.

Our method has two limitations: the genotyping approach is
expensive, and the method itself has not been optimized for
admixed individuals.

TABLE 2 | Resulting metrics of predictions for each EGG.

Precision Recall f1-Score Support

Amur_Nanais&Nivkhs&Orochi&Ulchi 1.00 1.00 1.00 12
Bashkirs 0.71 0.77 0.74 13
Buryats&Khamnegan&Yakuts 0.79 0.88 0.83 17
Chechens&Ingush 1.00 0.63 0.77 8
Chukchi&Koryaks&Itelmen 1.00 1.00 1.00 20
Dagestan 0.90 0.90 0.90 20
Evenks&Evens 1.00 1.00 1.00 14
Karelians&Veps 1.00 0.73 0.84 11
Kazakh&Karakalpak&Uigur&Nogais 0.75 0.30 0.43 10
Khakass&AltaiSouth 1.00 0.92 0.96 13
Khanty&Mansi&Nenets 0.94 1.00 0.97 16
Komi&Udmurts 0.96 0.88 0.92 25
Kyrghyz 0.83 0.50 0.63 10
Mari&Chuvash 0.84 1.00 0.91 16
Mongols&Kalmyks 0.82 0.95 0.88 38
Mordovians 0.80 0.67 0.73 12
Ossets 0.86 0.55 0.67 11
Russians_North 0.80 0.35 0.48 23
Russians_Southern 0.75 0.93 0.83 59
Russians_VeryNorth 1.00 0.90 0.95 10
Shors&AltaiNorth 1.00 1.00 1.00 10
Siberian Tatars 1.00 0.65 0.79 20
Tajiks&Pomiri&Yaghnobi 0.81 0.95 0.88 22
Tatars 0.60 0.38 0.46 16
Transcaucasia&Crimea 0.92 0.96 0.94 25
Tuvinians&Tofalars 1.00 1.00 1.00 17
Ukrainians 0.57 1.00 0.73 24
Uzbeks&Turkmens 0.86 0.86 0.86 14
West_Caucasus 0.75 0.81 0.78 26
— — — — —

accuracy — — 0.84 532
macro avg 0.87 0.81 0.82 532
weighted avg 0.85 0.84 0.83 532
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We do not propose a genotyping platform that could be used
to genotype a DNA sample for the set of 5,000 SNPs. We assume
that the sample that the end user has at their disposal has already
been genotyped. We propose a method and software to estimate
ancestries from the genotype. At the moment, the genotype can
be obtained either by using the Illumina Infinium Omni5Exome-
4 v1.3 BeadChip or through whole-genome sequencing. We
collaborate with another research team that is currently
developing a genotyping system for these and some other
forensic SNPs. This system will be discussed in a separate
publication. Another possible genotyping option is targeted
sequencing.

Our method for biogeographic ancestry inference was
developed and validated using the set of non-admixed
individuals, so the algorithm tends to generate low
probabilities of origin from every included ethnic geographic
group for genotypes originated from admixed individuals. There
are other methods suitable for admixed genetic profiles (Kozlov
et al., 2015). Our primary goal was to achieve the highest possible
geographic precision of ancestry prediction, and we intentionally
focused on non-admixed individuals.
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