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         5 

Here we review the highlights of cardiovascular basic science in published in 2021 and early 2022 on 6 

behalf of the European Society of Cardiology Council for Basic Cardiovascular Science. We begin 7 

with non-coding RNAs which have emerged as central regulators cardiovascular biology, and then 8 

discuss how technological developments in single-cell ‘omics are providing new insights in 9 

cardiovascular development, inflammation and disease. We also review recent discoveries on the 10 

biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize 11 

in Physiology or Medicine 2021 recognised the importance of the molecular basis of mechanosensing 12 

and here we review breakthroughs in cardiovascular sensing of mechanical force. We also 13 

summarise discoveries in the field of atherosclerosis including the role of clonal haematopoiesis of 14 

indeterminate potential, and new mechanisms of cross-talk between hyperglycemia, lipid mediators 15 

and inflammation. The past 12 months also witnessed major advances in the field of cardiac 16 

arrhythmia including new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell 17 

(iPSC) technology which has demonstrated disease causality for several genetic polymorphisms in 18 

long QT syndrome and aortic valve disease, paving the way for personalized medicine approaches. 19 

Finally, the cardiovascular community has continued to better understand COVID-19 with significant 20 

advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of 21 

vaccine-induced thrombotic complications and new anti-viral therapies that protect the cardiovascular 22 

system. 23 
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ABSTRACT          1 

Here we review the highlights of cardiovascular basic science in published in 2021 and early 2022 on 2 

behalf of the European Society of Cardiology Council for Basic Cardiovascular Science. We begin 3 

with non-coding RNAs which have emerged as central regulators cardiovascular biology, and then 4 

discuss how technological developments in single-cell ‘omics are providing new insights in 5 

cardiovascular development, inflammation and disease. We also review recent discoveries on the 6 

biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize 7 

in Physiology or Medicine 2021 recognised the importance of the molecular basis of mechanosensing 8 

and here we review breakthroughs in cardiovascular sensing of mechanical force. We also 9 

summarise discoveries in the field of atherosclerosis including the role of clonal haematopoiesis of 10 

indeterminate potential, and new mechanisms of cross-talk between hyperglycemia, lipid mediators 11 

and inflammation. The past 12 months also witnessed major advances in the field of cardiac 12 

arrhythmia including new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell 13 

(iPSC) technology which has demonstrated disease causality for several genetic polymorphisms in 14 

long QT syndrome and aortic valve disease, paving the way for personalized medicine approaches. 15 

Finally, the cardiovascular community has continued to better understand COVID-19 with significant 16 

advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of 17 

vaccine-induced thrombotic complications and new anti-viral therapies that protect the cardiovascular 18 

system. 19 

 20 

 21 

 22 
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1. INTRODUCTION 1 

The aim of this review from the European Society of Cardiology (ESC) Council for Basic 2 

Cardiovascular Science is to highlight the most noteworthy developments over the past year, in the 3 

field of cardiovascular basic science. The cited reports were selected as representative examples of 4 

studies which provided robust evidence for particularly novel insights. Cardiovascular Research 5 

previously reviewed the highlights of 2020 divided into vascular and cardiac topics,1 2 but here we 6 

integrate both areas to generate the Basic Cardiovascular Science Highlights of 2021/2022. 7 

 8 

2. CARDIOVASCULAR RNA UNIVERSE     9 

2.1 Non-coding RNAs (nc RNAs) 10 

In addition to the role of messenger RNA (mRNAs) in the ‘central dogma’ of molecular biology as a 11 

template for protein synthesis, the RNA universe also contains multiple constellations of microRNAs 12 

(miRNAs; miRs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) that control 13 

fundamental processes of life. These RNA species adopt complex structures and interact with 14 

nucleotides, proteins and lipids to control multiple functions including chromatin structure, 15 

transcription, RNA splicing and stability, intracellular signalling and organelle dynamics. Research 16 

reported in 2021 has provided further insight into the role of miRNAs, lncRNAs, and circRNAs in the 17 

regulation of vascular remodeling and cardiac disease. Using both single-cell (sc) and bulk RNA-18 

sequencing to investigate transcriptional changes associated with endothelial-to-mesenchymal 19 

transition (EndMT), Monteiro et al identified for the first time the genomic locus hosting the lncRNA 20 

MIR503HG as necessary to maintain endothelial cell (EC) identity and function3. In a series of our 21 

loss- and gain-of-function experiments the group demonstrated that loss of lncRNA is a causal event 22 

in EndMT observed in pulmonary arterial hypertension (PAH) in association with vascular remodelling 23 

(Figure 1). Further, located upstream from the vascular smooth muscle cell (vSMC)-associated miR-24 

143 and -145 cluster, the lncRNA CARMN (Cardiac Mesoderm Enhancer-associated Noncoding 25 

RNA) was recently identified as key regulator of vSMC function and the pathophysiology of 26 

atherosclerotic disease4. Crucially, while crosstalk between lncRNA host genes and coupled miRNAs 27 

is often seen, CARMN was found to function independently from miR-143/-145 in regulating vSMC 28 

and activating a pro-atherogenic proliferative state (Figure 1).  29 

 30 

Gong et al identified in atherosclerotic mouse models a novel circRNA, circEsyt2, involved in vascular 31 

remodeling through the targeted inhibition of alternative mRNA splicing. By performing loss- and gain-32 

of-function mutation analyses in vascular smooth muscle cells, circEsyt2 was shown to enhance cell 33 

proliferation and migration and blunt apoptosis and differentiation. Furthermore, silencing of circEsyt2 34 
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prevented neointima formation while circEsyt2 overexpression enhanced neointimal hyperplasia in an 1 

in vivo model of carotid artery injury.5 The role of miRNAs in atherosclerosis progression was 2 

examined by Liu et al by describing the role of the Nuclear Factor of Activated T-cell isoform c3 3 

(NFATc3)/miR-204 axis in the regulation of foam cell formation in atherosclerosis. Using genetically 4 

modified mice, they showed that NFATc3 prevents macrophage foam cell formation and limits the 5 

expression of scavenger receptors SR-A and CD36 by inducing expression of the microRNA miR-6 

204,6 suggesting the NFATc3/miR-204 axis as a potential therapeutic target to reduce plaque 7 

formation. In a separate study involving macrophages, Schober et al illuminated the circadian 8 

patterns of myocardial infarction (MI) by evaluating macrophage-related miRNAs. They evidence, in a 9 

murine model of atherosclerosis, that macrophage miR-21 drives circadian regulation of macrophage 10 

apoptosis by targeting proapoptotic Xaf1 (XIAP-associated factor 1), thereby regulating plaque 11 

composition and susceptibility to rupture.7 Further studies in a murine model of pressure-overload 12 

heart failure have also found a key role for macrophage miR-21 in modulating cardiac fibrosis by 13 

regulating macrophage polarization towards a pro-inflammatory (M1) phenotype.8 In addition, Hinkel 14 

et al identified a pivotal role of miR-132 in the mediation of pathologic cardiac hypertrophy in a novel 15 

porcine model of percutaneous aortic constriction by stent implantation.9  16 

 17 

ncRNAs have also continued to attract attention as biomarkers with prognostic and diagnostic 18 

potential. A landmark study from Blanco-Dominguez et al. identified a novel miRNA with potential 19 

diagnostic value in acute myocarditis. The authors performed miRNA microarray analyses in sorted 20 

CD4+ T cells and type 17 helper T (Th17) cells after inducing experimental autoimmune myocarditis 21 

or MI in mice and identified mmu-miR-72 as a differentially expressed miRNA. They further identified 22 

the human homologue hsa-miR-Chr8:96 and demonstrated its potential to distinguish patients with 23 

myocarditis from those with MI and healthy controls.10 Thus, miR-Chr8:96 has translational potential 24 

as a novel biomarker to diagnose myocarditis. miR-133a is a well-established, diagnostic circulating 25 

biomarker in patients with heart failure.11 Escate et al.  expanded on the diagnostic potential of this 26 

miRNA by demonstrating that elevated plasma levels of miR-133a predict the future occurrence of 27 

major adverse cardiovascular events (MACE) in patients with familial hypercholesterolaemia (FH).12 28 

This observation supports the potential utility of miR-133a in improving risk stratification and 29 

prognosis in high-risk patients. More broadly, an international consortium supporting collaboration 30 

and research on ncRNAs in cardiovascular disease (CardioRNA Cost Action CA17129) published a 31 

Position Paper on the pathophysiologic role of ncRNAs, and to provide recommendations to translate 32 

this into clinical practice.13  33 

 34 
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Other studies have progressed ncRNA candidates with therapeutic potential towards clinical 1 

translation.9, 14, 15 Kay et al examined the potential of targeting ncRNAs to promote cell-based 2 

regenerative strategies for heart disease. Using an integrated approach, they identified CARMA 3 

(CARdiomyocyte Maturation-Associated lncRNA), a conserved lncRNA controlling cardiomyocyte 4 

differentiation and maturation in human embryonic stem cells.  CARMA knockdown promoted 5 

cardiogenic commitment and cardiomyocyte differentiation in embryonic stem cells, and is therefore a 6 

novel target for improving human ESC-derived cardiomyocyte production in regenerative 7 

cardiovascular medicine.14 On the other hand, Modica et al provided evidence for the effectiveness of 8 

a novel nanotechnology-based approach for delivering exogenous synthetic miR-133a. The authors 9 

demonstrated that intra-tracheal nebulization of miR-133a-nanoconstruct once-a-day on alternate 10 

days for 4 consecutive weeks protects against heart failure progression (improved cardiac function 11 

parameters and lower fibrosis) in a murine model. This improvement was associated with the 12 

restoration of physiological levels of miR-133a in cardiomyocytes without significant accumulation in 13 

other myocardial cells or organs.15  14 

 15 

2.2 Single cell approaches 16 

Single-cell RNA sequencing (scRNAseq) has emerged as a powerful tool to dissect transcriptional 17 

profiles of the complex cardiovascular system at single-cell resolution. scRNAseq has been insightful 18 

in our understanding of the earliest stages of cardiac development by identifying the epicardial 19 

progenitor field, which is anatomically and transcriptionally distinct from the currently known first and 20 

second heart fields.16 In the formed heart, scRNAseq and spatial transcriptomics were used to show 21 

that dysregulation of TBX5, the mutated gene causing septal and conduction defects in patients with 22 

Holt-Oram syndrome, leads to transcriptional consequences in specific cardiomyocyte subtypes.17 23 

The study went on to show using cell-based analyses and mice that the stability of many gene 24 

regulatory networks, including those that have been shown to be relevant to congenital heart disease, 25 

are sensitive to TBX5 dosage.  26 

 27 

At the level of the vasculature, the number of publications of atlas-type human or primate scRNAseq, 28 

or Assay for Transposase-Accessible Chromatin (ATAC) datasets has steadily increased, which 29 

provides a valuable, yet often descriptive resource.18-21 scRNA-seq has been used to identify 30 

transcriptional changes upon conditional cell type-specific genetic deletion, otherwise obscured in 31 

bulk tissue RNA sequencing.22 As for immune cells in atherosclerosis, the detection of different 32 

subsets has culminated in a consensus on cell type markers,23 yet to be achieved for the many 33 

varieties of vSMCs identified using scRNAseq in recent years, i.e.  fibromyocytes, proinflammatory or 34 
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modified vSMCs, SMC-derived intermediate cells.21, 24-26 scRNAseq has also progressed our 1 

understanding of EC,27 28 with Rodor et al identifying CD74 as potential target in PAH and showing its 2 

capacity to regulate barrier integrity.28  3 

 4 

At a cardiac level, the implementation of scRNAseq allowed the impact of heart failure on circulating 5 

immune cells to be determined.29 Furthermore, it demonstrated an exacerbated inflamed 6 

transcriptome in circulating monocytes and a signature of T-cell activation in heart failure patients 7 

harbouring clonal haematopoiesis-driver mutations in DNA methyltransferase DNMT3A, thereby 8 

providing further insights into the potential effect of DNMT3A mutations in heart failure progression.30 9 

On the other hand, Hesse et al. have defined a high level of heterogeneity of epicardial stromal cells 10 

following MI, similar to cardiac fibroblast heterogeneity, with evidence of regenerative capacity and 11 

hypoxic signalling.31 Tombor et al used scRNAseq of endothelial-lineage traced mice to change the 12 

dogma on EndMT in MI, showing this is a transient affair, often without a definite mesenchymal 13 

endstage.32 14 

 15 

Moving forward, cardiovascular scientists will benefit greatly from the generation of multi-omics 16 

reference atlases, including different layers of information on RNA, protein, spatial anatomy, 17 

interactome and cell ontology.33-35 Overall, scientific progress can be expedited by open-access 18 

science and data sharing. Thus, the integration of available datasets for mesenchymal cells,36 as 19 

previously carried out for immune cells in atherosclerosis,37 and a web-based application by the Miller 20 

lab (plaqview.com),38 pave the way for new, meaningful discoveries in cardiovascular biology. 21 

 22 

3. CARDIOVASCULAR DEVELOPMENT 23 

2021 witnessed progress in several important aspects of heart development with implications for our 24 

understanding of both congenital and acquired heart conditions. Genomic studies of congenital heart 25 

malformations now allow the analysis of variants within the context of gene networks. A good 26 

example of this is the recent genomic study on hypoplastic left heart syndrome (HLHS),39 where 27 

whole-exome sequencing, coupled to nuclear transcriptomics and scRNAseq identified genetic 28 

heterogeneity in HLHS that converges to alter fundamental processes (e.g. autophagy, apoptosis, 29 

proliferation) in myogenesis. 30 

 31 

Despite the relative ease in differentiating functional, if immature, cardiomyocytes from iPSC, it has 32 

proven remarkably difficult to create organoids resembling the cellular and structural complexity of the 33 

vertebrate heart in vitro. However, Lewis-Israeli et al40 described a robust protocol for producing 34 
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cardiac organoids from iPSC using a three-step Wnt signaling modulation strategy. These organoids 1 

develop a broad range of cardiac cell types, including those that are induced through interactions 2 

between distinct primary cardiac cell types, and develop cavities that superficially resemble the lumen 3 

of the chambers. Moreover, they are vascularised and display regular beating. Importantly, the 4 

transcriptome of the organoids more closely resembles foetal hearts than monolayer cardiomyocytes. 5 

This method is an important step on the path to developing a robust human-based in vitro model of 6 

the heart. 7 

 8 

It is increasingly apparent that the majority of valve malformations and dysfunction arise from 9 

abnormal development, and yet the mechanisms of valve development are incompletely understood. 10 

The study by Fukui et al focussed on the role of mechanical factors using zebrafish embryos.41 They 11 

identified a critical role for shear stress by showing that ectopic activation of wall shear stress, using 12 

agarose beads implanted into the atrium of the early zebrafish heart, resulted in the formation of 13 

valve-like structures that expressed the characteristic molecular signature of primitive valves, 14 

including the activation of NFATc and klf2a. Downstream of this, they ruled out a number of well-15 

known mechanosensitive pathways, and instead identified adenosine tri-phosphate (ATP) signalling 16 

as a mediator of Ca2+ oscillations that were essential for specifying valve cell identity. Overall, the 17 

convergence of large-scale genomic network analyses, scRNAseq and spatial transcriptomics and 18 

experimental developmental biology is coming close to explaining the mechanisms underlying heart 19 

malformations presenting at birth and in adulthood. 20 

 21 

4. VASCULAR DISEASE AND REPAIR       22 

4.1 Mechanosensing 23 

The Nobel Prize in Physiology or Medicine 2021 was awarded to David Julius from the University of 24 

California San Francisco and Ardem Patapoutian from The Scripps Research Institute La Jolla for 25 

explaining the molecular basis for sensing heat, cold and mechanical force.42 Ardem Patapoutian 26 

identified PIEZO 1 and 2 as ion channels activated by mechanical force,43 and they are central 27 

responders of arterial responses to flow.44 Recently, the protein kinase N2 (PKN2) has been shown to 28 

be activated by flow through the mechanosensitive ion channel PIEZO1 and mediate flow-induced 29 

endothelial NO synthase activation and vascular tone regulation45 (Figure 2). As another important 30 

mechanosensor, the glycocalyx modulates the endothelial redox state in response to shear stress 31 

and could mediate an atheroprotective synergism between glycocalyx sialic acids and nuclear factor 32 

erythroid 2-related factor (NRF2) antioxidant signaling.46 The regulation of NRF2 plays also a major 33 

role in the reduced endothelial cell viability and wound healing in response to cigarette smoke 34 

ACCEPTED M
ANUSCRIP

T



10 

extracts under atherogenic low flow conditions.47 The concept of disturbed flow as an initial stimulus 1 

for the development of atherosclerotic plaques has led to exciting new therapies to target 2 

mechanosensitive genes like TWIST1, GATA4, and bone morphogenic proteins (BMPs) using siRNA-3 

based technologies in an attempt to slow down the progression of atherosclerosis.48, 49 4 

 5 

4.2. Atherosclerosis risk factors 6 

The metabolic syndrome – in concert with inflammation - plays a central role in atherosclerosis. In 7 

particular, the causal role low-density lipoprotein (LDL) in atherosclerosis is indisputably supported by 8 

multiple lines of evidence such as epidemiological studies, Mendelian randomization and genetic 9 

analyses, as well as randomized clinical trials and animal model experimentation. 10 

 11 

Traditional lipid-lowering drugs such as statins aim to reduce lipid uptake and/or cholesterol synthesis 12 

and are still widely used. However, the availability of genetic data and the identification of the genetic 13 

cause for rare diseases linked to dyslipidaemias has prompted spectacular advances in the 14 

identification of pharmacological targets for the treatment of dyslipidaemias (Figure 3). The most 15 

recent advances in lipid-lowering relate to the inhibition of proprotein convertase subtilisin kexin 9 16 

(PCSK9), angiopoietin-like 3 (ANGPTL3) and lipoprotein (a) (Lp(a)). Besides monoclonal antibodies, 17 

additional options to inhibit PCSK9 are emerging, including gene silencing with an siRNA or gene 18 

editing employing the CRISPR/Cas system. Inclisiran, a siRNA conjugated with N-19 

acetylgalactosamine residues ensuring hepatic selectivity, decreases PCSK9 production by 20 

promoting the degradation of its mRNA. This approach allows for twice-yearly dosing, with long-term 21 

lowering of LDL-C (50%), potentially enhancing patient compliance compared with other cholesterol-22 

lowering drugs.50, 51 Along the same line of RNA interference, Lp(a)-reducing drugs are being 23 

investigated in phase 2-3 trials.52 At earlier stages of development are gene-editing technologies, 24 

which introduce permanent genomic changes to alter gene function. A single treatment with PCSK9 25 

gene or base editors has been shown to confer durable LDL-C reduction in primates53. Evinacumab is 26 

a monoclonal antibody targeting ANGPTL3. It reduces significantly triglycerides (TG) by up to 80% in 27 

hypertriglyceridaemic subjects54 and it is highly effective in reducing LDL-C levels in patients with 28 

homozygous FH carrying null LDLR mutations55 providing a new pharmacological tool. In a recent 29 

study, membrane type 1 matrix metalloproteinase (MT1-MMP), in addition to activating MMP-2, was 30 

shown to regulate LDL-receptor (LDLR) shedding, affecting circulating lipid concentrations and 31 

atherosclerosis.56  32 

 33 
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The past year has further blurred the borders between traditional risk factors and the role of 1 

inflammation in atherosclerosis as their connections and interplay become more evident. Diabetes 2 

mellitus elevates cardiovascular risk, and hyperglycaemia contributes strongly to metabolic 3 

syndrome. Besides these known effects, Edgar et al elucidated a pro-inflammatory and pro-4 

atherogenic switch in macrophages from diabetic mice persisting even when cultured under 5 

normoglycaemic conditions.58 This persevering effect of earlier hyperglycaemia may explain the 6 

relatively low degree of risk reduction upon glucose level normalisation in diabetics. The inseparable 7 

connection between cholesterol and inflammation and atherosclerosis is further supported by a recent 8 

study that showed how sensing of cholesterol crystals by macrophages induces complement 9 

component C5aR1 signaling on mitochondrial membranes and results in interleukin (IL)-1β production 10 

and sterile inflammation.59 Hence, intracellular C5aR1 targeting may be used to normalize 11 

mitochondrial function and reduce IL-1β release. This has translational relevance since inhibition of 12 

IL-1β production through targeting the inflammasome has been identified as a target in cardiovascular 13 

disease previously. Another old acquaintance in cardiovascular disease therapy, rivaroxaban, a direct 14 

oral anticoagulant, not only targets factor Xa activity, but may also reduce inflammasome formation. 15 

In mice treated with rivaroxaban, macrophage autophagocytic activity increased significantly, which 16 

the authors were able to trace back to the Xa-PAR2 axis.57 17 

 18 

Recent studies show the complex intertwinement between traditional risk factors, vascular biology 19 

and immunology. Cardiovascular risk factors can affect haematopoiesis through defective 20 

angiogenesis in the bone marrow towards generation of inflammatory leukocytes, thereby creating a 21 

self-energizing circle of cardiovascular risk factors – defective angiogenesis – release of inflammatory 22 

cells – cardiovascular disease exacerbation.60 Sakic et al emphasised crosstalk between vSMCs and 23 

vascular inflammation by demonstrating that S100A4 induces vSMC change towards a 24 

proinflammatory phenotype to drive features of plaque instability61. Together, these studies call for an 25 

integrated and unprejudiced approach in atherosclerosis research to link traditional risk factors with 26 

novel molecular mechanisms. 27 

 28 

4.3 Inflammation in Atherosclerosis 29 

The immune response is critical throughout the development of atherosclerotic lesions, during 30 

disease initiation, as a trigger for episodic plaque progression, and a contributor to thrombotic 31 

complications.62 A failure in the resolution of inflammation can prevent healing and repair of the 32 

vascular wall. 62-64 This concept was advanced by Arnardottir et al who found that lipid-specialized, 33 

pro-resolving mediators (SPM) signalling through G-protein coupled receptor (GPR)-32,  34 
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Is critical for inflammatory resolution and atheroprotection.64  1 

 2 

The proposal that macrophage uptake mechanisms are decisive for the turning point that leads either 3 

to inflammation resolution or to chronic inflammation and plaque progression has received further 4 

support from analysis pro-resolving pathways64 or phagocytic immune checkpoints in murine 5 

models.65 Focussing on the CD47- signal-regulatory protein (SIRP)α immune checkpoint, loss of 6 

SIRPα in macrophages stimulated efferocytosis, attenuated oxidized LDL-induced inflammation and 7 

induced an M2 macrophage phenotype.65 These findings may pave the way for novel interventions to 8 

promote inflammatory resolution through macrophage uptake mechanisms and phenotypic transitions 9 

to protect the vasculature.  10 

 11 

Adaptive immune responses are critical regulators of atherosclerosis. On a systemic level, pro-12 

inflammatory and cytotoxic T-lymphocytes prevail in atherosclerosis, as demonstrated by a 13 

preferential expansion and function of CD28null T lymphocytes after ex vivo IL-7 and IL-15 stimulation 14 

of high-purity sorted CD4+ cells isolated from patients with acute coronary syndrome.66 The local 15 

recruitment of regulatory T lymphocytes (Treg) is critical for the control of atherosclerotic lesion 16 

inflammation and is, in part, regulated by cellular metabolism.67 As an approach to use Treg 17 

recruitment as a therapeutic strategy to selectively target adaptive immune regulation in the 18 

atherosclerotic plaque, adoptive transfer of the fractalkine receptor CX3CR1 overexpressing Treg was 19 

shown to increase their recruitment to atherosclerotic lesions and decreased atherosclerosis 20 

burden.68  21 

 22 

However, inhibition of some immune checkpoints can lead to enhanced atherosclerosis. This isi 23 

exemplified by Poels et al. who found that short-term immune checkpoint inhibitors (ICIs) therapy 24 

aggravates T cell-mediated plaque inflammation and drives plaque progression in mice.69 Also, ICIs 25 

used to treat cancer, such as monoclonal antibodies targeting CTLA-4, PD-1, and PD-L1, have been 26 

associated with adverse cardiovascular events.70 For example, Michel et al. discovered that anti-PD1 27 

therapy in a mouse model of melanoma led to impaired left ventricular function and promoted 28 

myocardial infiltration with CD4+ and CD8+ T cells via a TNF-dependent mechanism.71, 72 Therefore, 29 

the use of ICIs in the treatment of cancer provides exciting new opportunities for therapies but should 30 

be pursued with caution. 31 

 32 

  33 
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4.4 Haematopoiesis of Indeterminate Potential  1 

Clonal haematopoiesis of indeterminate potential (CHIP) has recently emerged as an exciting topic in 2 

cardiovascular medicine and biology. CHIP is defined as positive selection of specific somatic 3 

mutations in haematopoietic stem cells that provide a proliferative advantage and finally result in a 4 

clonal population carrying the mutation. Besides being associated with a 0.5 to 1% risk per year to 5 

develop leukaemia, CHIP is also associated with ageing, smoking, obesity and type 2 diabetes 6 

mellitus, chronic inflammation, infections, sleep deprivation, stress, hyperlipidaemia and 7 

atherosclerosis. Most mutations identified in CHIP affect the epigenetic regulators DNA (cytosine-5)-8 

methyltransferase 3A (DNMT3A), tet methylcytosine dioxygenase 2 (TET2) and ASXL transcriptional 9 

regulator 1 (ASXL1) and the tyrosine kinase janus kinase 2 (JAK2) which result in a pro-inflammatory 10 

state that offers a possible explanation for the association of CHIP with a two-fold increase in risk to 11 

develop cardiovascular disease.73, 74 Using mice that express the JAK2V617F variant exclusively in 12 

macrophages, Fidler et al reported increased proliferation of macrophages in atherosclerotic lesions 13 

and greater necrotic cores. These effects were ameliorated when caspase 1 and 11, which are key 14 

components of the inflammasome or gasdermin D, which plays a major role in pyroptosis, were 15 

deleted. The authors also noted increased lesional expression of absent in melanoma 2 (AIM2) and 16 

found that atherosclerosis was reduced in mice deficient in Aim2. The authors concluded that 17 

enhanced proliferative stress caused by JAK2V617F leads to DNA damage and to activation of the 18 

AIM2 inflammasome resulting in IL-1 activation, which then in turn starts a feed forward loop 19 

resulting in even more macrophage proliferation thereby aggravating atherosclerosis.75 20 

 21 

A new perspective to the field added Heyde et al who recently showed by mathematical modeling and 22 

murine models that increased proliferation of haematopoietic stem cells occurs in individuals suffering 23 

from atherosclerosis thereby increasing the risk to develop clonal haematopoiesis by the age of 70 24 

3.5-fold. Based on their findings the authors propose a vicious cycle in which atherosclerosis leads to 25 

clonal haematopoiesis, which in turn aggravates atherosclerosis.76 26 

 27 

5. CARDIAC DISEASE AND REPAIR 28 

5.1 Extracellular vesicles and nanoparticles 29 

2021 was another exciting year in the field of extracellular vesicle (EV) biology for regenerative 30 

medicine, including cardiac repair and regeneration (Figure 4). There was increasing interest in 31 

understanding the mechanism of EV-based intercellular communication within the myocardium during 32 

ventricular remodeling after acute MI. In terms of the role of EVs in cardiac fibrosis after MI, however, 33 

findings differ. For example, Li et al showed that miR-30d is mainly secreted in EVs by 34 
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cardiomyocytes and inhibits fibroblast proliferation by acting on integrin α5 via paracrine signaling.77 1 

Counterbalancing this view, Wang et al evidenced, in a mouse model of MI, that EVs released by 2 

myocardial M2 macrophages exacerbate migration, proliferation and myofibroblastic transformation of 3 

cardiofibroblasts.78 By performing mechanistic studies in cocultured primary cardiofibroblasts and M2 4 

macrophages, the authors linked these effects to activation of miR-138-5p/RhoC signaling after 5 

delivery of the M2 macrophage-derived EVs containing circular RNAcirCUbe3a into the 6 

cardiofibroblasts.78 These findings may offer an additional therapeutic target to optimize the 7 

endogenous mechanism of cardiac repair but suggest that EV function may depend on cell of origin.  8 

 9 

There is great interest in the potential for EVs prepared from stem or progenitor cells to enhance 10 

cardiac repair. Increasing evidence suggests the mechanism may involve the resolution of 11 

inflammation. For example, Correa et al reported that EVs secreted from human iPSC-derived 12 

cardiovascular progenitor cells (CPC) can trigger a pro-resolving immune response in preclinical 13 

murine models of either chronic or acute heart failure. Similar results were confirmed in vitro on 14 

human inflammatory cells, suggesting that this EV formulation can instruct the immune cell response 15 

towards a pro-resolving phenotype.79 Patil et al showed a similar pro-resolving effect of mesenchymal 16 

stem cell (MSC)-derived small EVs, which they attributed to the EVs both enhancing opsonisation of 17 

dead cells and activating phagocytic signaling, thereby augmenting removal of apoptotic cells, 18 

resolution of inflammation, and improving cardiac recovery after injury.80 19 

 20 

In order to investigate a clinically feasible translational approach, Katsur et al assessed whether 21 

cardioprotection could be achieved using a reproducible, clinical-grade preparation of small EVs 22 

obtained from the CTX0E03 human neural stem cell line. Systemic administration of small EVs from 23 

differentiating CTX0E03 reduced infarct size in mice and prevented in vitro cardiomyocyte 24 

mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death 25 

during reperfusion injury. These findings provide evidence for considering non-cardiovascular, yet 26 

stabilised, cell lines as additional candidate source of therapeutic EVs.81 Interestingly, however, EVs 27 

from proliferating CTX0E03 cells were not cardioprotective, which suggests that the status of cells of 28 

origin can impact their secreted EV activity.81 Further evidence of this is provided by a study showing 29 

that systemic administration of serum small EVs from young rats into aged ischaemic rats improved 30 

functional outcomes after ischemic stroke, in contrast to small EVs from aged rats that worsened 31 

outcome.82 This provides further evidence that EV function is altered in disease, and further suggests 32 

that EV-mIR-mediated vascular intercellular communication is altered in patients with chronic kidney 33 

disease and coronary artery disease.  34 
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 1 

A major goal in cardiac regenerative medicine is to identify novel methods to reinstate cardiomyocyte 2 

renewal. In such a scenario, EVs released from cardiac progenitors have been widely investigated, 3 

given the role of cardiac stromal cells such as the epicardium-derived progenitor cells play in cardiac 4 

muscle growth during embryonic development, and in heart regeneration in zebrafish and in neonatal 5 

mice. Villa del Campo et al reported that epicardial EVs isolated from the secretome of both mouse 6 

and human progenitors enhanced the proliferative activity of neonatal murine cardiomyocytes in vitro 7 

and promoted cell cycle re-entry when injected into the injured area of infarcted neonatal hearts. 8 

These EVs also enhanced regeneration in cryoinjured engineered human myocardium constructs, as 9 

a novel model of human myocardial injury. Notably, the epicardial EV cargo was found enriched with 10 

specific miRNAs, including miR-30a, miR-100, miR-27a, and miR-30e, which recapitulated the EV 11 

regenerative influence on human stem cell-derived cardiomyocytes and cryoinjured cardiac 12 

constructs in vitro.83 13 

 14 

The relevance of the content of cardiovascular cell-derived EVs was highlighted by publications 15 

showing that miRNAs of the miR-106a-363 cluster,84 periostin85 and mitochondrial cargoes86 can act 16 

as effectors of cardiac repair. While such encouraging evidence supports the exploitation of 17 

stem/progenitor cell-EVs as candidate therapeutics to promote adult cardiomyocyte proliferation, a 18 

general consensus has not been reached yet on their mechanism of action. In fact, Lima Correa et al 19 

recently showed that EVs obtained from human iPSC-derived cardiac progenitor cells failed to trigger 20 

the generation of new cardiomyocytes in chronically infarcted hearts in mouse models. Despite this 21 

negative result, the authors confirmed that EVs from cardiac progenitor cells remained capable of 22 

significantly improving cardiac function by non-regenerative mechanisms.87  23 

 24 

These findings suggest that further analyses and accurate lineage tracing are required to better 25 

understand the regenerative potential of cardiac EVs. At present, the rapid clearance of EVs from 26 

circulation is a limitation for their clinical application. During 2021, a number of studies aimed to 27 

overcome this barrier by constructing specific nanoparticles and genetically modifying cells to improve 28 

retention time of the cell-derived EVs. Thus, Wei et al demonstrated that intravenously-injected EV 29 

derived from modified mouse bone marrow MSC overexpressing CD47, a transmembrane protein 30 

known to elicit blockade of the mononuclear cell phagocytosis, have prolonged retention in the 31 

circulation and accumulate at greater levels in the ischemic heart.88 32 

 33 

  34 
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5.2 Cardiotoxicity and regeneration 1 

A wide range of drugs, including but not limited to antineoplastic chemotherapeutic agents, can cause 2 

heart electrophysiology dysfunction, muscle damage and other cardiovascular pathologies. For 3 

example, anthracyclines such as doxorubicin (DOX) are a cornerstone for the treatment of many 4 

cancers, but their use is complicated by cardiotoxicity, especially left ventricular dysfunction. 5 

 6 

An interesting 2021 paper reported that transcutaneous vagal nerve stimulation prevented DOX-7 

induced cardiotoxicity in rats by rebalancing autonomic tone, ameliorating cardiac dysfunction and 8 

remodelling. It was hypothesized that the mechanism involved crosstalk between autonomic 9 

neuromodulation, innate immune cells such as macrophages and chemokines.89 Indeed, there are 10 

multiple mechanisms responsible for anthracycline cardiotoxicity.70, 90, 91 Chan et al. found that two 11 

orally available MMP inhibitors ameliorated DOX cardiotoxicity by attenuating intracellular and 12 

extracellular matrix remodelling, suggesting that they may be a potential prophylactic strategy to 13 

prevent heart injury during chemotherapy.90 Remote ischaemic preconditioning can ameliorate DOX-14 

induced cardiotoxicity by preserving mitochondrial integrity92 and this is currently the subject of the 15 

RESILIENCE clinical trial.93 16 

 17 

Other recent studies (discussed in 94) have identified harmful effects of anticancer therapies on the 18 

ability of stem/progenitor cells to repair cardiac damage, through a reduction of stem cell viability and 19 

paracrine activity. Thus numerous animal and clinical studies have demonstrated that local or 20 

systemic administration of mesenchymal stem  cells significantly improve cardiac function, through a 21 

reduction in inflammatory responses and myocardial fibrosis.95 Antivirals can also induce 22 

cardiotoxicity, including the only FDA-approved treatment for hospitalized COVID-19 patients, 23 

remdesivir which can induce toxicity in human iPSC-derived cardiomyocytes through mitochondrial 24 

fragmentation, electrophysiological alterations and sarcomere disarray.96 25 

 26 

5.3 Cardiac arrhythmias 27 

Several key insights into fibrillation and re-entrant arrhythmias were obtained in 2021 (Figure 5). 28 

Handa et al revealed that the degree of gap junction coupling as well as the pattern of fibrosis 29 

influences mechanisms sustaining ventricular fibrillation.97 Differentiating between these underlying 30 

mechanisms of maintenance of fibrillation may help to guide therapy. Re-entrant arrhythmias may 31 

also initiate in the absence of structural abnormalities, shown recently in a study on the 32 

spatiotemporal interaction between trigger and electrical substrate in the context of unexplained 33 

sudden cardiac arrest (SCA).98 Analysis of explanted hearts and observations in survivors of 34 
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unexplained SCA, identified key elements required for re-entry initiation including the occurrence of 1 

an early premature beat from an early repolarizing region of the ventricles, which may block against a 2 

steep repolarization time (RT) gradient to start re-entry. They also showed that detection of the origin 3 

of premature beats and their relation to RT gradients in patients is possible with non-invasive 4 

electrocardiographic imaging (ECGI) and may provide targets for therapy. ECGI was also employed 5 

by Leong et al in survivors of SCA to show that not only repolarization abnormalities, but also 6 

underlying conduction abnormalities play a role in the initiation of SCA.99 A similar mechanistic 7 

reasoning extends to atrial arrhythmias.100 Bringing these studies together highlights that any cause 8 

of steep excitability dispersion – whether resulting from local changes in gap junction coupling, 9 

fibrosis, local conduction slowing, or inherent repolarization duration heterogeneity – play a critical 10 

role in the initiation and maintenance of re-entry and fibrillation. 11 

 12 

New tools are essential to obtain mechanistic insights and recent reports highlight how the field of 13 

atrial fibrillation research should transition from a translational approach to an integrative research 14 

approach101 and how personalized computer models may provide more individualised insights in 15 

disease and guide therapy.102 Application of novel therapeutic tools also brings new mechanistic 16 

insights. Non-invasive radiation therapy for cardiac arrhythmias was initially thought to induce fibrosis, 17 

similar to invasive catheter-based therapy.103 However, Zhang et al found that transmural fibrosis 18 

does not develop in the hearts of patients receiving radiation therapy within the timeframe of its 19 

ventricular tachycardia-reducing effects.104 Interestingly, they showed that irradiating murine hearts 20 

results in a persistent supraphysiologic electrical phenotype, mediated by increases in sodium 21 

channel function and gap junction function. This functional restoration was confirmed by a shortening 22 

of QRS duration in patients receiving radiation therapy, highlighting that radiation-induced 23 

reprogramming of cardiac conduction is the potential mechanism beyond the initial success of 24 

radiation therapy for refractory ventricular tachycardia. This holds promise for extending the use of 25 

non-invasive radiation therapy to other applications, as for example recently demonstrated in heart 26 

failure with reduced ejection fraction.105 27 

 28 

6. CARDIOVASCULAR PRECISION MEDICINE AND iPSC  29 

Precision medicine aims to improve risk stratification and customize the management and therapy of 30 

patients based on their clinical and genetic characteristics, on datasets of large populations and the 31 

use of advanced technologies.106 Genome-wide association studies (GWAS) has progressed through 32 

advances in genome-wide genotyping technology and large population and patient datasets to 33 

explore the role of common variants on phenotypic traits and disease susceptibility. According to the 34 

ACCEPTED M
ANUSCRIP

T



18 

GWAS catalogue database, there are known to be 1329 polymorphism-cardiovascular trait 1 

associations. This growing catalogue of genome-wide and nominally significant variants has also 2 

opened the door to creating polygenic risk scores that could identify individuals at risk of developing 3 

specific cardiovascular diseases or sub-groups of patients with a more severe prognosis.107 However, 4 

this approach must consider numerous confounding factors such as epigenetic and transcriptomic 5 

data that may correlate with genetic variants. Boix et al undertook a tour de force to create EpiMap, a 6 

compendium comprising 10,000 epigenomic maps across 800 samples, which were used to define 7 

chromatin states, high-resolution enhancers, enhancer modules, upstream regulators, and 8 

downstream target genes.108 This resource allowed the annotation of 30,000 genetic loci associated 9 

with 540 traits, predicting trait-relevant tissues, putative causal nucleotide variants in enriched tissue 10 

enhancers and candidate tissue-specific target genes for each of them. These different data 11 

integration layers could be essential for understanding the genetic architecture underlying the broad 12 

phenotypic traits encountered in common and complex cardiovascular diseases such as coronary 13 

artery disease. For instance, while “only” 56 ‘unifactorial’ traits were enriched in the case of long QT 14 

syndrome (LQTS), a total of 192 ‘multifactorial’ traits were enriched in an average of five different 15 

tissues, and in the case of coronary artery disease, 26 ‘polyfactorial’ traits were enriched in 14 16 

tissues. The study by Boix et al is at the same time a rich scientific resource, but also a lesson 17 

regarding the profound and magnificent complexity of the human genome and the causal basis of 18 

common diseases like coronary artery disease.  19 

 20 

The GENMED consortium conducted a large GWAS study focused on dilated cardiomyopathy 21 

(DCM), enrolling 2719 cases and 4440 controls.109 They identified and replicated two new DCM-22 

associated loci on chromosome 3p25.1 and chromosome 22q11.23. In silico annotation and 23 

functional 4C-sequencing analyses on cardiomyocytes derived from iPSC-derived cardiomyocytes 24 

identified SLC6A6, a gene encoding a taurine, as the most likely DCM candidate at the 3p25.1 locus, 25 

and SMARCB1 as the candidate culprit gene at the 22q11.23 locus. The consortium also constructed 26 

a genetic risk score for DCM.  27 

 28 

In another important study, exome sequencing data from 811 probands with tetralogy of Fallot (TOF) 29 

were used to identify rare loss-of-function and other likely pathogenic variants in genes associated 30 

with congenital heart disease.110 The role of some likely pathogenic variants was confirmed and 31 

multiple loss-of-function variants provided support for 3 emerging congenital heart disease/TOF 32 

candidate genes: KDR, IQGAP1, and GDF1. Moreover, using composite genes in a STRING protein 33 
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interaction enrichment analysis, a biologically relevant network was revealed, with vascular 1 

endothelial growth factor receptor 2 (VEGFR2) and NOTCH1 representing central nodes. 2 

 3 

The use of iPSC technology for disease modelling and drug testing is increasingly used for 4 

cardiovascular precision medicine. Last year, for the first time, the combination of patient-specific 5 

iPSC-derived cardiomyocytes, genetics and genome editing unveiled the mechanisms of action of 6 

modifier genes in subsets of patients affected by long QT syndrome (LQTS).111, 112 By comparing 7 

patient-specific iPSC-CMs derived from symptomatic and asymptomatic LQT1 carriers of the same 8 

mutation, it was shown that genetic variants of MTMR4, an upstream regulator of neural precursor 9 

cell expressed developmentally downregulated gene 4-like (NEDD4L), control potassium channel 10 

turnover, thus influencing the clinical manifestations of the disease. iPSC technology has also been 11 

used to gain insights into the molecular mechanisms of atrial septum defect (ASD), a form of 12 

congenital heart disease, by implicating a mutation in GATA4 that modifies FGF16 induction.113 13 

 14 

Pioneering work from Srivastava and collaborators developed a machine-learning approach to 15 

identify small molecules that broadly correct gene networks dysregulated in an iPSC model of aortic 16 

valve (AV) disease.114 Correction of the gene network by the most effective therapeutic candidate, 17 

XCT790, was sufficient to prevent and treat AV disease in vivo in a mouse model. This strategy, 18 

made possible by combining iPSC technology, network analytics and machine learning, may can 19 

represent an effective path to discovering new therapies. 20 

 21 

7. COVID-19          22 

7.1 Cardiovascular tropism and molecular markers 23 

The aetiology of myocarditis caused by cardiotropic viruses has become a major topic of interest 24 

during the COVID-19 pandemic.115, 116 A comparative study revealed that while myocardial injury 25 

occurred with a similar frequency in infection with influenza and SARS-CoV-2, the mortality was 26 

almost 4-fold higher in COVID-19 compared with influenza.117 Evidence of viral infection was seen 27 

mainly in endothelium and rarely in cardiomyocytes,118 however, evidence for stromal cells infection 28 

by SARS-CoV-2 has been found.119 Endothelial-dependent dilation in human arterioles is impaired for 29 

months after SARS-CoV-2 exposure, and could contribute to long-lasting symptoms of post-COVID-30 

19 infection.120 Consistently, Bräuninger et al performed massive analysis of cDNA ends–RNAseq in 31 

myocardial tissue from fatal COVID-19 cases with and without cardiac infection to reveal potential 32 

SARS-CoV-2-related pro-inflammatory transcriptomic alterations in EC, while no differences were 33 

detected in immune cell infiltrations.121 Interestingly, the levels of several known cardiometabolic 34 

ACCEPTED M
ANUSCRIP

T



20 

biomarkers are associated with COVID-19 severity and mortality, particularly myocyte-derived miR-1 

133a and liver-derived miR-122.122 The potential for the use of cardiovascular RNA markers and 2 

artificial intelligence in the setting of COVID-19 has been reviewed in.123 In a study of 95 SARS-CoV-3 

2-positive autopsy tissue, cardiac SARS-CoV-2 infection was shown to increase transcription of 4 

interferon pathways, originating predominantly from EC.118 The ESC has provided guidance for the 5 

diagnosis and management of cardiovascular disease during the COVID-19 pandemic124, 125 and 6 

recommendations for future research.126 7 

 8 

7.2 Virus- and vaccine-induced thrombotic complications and COVID-19 9 

Accumulating evidence suggests that patients suffering from COVID-19 have an increased risk to 10 

experience thrombotic events such as microthrombosis, venous thromboembolism and ischaemic 11 

stroke (for a review see127). Two recent studies have found microthrombi in the hearts of patients who 12 

succumbed to SARS-CoV-2 infections. Pellegrini et al identified microthrombi as a cause of myocyte 13 

necrosis. Interestingly these microthrombi contained more fibrin and more of the complement 14 

components C5b-9 than thrombi isolated from the myocardium of patients of COVID-19 negative 15 

patients and coronary thrombi aspirated from COVID-19 negative and positive patients with ST-16 

elevation MI.128 Bois et al found nonocclusive microthrombi in myocardial arterioles in 12 out of 15 17 

patients who died from SARS-CoV-2 infections. However, no evidence of acute ischaemic injury of 18 

the heart was detected in this study.129 When tissue factor (TF)-bearing microvesicles isolated from 19 

the plasma of 100 patients with moderate and severe COVID-19 and from the plasma of 28 healthy 20 

subjects were studied, the authors found that TF-activity on such microvesicles, which is indicative of 21 

a procoagulatory state, was increased in patients suffering from COVID-19 and is significantly linked 22 

to disease severity and mortality.130 23 

 24 

Thrombotic complications have been reported in 1 per 100 000 adenoviral COVID-19 vaccinated 25 

irrespective of age, rising to 1 in 50 000 above 50 years vaccinated with ChAdOx1.131 This is referred 26 

to as vaccine-induced immune thrombotic thrombocytopenia (VITT).131, 132 Fibrinogen, Age, Platelet 27 

count, and the presence of Intracranial haemorrhage, and Cerebral venous sinus thrombosis (the 28 

FAPIC score) are significantly associated with mortality in cases of VITT.133 Increased levels of anti-29 

PF4 antibodies post-vaccination unrelated to previous heparin exposure implicates an augmentation 30 

of the antibody response by unknown PF4 co-factors.132 The antigenic component with PF4 may be 31 

vaccine constituents but remains an unsolved critical question in VITT pathophysiology.132 The 32 

immune complexes transduce platelet activation through the Fcγ receptor IIA (FcγRIIA) resulting in 33 

thrombosis with concomitant thrombocytopenia accompanied by a fulminant immune activation.134 34 
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Among novel therapeutic options for VITT, inhibitors of Bruton tyrosine kinase (Btk), which is used for 1 

B-cell malignancies, have been explored for their ability to block FcyRIIA for preventing the 2 

downstream platelet activation and aggregation. The Btk inhibitors ibrutinib and fenebrutinib 3 

prevented platelet aggregation induced by serum obtained from patients with VITT.135 Additional 4 

possibly favourable effects of Btk inhibition in VITT are blocking of neutrophil-platelet complexes and 5 

reduced NET release,136 which are part of the massive immune activation during VITT.134 6 

 7 

7.3 Cardiovascular drugs and COVID-19 8 

In the beginning of the COVID-19 pandemic, the interactions with cardiovascular drugs were focused 9 

on ACE-inhibition and anti-thrombotic treatments137 and more recently extended to lipid-modulating 10 

agents.138 In the latter context, omega-3 fatty acids may provide beneficial cardiovascular effects 11 

through immunomodulation, anti-thrombosis and improved endothelial function.139 Specific cytokine 12 

antibodies to dampen the inflammatory storm in COVID-19 exhibit anti-inflammatory strategies 13 

explored for cardiovascular prevention and have shown some success in improving survival and 14 

clinical outcomes.140 The RECOVERY trial tested multiple different therapeutic approaches including 15 

antiviral, immunomodulatory and antithrombotic treatments, in a multi-arm factorial design inspired by 16 

the International Study of Infarct Survival (ISIS) trials of the 1980s, and demonstrated benefit with 17 

tocilizumab and dexamethasone, but not hydroxychloroquine, convalescent plasma or other tested 18 

approaches.141 In a separate study, anticoagulation with low-molecular-weight heparin (LMWH) may 19 

curtail viral persistence and reduce mortality.142 20 

 21 

Perspectives 22 

The substantial progress of basic cardiovascular science during the past year has revealed a plethora 23 

of novel therapeutic and diagnostic possibilities. Non-codíng RNA, scRNAseq, and iPSC are 24 

examples of discovery tools to widen the understanding of cardiac and vascular pathophysiology. 25 

Through the integration cardiovascular risk factors, genetics, and biomarkers, the basic 26 

cardiovascular science field is expanding towards applications in precision medicine. The year was 27 

still marked by the COVID-19 pandemic and several important contributions have increased our 28 

knowledge of the cardiac and thrombotic effects of SARS-CoV-2, and the underlying pathways 29 

behind reported vaccinal complications. Finally, the mechanistic insights from in vitro and in vivo 30 

basic science models have deepened our understanding of inflammation, CHIP, EVs, regeneration, 31 

and mechanosensing in cardiovascular disease.  32 

 33 

 34 
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 7 
FIGURE LEGENDS 8 

 9 

Figure 1. Novel insights into the role of ncRNAs.  10 

Several complex loci composed of lncRNA and miRNA clusters have been identified throughout the 11 

genome. Nonetheless, despite their genomic and often transcriptional overlap, they have been found 12 

to have distinct functional and regulatory targets. The X-linked lncRNA MIR503HG maintains 13 

endothelial cell (EC) identity by interacting with the RNA splicing regulatory protein PTBP1, with 14 

decreased expression leading to broad changes associated with EndMT. Importantly, these 15 

phenotypic changes seem to be independent of miR-424 and miR-503 expression, which overlap the 16 

lncRNA locus3. Similarly, loss of the Cardiac Mesoderm Enhancer-associated Non-coding RNA 17 

(CARMN) primes vascular smooth muscle cells (vSMCs) into a pro-atherogenic proliferative state, 18 

while migration or dedifferentiation are regulated through the modulation of the overlapping miR-143 19 

and miR-1454. 20 

 21 

Figure 2. Recent findings on cardiovascular mechanosensing. 22 

Newly discovered flow-stimulated mechanosensitive signalling pathways. Flow-activated PIEZO1 was 23 

shown to activate the protein kinase N2 (PKN2) via PKD1, resulting in phosphorylation of Akt and 24 

eNOS, with subsequent vascular tone regulation via NO.45 The glycocalyx component sialic acid, was 25 

shown to activate NRF2 antioxidant signalling, via phosphorylation of AKT46, whereby modulating the 26 

endothelial redox state in response to shear stress. The pathways are likely to be interconnected as 27 

both result in phosphorylation of AKT and eNOS and as NRF2-induced antioxidant signalling is likely 28 

to affect NO bioavailability. 29 

 30 

  31 

Figure 3. New insights and interventions in lipid biology. 32 

Gene silencing with small interfering RNA (siRNA) like inclisiran or gene editing are becoming 33 

additional options to monoclonal antibodies for the inhibition of proprotein convertase subtilisin kexin 34 

9 (PCSK9) leading to long-lasting circulating LDL-Cholesterol (LDL-C) decrease. Lipoprotein(a) 35 
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(Lp(a))-reducing drugs by RNA interference, via antisense oligonucleotide (ASO), like Pelacarsen or 1 

siRNA, like Olpasiran are holding promising results in clinical trials. The inhibition of angiopoietin-like 2 

3 (ANGPTL3) via evinacumab, a monoclonal antibody or Vupanorsen, a GalNAc-conjugated ASO 3 

markedly reduces circulating triglyceride-rich lipoprotein (TGRL) levels. N-acetylgalactosamine 4 

(GalNAc) ligands conjugated with siRNAs or ASOs allow its hepatocyte-targeted delivery lowering 5 

incidence and severity of off-target effects, commonly observed with the first generation RNA 6 

interference.  7 

 8 

Figure 4. Source of EVs affects their function 9 

Several thought-provoking studies published in 2021/2022 demonstrated that the cardiovascular 10 

effects of extracellular vesicles (EVs) can depend upon their origin. For example, EVs originating from 11 

different cell types (cardiomyocytes vs M2 macrophages), different cellular states (proliferating vs 12 

differentiated), different ages (young vs old serum) or different health states (chronic kidney disease 13 

and coronary artery disease [CKD+CAD] vs healthy) can have opposite effects. 14 

 15 

Figure 5. Novel mechanisms of arrhythmia. 16 

Recent publications (top left) and accepted concepts (top right) on the mechanisms leading to re-17 

entry may be combined to arrive at a generalized theory of the spatiotemporal interaction between 18 

triggers and substrate leading to re-entry arrhythmias (bottom). The generalized hypothesis highlights 19 

that re-entry can only initiate when there is a local dispersion of excitability, with some tissue excitable 20 

whereas other tissue is (still, or always) refractory at the time when the trigger occurs. The trigger 21 

should originate from the excitable tissue, may block and travel around (relatively large) refractory 22 

tissue before it arrives at the previously excited tissue again. 23 

 24 

 25 
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