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Abstract As next-generation sequencing (NGS) technology has become widely used to identify

genetic causal variants for various diseases and traits, a number of packages for checking NGS data

quality have sprung up in public domains. In addition to the quality of sequencing data, sample

quality issues, such as gender mismatch, abnormal inbreeding coefficient, cryptic relatedness, and

population outliers, can also have fundamental impact on downstream analysis. However, there

is a lack of tools specialized in identifying problematic samples from NGS data, often due to the

limitation of sample size and variant counts. We developed SeqSQC, a Bioconductor package, to
nces and
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automate and accelerate sample cleaning in NGS data of any scale. SeqSQC is designed for efficient

data storage and access, and equipped with interactive plots for intuitive data visualization to

expedite the identification of problematic samples. SeqSQC is available at http://bioconductor.

org/packages/SeqSQC.
Introduction

The past several years have seen the explosion of genetic and

genomic studies utilizing next-generation sequencing (NGS)
technology in basic sciences, translational research, and clinics
[1–7]. The high-throughput data generated from NGS bring
new challenges to data processing, analysis, and interpretation

[8]. A successful NGS study relies in large part on rigorous
quality control (QC) to ensure that artifacts are removed
before data analysis, so that real signals are not masked by

quality issues. There are three levels of QC process: base/read
level QC to clean up raw sequencing data; sample level QC to
remove population outliers and problematic samples with gen-

der mismatch, abnormal inbreeding coefficient, or cryptic
relatedness; and variant level QC to eliminate inaccurate vari-
ant calls, for example, those resulting from sequencing errors

in homo-polymers and incorrect read mapping.
Most currently available QC tools for NGS data are

designed for the base/read level QC, which typically involves
assessing the intrinsic quality of the raw reads to diagnose arti-

facts that arise from the library preparation and sequencing
run [9–14]. For instance, NGSQC [9] can monitor base/color
code across each tile/panel, as well as quality measures for

paired-end/mate pair libraries, whereas NGS QC Toolkit [10]
is designed for homo-polymer trimming and primer/adaptor
contamination removal. In addition, FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) provides
comprehensive assessment of variation in quality scores and
sequence content across the base/sequence/tile, sequence
length distribution and duplication levels, as well as sequence

over-representation. QuaCRS [13], an integrated quality con-
trol pipeline for RNA-Seq data, incorporates several R tools
like FastQC for per-base read quality, RNA-SeQC for summa-

rization of QC metric in a table format, and RSeQC [15] for
useful saturation functions. QC-chain [14] is a tool for quality
assessment and trimming of raw reads, identification, quantifi-

cation, and filtration of unknown contamination.
In contrast, there is no publicly available tool designed to

perform sample level QC on NGS data. Although the princi-

ples and steps for the sample level QC are essentially the same
between NGS data and genome-wide association study
(GWAS) data, there are new challenges inherent to the NGS
that prevent us from directly using the tools designed for

GWAS data, such as PLINK [16], SNPRelate [17], GWAS-
Tools [18], GenABEL [19], and QCGWAS [20]. First, unlike
GWAS analyses, which usually include thousands of samples,

NGS studies typically involve a much smaller sample size due
to the still high cost of sequencing compared to genotyping.
Second, while whole-exome sequencing (WES) is more cost-

effective than whole-genome sequencing (WGS), the total
number of variants generated from WES is much smaller, usu-
ally at the scale of around 250,000 for a sample size of 50. The

calculations of metrics for sample level QC, such as sample
relatedness, require large numbers of samples and variants to
generate reliable estimates, which are not available for many
NGS studies. For example, PLINK prefers at least 100,000
independent variants for estimating sample relatedness, which
exceeds the number of linkage disequilibrium (LD)-pruned

variants generated from typical WES studies of 50 samples
(�65,000 variants). Although PLINK/SEQ (https://atgu.
mgh.harvard.edu/plinkseq/) allows variant summary and
filtering, it is designed specifically for large-scale and

population-based sequencing data, and unlike PLINK, it does
not have a component for sample level QC.

Here, we present SeqSQC, a Bioconductor package, for

sample level QC in NGS studies. SeqSQC takes variant calling
format (VCF) files and sample annotation file containing sam-
ple population and gender information as input and reports

problematic samples to be removed from downstream analysis.
Through incorporation of benchmark data assembled from the
1000 Genomes Project, SeqSQC can accommodate NGS stud-

ies of small sample size and low number of variants.
Method

Assembly of benchmark dataset

We collected 87 samples from WGS data of the 1000 Genomes
Project (Phase 3, release 20130502) as a benchmark dataset
(Table 1), which includes 22 African (AFR) samples, 22 East

Asian (EAS) samples, 21 European (EUR) samples, and 22
South Asian (SAS) samples. We selected 1–3 related pairs from
each population that best represented the corresponding rela-
tionships (e.g., parent–offspring pairs, and full or half sibling

pairs) and then randomly selected unrelated samples for a total
of 20 pedigrees per population. As a result, there are eight
known related pairs including four parent–offspring pairs,

two full-sibling pairs, and two half-sibling or avuncular pairs
in the benchmark dataset. The benchmark dataset contained
only variants with minor allele frequency (MAF) >0.01 in at

least one of the four populations. For a given NGS study
cohort of interest, SeqSQCmerges the benchmark dataset with
the NGS dataset of the study cohort to form a final dataset for

QC and only variants present in the benchmark dataset are
used for sample level QC. For variants absent from the study
cohort, a homozygous reference allele is assumed as long as the
variants are located within the capture regions of the NGS

platform employed.

Test cohorts from the 1000 Genomes Project

To test the performance of SeqSQC, the remaining samples
(after excluding those in the benchmark dataset) from the
1000 Genomes Project were grouped into four test cohorts

according to the ancestries (647 AFR, 493 EAS, 484 EUR,
and 472 SAS). We then added six random population outliers
(two from each of the other three populations) to each test

cohort. We also intentionally added one duplicate sample
and one contaminated sample to each test cohort. The

http://bioconductor.org/packages/SeqSQC
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Table 1 Dataset from the 1000 Genomes Project

Dataset Population No. of samples No. of related pairs

Benchmark AFR 22 3 (2 PO+ 1 FS)

EAS 22 2 (1 FS + 1 HF)

EUR 21 1 (1 HF)

SAS 22 2 (2 PO)

Test cohorts AFR 647 AFR+ 2 EAS+ 2 EUR+ 2 SAS + 1 DU+ 1 CTM 6 (1 PO+ 4 FS + 1 HF)

EAS 493 EAS + 2 AFR+ 2 EUR+ 2 SAS + 1 DU+ 1 CTM 9 (3 PO+ 3 FS + 3 HF)

EUR 484 EUR+ 2 AFR+ 2 EAS+ 2 SAS + 1 DU+ 1 CTM 1 (1 FS)

SAS 472 SAS + 2 AFR+ 2 EAS+ 2 EUR+ 1 DU+ 1 CTM 3 (2 PO+ 1 HF)

Note: PO, parent-offspring; FS, full sibling; HF, half sibling/avuncular pair; AFR, African; EAS, East Asian; EUR, European; SAS, South Asian;

DU, duplicate; CTM, contamination.
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intended duplicate sample was a duplicate of one sample ran-
domly selected from the test cohort, whereas the contaminated

sample was generated by combining the genotypes from five
randomly selected samples in the test cohort. All samples in
each test cohort were summarized in Table 1. To mimic the

WES data, we retained in the test cohorts only the variants
located within the capture regions of Agilent SureSelect Human
Exon v5, one of the most popular capture platforms to date.

To corroborate the results of SeqSQC, PLINK was also
used to perform sample QC in each test cohort based on all
the WGS variants that have MAF �0.01, missing rate �0.1,
and did not violate the Hardy–Weinberg equilibrium (HWE)

(P � 1E�6). The variants were LD-pruned before the calcula-
tion of inbreeding coefficients and identity by descent (IBD)
coefficients. For the sex check, a sample is predicted to be

female or male if the X chromosome inbreeding coefficient is
�0.2 or �0.8. For inbreeding check, samples with inbreeding
coefficients that are five standard deviations beyond the mean

are considered problematic. For IBD check, sample pairs with
the proportion of IBD (PI_HAT) �0.125 are predicted as
related.

To test the performance of SeqSQC on small sample size,

we generated test cohorts consisting of one (HG00116), two
(HG00116 and HG00120), or three samples (HG00116,
HG00120, and NA18960). HG00116 is a male EUR,

HG00120 is a female EUR and a relative of HG00116, whereas
NA18960 is a male EAS and serves as an intended population
outlier in the three-sample test cohort.

Study cohorts of breast cancer WES data

We performed WES on 143 triple-negative breast cancer

patients (all female) from three population groups (69 AFR,
26 Asian (ASN), and 48 EUR), using Agilent SureSelect
Human Exon v5 capture kit. Specimens were obtained from
the Pathways Study, a prospective cohort study of women

diagnosed with breast cancer in the Kaiser Permanente North-
ern California health system [21], and from the Data Bank and
BioRepository (DBBR) at Roswell Park Comprehensive Can-

cer Center [22] (126 and 17 samples, respectively). We applied
SeqSQC to this dataset to examine the impact of sample QC
on downstream analysis of breast cancer risk genes. When

the population in the study cohort was specified as ASN, both
EAS and SAS samples in the benchmark dataset were consid-
ered from the same population as the study cohort and were

included for the sex check and inbreeding check. In the popu-
lation outlier check for ASN, principle component analysis
(PCA) prediction other than EAS or SAS was considered as

population outlier.
In order to identify candidate breast cancer risk genes, we

first isolated rare functional variants, and then restricted to

recurrent genes in the cohort (genes that were mutated in at
least two individuals). To obtain rare variants, we first
removed non-clinically associated variants in dbSNP [23]

(dbSNP129), and then excluded any variants that were present
in the 1000 Genomes Project [24,25] (ALL population, 2015
August release) and the Exome Sequencing Project (ESP;
ESP6500siv2 all; http://evs.gs.washington.edu/EVS/) [26], as

well as any variants with MAF >0.1% in Exome Aggregation
Consortium (ExAC; exac03nontcga) [27]. We also filtered out
variants that were not functionally important, including non-

exonic variants (except splicing variants), synonymous vari-
ants, and nonsynonymous variants that are predicted to be
benign by multiple bioinformatics software, including SIFT

[28], PolyPhen2 [29,30] (PolyPhen 2 HDIV, PolyPhen 2 HVar),
LRT [31], MutationTaster [32], MutationAssessor [33],
FATHMM [34], MetaSVM, and MetaLR [35]. Variants in seg-
mental duplications were also excluded due to high false posi-

tive rate of variant calling [36]. ANNOVAR [37] was used to
facilitate these variant filtering steps. We further filtered out
long insertions and deletions (>20 bp) and any variants in

genes that are not expressed in breast.

Implementation

A flowchart of SeqSQC functionalities is displayed in Figure 1.
SeqSQC consists of three major modules: data preparation,
sample QC, and result summary. The sample QC module

includes the following five steps: missing rate check, sex check,
inbreedingcheck, IBD check, and population outlier check.
The entire sample level QC is wrapped up in one function:
sampleQC. By executing this function, a list of problematic

samples and a QC report with interactive plots in html format,
are generated according to the criteria defined for each QC
step. Problematic samples identified at each QC step are auto-

matically removed before getting to the next step. We provide
a brief overview of SeqSQC as below. A more detailed descrip-
tion of package functionality and usage can be found in the

package vignette and manual [R console type in
browseVignettes(‘‘SeqSQC”) for the vignette], or at the
Bioconductor website for SeqSQC: (http://bioconductor.

org/packages/SeqSQC).

http://evs.gs.washington.edu/EVS/
http://bioconductor.org/packages/SeqSQC
http://bioconductor.org/packages/SeqSQC


Figure 1 Flowchart of the SeqSQC functionalities

In the data preparation module, SeqSQCmerges the study cohort with the benchmark data. Merged data of SeqSQC class are used for the

subsequent sample QC and result summary. The input files allowed in SeqSQC include a VCF file, a BED file for capture region, and an

annotation file with sample population and gender information. User could use the wrap up function for an automated sample QC, to

generate all QC results, a problematic sample list with indication of the reason for removal, and a sample QC report with interactive plots

for each QC step. User can also call the specific QC function, or customize the settings of each QC step, including the criteria for defining

problematic samples and the choice of statistical methods.
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Input

Only bi-allelic single nucleotide variants (SNVs) from the VCF
input are included as input for sample QC analysis.

Sample missing rate check

Samples with a missing rate >0.1 are considered problematic.
Functions MissingRate and plotQC(QCstep = ‘‘MissingRate”)

are developed to calculate and plot the sample missing rate,
respectively.

Sex check

We first filter out the pseudo-autosomal regions in X chromo-
some. Then the sample inbreeding coefficient (F) is calculated
based on the numbers of variants on X chromosome for all

samples in the study cohort and those for benchmark samples
of the same population as the study cohort. The sample is pre-
dicted to be female with F � 0:2 and male with F � 0:8, while
the samples with 0:2 < F < 0:8, are considered as ambiguous
(pred.sex = 0). Accordingly, the sample gender is predicted
using the function SexCheck, while the X chromosome

inbreeding coefficients are plotted using plotQC
(QCstep = ‘‘SexCheck”), where samples with gender mis-
match are highlighted.

Inbreeding check

Using LD-pruned autosomal variants, we calculate the
inbreeding coefficients for each sample in the study cohort

and for benchmark samples of the same population as the
study cohort. Samples with inbreeding coefficients that are five
standard deviations beyond the mean are considered problem-
atic. Functions Inbreeding and plotQC(QCstep = ‘‘Inbreed-

ing”) are used to calculate and plot the inbreeding
coefficients, respectively.

IBD check

Using LD-pruned autosomal variants, we first calculate the
IBD coefficients for all sample pairs. We then predict related
sample pairs in study cohort using the support vector machine

(SVM) method [38] with linear kernel and the known related-
ness embedded in benchmark data as the training set. All pre-
dicted related pairs are also required to have a coefficient of

kinship �0.08. The sample with higher missing rate in each
related pair is removed. The function IBDCheck calculates
the IBD coefficients for each sample pair and predicts the

relatedness for samples in the study cohort. The function
plotQC(QCstep = ‘‘IBD”) then draws the descent coefficients,
K0 and K1, for each pair.

Population outlier check

Using LD-pruned autosomal variants, we calculate the eigen-
vectors and eigenvalues for PCA. We use the benchmark sam-

ples as training dataset, and predict the population group for
each sample in the study cohort using the top four eigenvectors
and SVM with linear kernel. Samples with discordant pre-
dicted and self-reported population groups are considered

problematic. The function PCACheck performs the PCA anal-
ysis and identifies population outliers in study cohort, whereas
the function plotQC(QCstep = ‘‘PCA”) draws the eigenvec-

tors of the first two PC axes for all samples by default.

Results

One strength of SeqSQC is that it incorporates a benchmark
dataset generated from the 1000 Genomes Project with the
study cohort (the NGS data to be checked for quality) during

the QC process. This benchmark dataset contains 20 indepen-
dent samples selected from each of the four major populations
(AFR, EAS, EUR, and SAS) and eight related sample pairs

(4 parent–offspring pairs, 2 full-sibling pairs, and 2
half-sibling or avuncular pairs) (Table 1 and Methods). The
benchmark serves as a supervised guide to the identification

of problematic samples. It is especially useful for NGS data
with limited sample size or variant number, as merging with
the benchmark data could automatically boost the sample size

and variant number for the study cohorts.
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Evaluation of SeqSQC performance using test cohorts from the

1000 Genomes Project

In order to evaluate the performance of SeqSQC in identifying
problematic samples, we generated four test cohorts from the

1000 Genomes Project for each of the four major populations
(AFR, EAS, EUR, and SAS) as the true identity of these sam-
ples is known. In each test cohort, we embedded one intended
duplicate sample, one contrived contaminated sample, and six

population outliers (Table 1 and Methods). Since samples
from the 1000 Genome Project were whole-genome sequenced,
to mimic WES data, we kept in the VCF file only those vari-

ants that fall in capture regions of Agilent SureSelect Human
Exon v5 platform (see Method section). As expected, SeqSQC
successfully detected the contaminated sample in inbreeding

check, the duplicate sample in IBD check, and all six popula-
tion outliers in either inbreeding check or population outlier
check (Table S1 and Figure 2). There were a total of 19 self-

reported related pairs in the four test cohorts. SeqSQC con-
firmed 18 of them but identified one self-reported full-sibling
pair in the AFR test cohort as unrelated. Notably, this full-
sibling pair was confirmed to be unrelated using the IBD seg-

ment sharing analysis from the 1000 Genomes Project.
Surprisingly, SeqSQC also detected additional unintended

problematic samples in each of the test cohorts (Table S1).

In the AFR test cohort, two self-reported female samples were
predicted to be male by SeqSQC (Figure 2A and Figure S1), in
addition to one inbreeding outlier (Figure 2B) and 12 related

sample pairs detected (Figure 2C). Moreover, SeqSQC identi-
fied three, two, and six related sample pairs in the EAS, EUR,
and SAS test cohorts, respectively, and another two samples
with gender mismatch identified in the EUR test cohort.

As an alternative approach to corroborate these new prob-
lematic samples identified by SeqSQC, we used PLINK to
carry out sample QC based on the entire WGS data of the

same samples, which are more than 30 times larger than the
data used by SeqSQC (Methods). PLINK confirmed all the
newly identified problematic samples by SeqSQC, including

the four gender mismatch samples, 23 related samples, and
one inbreeding outlier. The list of these problematic samples
(or sample pairs) is provided in Table S2.

To demonstrate the capability of SeqSQC to perform sam-
ple QC on NGS data with small sample size, we generated test
cohorts with only one, two, or three samples from the 1000
Genomes Project, respectively. As shown in Figure S2,

SeqSQC correctly identified the sample characteristics and pin-
pointed problematic samples on these small datasets.

Application of SeqSQC to study cohorts of breast cancer WES

data

We showed here an example of SeqSQC application to the

‘‘real-world” WES data. This WES dataset contained 143
triple-negative breast cancer patients from three populations
(69 AFR, 26 ASN, and 48 EUR). SeqSQC was run on each

population for sample-level QC.
SeqSQC detected two inbreeding outliers (one AFR and

one EUR), and four population outliers (two samples each
from AFR and ASN populations) (Table 2, Figures S3 and

S4). After removing these six problematic samples, the
numbers of recurrent genes as well as the contained rare and
potentially functional variants were reduced from 1887 to
1803 and from 4643 to 4436, respectively. These data indicate
that sample-level QC has non-trivial impact on downstream

analysis of breast cancer risk genes.

Conclusion

SeqSQC is a Bioconductor package that automates and accel-
erates sample cleaning of NGS data on any scale. It enables

the identification of problematic samples with high missing
rate, gender mismatch, contamination, abnormal inbreeding
coefficient, cryptic relatedness, or discordant population infor-
mation. With a built-in benchmark dataset carefully assembled

from the 1000 Genomes Project, SeqSQC is particularly useful
for NGS studies with limited sample size or variant number.
Designed with efficiency in mind, it stores the genotype in

Genomic Data Structure (GDS) format, which could increase
the data storage efficiency by 5-fold and data access speed by
2–3-fold, respectively [18,39]. For example, it took less than

10 min to complete all sample QC steps for 143 WES samples
from the study cohort of breast cancer patients (32 Gb main
memory, 2.00 GHz Intel� Xeon� E5-2620). SeqSQC is user-
friendly in that the entire QC process is highly automated

and only one command line is needed to get the final QC
reports. The package generates interactive plots for each QC
step as an intuitive interface for visualization. Furthermore,

users can customize settings for the QC process, including
the criteria for defining problematic samples and the choice
of statistical methods.

Based on the WES variants of test cohorts assembled from
the 1000 Genomes Project, SeqSQC successfully identified all
intended problematic samples including the related samples,

simulated contaminated sample, the duplicate sample, and
the population outliers. SeqSQC also detected additional
unexpected problematic samples. All these problematic sam-
ples were confirmed by PLINK when running on the same

samples using WGS variants provided by the 1000 Genomes
Project. Since the 1000 Genomes Project dataset is widely used
around the world in genetic studies, a catalog of the problem-

atic samples, such as those detected by SeqSQC, would be a
useful resource to the research community.

We foresee a variety of extensions of SeqSQC. For example,

due to insufficient first cousin pairs from the 1000 Genomes
Project, the current version of SeqSQC does not aim to detect
weak relatedness such as first cousins. With the continuous

expansion of the 1000 Genomes Project and other publicly
available sequencing projects, we will boost the sensitivity of
detecting weak relationship by SeqSQC using upgraded bench-
mark data. Another issue that needs attention is how to handle

sample QC in admixed population. Currently we only include
the four most-studied population groups in the benchmark
dataset (AFR, EUR, EAS, and SAS) in SeqSQC. The admixed

population such as Hispanic or admixed-American could not
be properly handled by SeqSQC yet. We expect that future
inclusion of representative samples from admixed populations

into the benchmark data could help bridge this gap. As poten-
tial batch effect could exist between the study dataset and the
benchmark dataset, we will include a batch effect detection
function in the future release of SeqSQC.

We recognize that sample QC can also be done before
sequencing using either high-density SNP arrays or custom
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Figure 2 The sample quality check for the AFR test cohort from the 1000 Genomes Project

A. Sex check. 655 study samples and 22 benchmark samples of AFR ancestry were shown. Gray lines were drawn when sex inbreeding

coefficient equals 0.2 or 0.8 as threshold for sample genders (See Method). Two self-reported female samples were detected to be male by

SeqSQC (indicated as two red triangles among the group of cyan triangles). B. The plot of inbreeding coefficients. 655 study samples and

22 benchmark samples of AFR ancestry were shown. Gray lines were drawn when autosomal inbreeding coefficient equals to five standard

deviations beyond mean. Any point beyond the gray lines was defined to be problematic. Eight inbreeding outliers were detected

(including one simulated sample with contamination, six intended population outliers, and one unintended inbreeding outlier; see Tables

S1 and S2). C. IBD check. After removing problematic samples detected from previous QC steps, a total of 732 samples (including 645

study samples and 87 benchmark samples) were shown in pairwise fashion. Samples with known relationships are highlighted, including

DU (red), FS (green), HF (organge), and PO (pink), whereas samples with unknown relationship were marked in black. ‘‘+” highlights

the expected position for each corresponding relationship. Newly-detected relationships from this test cohort are highlighted with red

circles. D. The plot of the first two PC axes from the PCA analysis. After removing problematic samples detected from previous QC steps

except for the six intended population outliers, as well as the related samples in benchmark data, a total of 718 independent samples

(including 638 study samples and 80 benchmark samples) were shown. Six intended population outliers (two from each population of

EAS, EUR, and SAS) are highlighted with red circles. The AFR samples were separated into different groups in PC2 since they came from

different sub-populations including ACB, ASW, ESN, GWD, LWK, MSL, and YRI. AFR, African; EAS, East Asian; EUR, European;

SAS, South Asian; DU, duplicate; FS, full-sibling; HF, half-sibling/avuncular pair; UN, unknown; PO, parent–offspring pair; PCA,

principal component analysis; ACB, African Caribbeans in Barbados; ASW, Americans of African ancestry in Southwestern USA; ESN,

Esan in Nigeria; GWD, Gambian in Western Divisions in the Gambia; LWK, Luhya in Webuye, Kenya; MSL, Mende in Sierra Leone;

YRI, Yoruba in Ibadan, Nigeria.
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Table 2 The problematic samples in WES of 143 breast cancer patients

Population No. of study samples No. of problematic samples Reason for removal

AFR 69 1 Inbreeding outlier

2 Population outlier

EUR 48 1 Inbreeding outlier

ASN 26 2 Population outlier

Liu Q et al /NGS Sample Quality Evaluation Tool 217
designed SNP panels (e.g., iPLEX� Pro Sample ID Panel) to
verify sample quality, gender, and relationships. As it allows

picking up problematic samples before the expensive sequenc-
ing procedure, pre-sequencing sample QC is a good practice
even though it will increase the cost and the DNA amount

needed for the project. On the other hand even if samples
are perfectly fine according to the pre-sequencing QC, techni-
cal errors like sample mislabeling and contamination can still

happen during the library preparation and sequencing proce-
dure, and therefore sample QC after sequencing is still
necessary.
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