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ABSTRACT
Background. Ruminal methane (CH4) emissions from ruminants not only pollute the
environment and exacerbate the greenhouse effect, but also cause animal energy losses
and low production efficiency. Consequently, it is necessary to find ways of reducing
methane emissions in ruminants. Studies have reported that feed additives such as
nitrogen-containing compounds, probiotics, prebiotics, and plant extracts significantly
reduce ruminant methane; however, systematic reviews of such studies are lacking. The
present article summarizes research over the past five years on the effects of nitrogen-
containing compounds, probiotics, probiotics, and plant extracts onmethane emissions
in ruminants. The paper could provide theoretical support and guide future research
in animal production and global warming mitigation.
Methods. This review uses the Web of Science database to search keywords related to
ruminants and methane reduction in the past five years, and uses Sci-Hub, PubMed,
etc. as auxiliary searchers. Read, filter, list, and summarize all the retrieved documents,
and finally complete this article.
Results. Most of the extracts can not only significantly reduce CH4 greenhouse gas
emissions, but they will not cause negative effects on animal and human health either.
Therefore, this article reviews themechanisms of CH4 production in ruminants and the
application and effects of N-containing compounds, probiotics, prebiotics, and plant
extracts on CH4 emission reduction in ruminants based on published studies over the
past 5 years.
Conclusion. Our review provides a theoretical basis for future research and the
application of feed additives in ruminant CH4 emission reduction activities.

Subjects Veterinary Medicine, Zoology, Climate Change Biology, Atmospheric Chemistry
Keywords Methane, Nitrogenous compound, Plant extract, Prebiotic, Probiotic, Reduction,
Ruminant

INTRODUCTION
Methane (CH4) is the world’s second most abundant greenhouse gas after carbon dioxide
(CO2), accounting for 16%of total greenhouse gas emissions (De Visscher & Van Cleemput,
2003). The potential global warming effect of CH4 is 28-fold higher than that of CO2 (Stocker
et al., 2013). In addition, rumen CH4 emissions from ruminants account for 13% to 19%
of the global CH4 emissions (Liu & Whitman, 2008); therefore, ruminant feeding is a major
factor in exacerbating global warming. Therefore, reducing rumen CH4 emissions could
decrease the rate of global warming, which would be of great significance to efforts to
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reduce global greenhouse gas emissions. CH4 emissions also represent energy losses during
ruminant farming. On average, approximately 8–12% of the energy consumed in feed is
wasted in the form of CH4 emissions (Johnson & Johnson, 1995).

Accordingly, to remedy the low production efficiency and mitigate the potential damage
caused by livestock CH4 emissions to the environment, researchers have begun to explore
the roles of different feed additives in reducing ruminant CH4 emissions. Among them, N2-
containing compounds, probiotics, prebiotics, and plant extracts, which are feed additives
that are not harmful to animal health, have been the first subjects of research and are
expected to become ideal CH4 inhibitors in the future. This article reviews the mechanism
of CH4 emission production in ruminants and the potential influence of nitrogenous
compounds, probiotics, prebiotics, and plant extracts on ruminal CH4 production.

SURVEY METHODOLOGY
In this review, keywords related to additives, ruminants, methane emission reduction
in the past five years were searched through the Web of Science database, and Sci-Hub,
PubMed, etc. were used as auxiliary searchers. Perform a rough reading of all the retrieved
documents; screen out documents related to the effects of additives on ruminant methane
in ruminants; then list the documents related to the effects of different additives on
ruminant methane in ruminants according to the type of additives; finally, classify different
categories Make a summary and finally complete this article.

RESULTS
Methane production mechanism in ruminants
After ruminant ingestion, the nutrients (proteins, lipids, and carbohydrates) in feed are
degraded by rumen microorganisms to produce hydrogen (H2) and primary fermentation
products that contain methyl groups such as formic acid, acetic acid, methanol, and
methylamine. Afterward, methanogens convert the primary fermentation products into
CH4 and energy is obtained. There are three pathways of ruminal CH4 production (Thauer
et al., 2008) (Fig. 1), including (1) the CO2-H2 reduction pathway; (2) synthesis pathways
using short-chain fatty acids such as formic acid, acetic acid, and butyric acid as substrates;
(3) and synthesis pathways using methyl compounds such as methanol and ethanol as
substrates. Among the three, the CO2–H2 route is the primary pathway (Ellis et al., 2008)
because the growth rates ofMethanococcus that exploit acetic acid are low (Liu & Whitman,
2008), and acetic acid-producing bacteria have a low affinity for H2 (Morgavi et al., 2010).
In addition, only methanogens of Methanosphaera use methanol to produce CH4 (Liu &
Whitman, 2008).

Effects of nitrogenous compounds on methane production in
ruminants
N-containing compounds are used as ammonium-N (NH4

+-N) supplements in ruminant
diets. Extensive research has revealed that N-containing compounds can reduce CH4

production via their influence on rumen microorganisms, for example, by reducing the
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Figure 1 Schematic diagram of methane production. There are three basic pathways of ruminal
methane production: (1) represents the CO2-H2 reduction pathway, (2) represents the synthesis pathway
of short chain fatty acids such as formic acid, acetic acid, and butyric acid as substrates, and (3) represents
the synthesis pathway with methyl compounds such as methanol and ethanol as substrates. Among these,
route (1) is considered to be the primary route of methane production.

Full-size DOI: 10.7717/peerj.11151/fig-1

activity of participating CH4-producing enzymes and competing for hydrogen (Table 1),
in addition to supplementing NH4

+-N. Among them, nitrate-N (NO−3-N) is considered
to be a urea substitute; it can not only meet the requirements of rumen microorganisms for
NH4

+-N, but can also decrease CH4 production substantially (Adejoro et al., 2020; Adejoro,
Hassen & Thantsha, 2018; Alvarez-Hess et al., 2019; Wu et al., 2019). The mechanism of
action is linked to the competitive effects of NO−3-N over H2 consumption and the
inhibitory effect of the generated nitrite (NO−2-N) onmethanogen proliferation. However,
large doses of NO−3-N may cause the accumulation of toxic NO−2-N (Jeyanathan, Martin
& Morgavi, 2014). Therefore, it is necessary to control NO−3-N dosages, or supplement
feed with NO−2-N reducing agents, to minimize nitrite toxicity (Jeyanathan, Martin &
Morgavi, 2014); NO−2-N capsules could also be used (De Raphelis-Soissan et al., 2017).

A novel N-containing compound, 3-nitrooxypropanol (3-NOP), has recently been
introduced; it can continuously reduce CH4 production without adversely affecting animal
growth or development (Romero-Pérez et al., 2016). It is an ideal CH4 inhibitor. The
structure of 3-NOP is similar to that of methyl-coenzyme M, which is associated with
the last step of CH4 production, and 3-NOP can inhibit the activity of the reductase.
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Table 1 Inhibitory effects of nitrogen-containing compounds on ruminal methane emissions and their mechanisms.

Types of nitrogenous compounds Inhibitory
effect

Addition amount; maximum
methane suppression amount

Inhibition mechanism References

Nitrate *** 20 mg/g dry matter; 21%
(Alvarez-Hess et al., 2019)
5 mmol/L; 32.92%
(Wu et al., 2019)
5 mM; 43.26% Liu et al., 2017)

(1) Hydrogen consumption;
(2) Inhibits the proliferation
of methanogens; reduces their
activity and abundance

Adejoro et al. (2020); Adejoro, Has-
sen & Thantsha (2018); Alvarez-
Hess et al. (2019);Wu et al. (2019);
Liu et al. (2017); Zhao et al. (2018)

Encapsulated nitrate (EN) ** 70 g /100 kg of body
weight; 18.5% CH4/kg of
forage dry matter intake
(Granja-Salcedo et al., 2019)
2.5%; 9.37 mM/d
(Capelari et al., 2018)
2.5%; 2.8 g/kg Dry matter intake
(Alemu et al., 2019)

Reduces methane reducing
bacteria

Granja-Salcedo et al. (2019);
Capelari et al. (2018); Alemu et al.
(2019)

Urea and nitrate mixture ** 34 g/kg straw dry matter + 6 g/kg
dry matter of ammonium ni-
trate; 10.2% (Zhang et al., 2019)
Urea + ammonium nitrate (34 +
6 g/kg of dry matter, respectively);
3.1 mL/g dry matter (Zhang et al.,
2018)

Indirect consumption of hydrogen Zhang et al. (2019); Zhang et al.
(2018)

Nitroethane (NE), 2-Nitroethanol
(NEOH), 2-Nitro-1-Propanol
(NPOH)

*** 10 mmol/L; 96.7% (NE), 96.7%
(NEOH), 41.7% (NPOH)

(1) Inhibits the activity
of methanogens;
(2) Inhibits methyl-
coenzyme M gene expression;
(3) Reduces the content of
coenzyme F420 and F430

Zhang et al. (2020a)

(continued on next page)
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Table 1 (continued)

Types of nitrogenous compounds Inhibitory
effect

Addition amount; maximum
methane suppression amount

Inhibition mechanism References

3-Nitrooxypropanol (NOP) *** 0.08 mg/g dry matter; 44%
(Alvarez-Hess et al., 2019)
2.5 g/animal/day; 38%/kg
dry matter intake (Martinez-
Fernandez et al., 2018)
60 mg/kg of feed dry matter;
26%/day (Melgar et al., 2020)
1.6 g; 28%(roughage), 23%
(concentrate pellet) (Van
Wesemael et al., 2019)

Inhibits methyl-Coenzyme M
activity

Alvarez-Hess et al. (2019); Dijkstra
et al. (2018); Kim et al. (2020a);
Martinez-Fernandez et al. (2018);
Melgar et al. (2020); Van Wese-
mael et al. (2019); Jayanegara et al.
(2018); Henderson, Cook & Ron-
imus (2018)

Notes.
***The additive has a significant effect on methane inhibition.
**The additive has a general effect on methane inhibition.
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Nitroethane (NE), 2-nitroethanol (NEOH), and 2-nitro-1-propanol (NPOH) can also
inhibit methanogenic bacteria and significantly reduce the expression of the methyl-
coenzyme M reductase gene (Zhang et al., 2020a). In addition, these compounds could
reduce the content of coenzymes F420 and F430, reducing ruminal CH4production in turn
(Zhang et al., 2020a). There are numerous other N-containing compounds that inhibit
methanogen activity and alter the structure of rumen microbial flora, the activity of
enzymes involved in CH4 production, and the distributions of volatile fatty acids, leading
to the consumption of H2 and reduction of CH4 production in turn.

Effects of probiotics on methane production in ruminants
Probiotics are a class of beneficial active microorganisms or their cultures. Probiotics
could reduce CH4 emissions in ruminants (Table 2). There are many types of probiotics,
and different strains have different inhibitory effects on CH4 emissions. For example,
the GA03 strain of Acetobacter is more effective at inhibiting CH4 production than other
isolated strains (Kim et al., 2020b). Most probiotics reduce CH4 production by influencing
the activities of ruminal microorganisms, with no adverse effects on animals. In addition,
probiotics enhance ruminal fermentation.

Lactic acid bacteria, which have been used as feed additives for a long time, not only
reduce CH4 emissions per unit volatile fatty acid (VFA) output, but also improve the
fermentation quality and fiber digestibility of silage (Guo et al., 2020). In addition, the
denitrifying bacterium Bacillus 79R4 could prevent NO−2-N poisoning and microbial
ecosystems from impairing fermentation efficiency (Latham et al., 2019). Furthermore,
Bacillus licheniformis reduces CH4 production and increases feed energy and protein
utilization (Deng et al., 2018). However, the inhibitory mechanism of lactic acid bacteria
on CH4 is still unclear; therefore, in the future, more research will need to be conducted
on the influence of lactic acid bacteria on rumen microbes and hydrogen competition to
elucidate the mechanism of inhibiting CH4 production.

Effect of prebiotics on methane production in ruminants
Prebiotics are substances that are not easily digested or absorbed by the host. They
selectively stimulate the growth and activity of one or several ruminal microorganisms with
a positive effect on ruminal fermentation (De & Schrezenmeir, 2002). Prebiotics suppress
ruminal CH4 production in ruminants. Prebiotics mainly reduce rumen CH4 production
by altering the bacterial community structure, influencing the permeability of the cell walls
of methanogenic archaea, and stimulating other bacteria to compete with methanogens for
H2 (Table 3). According to Tong et al. (2020), the prebiotic chitosan can influence bacterial
community structures by altering microbial population compositions, for example, by
replacing fibrinolytic enzyme-producing microbes (Firmicutes and Fibrobacteres) with
amylolytic enzyme-producing microbes (Bacteroides and Proteus); in turn, reducing CH4

production.
According to Seankamsorn, Cherdthong & Wanapat (2020), chitosan could influence

the ruminal fermentation process by altering VFA distributions and increasing propionic
acid concentrations, which reduces CH4 production in turn. However, according to some
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Table 2 The inhibitory effects of probiotics on ruminal methane emissions and their mechanisms.

Types of probiotics Inhibitory effect Addition amount; maximum
suppressionmethane amount

Inhibition mechanism References

Propionic acid bacillus *(Most propionic bacteria)
***(P. jensenii LMGT282 and P.
thoenii LMGT2827 or T159)

100 µL of the propionic acid bac-
teria culture (2× 108 to 4×108

colony forming units), Propioni-
bacterium thoenii T159; 20%

Unknown Chen et al. (2020)

Lactic acid bacteria *** 5.3 lg cfu/g fresh weight, Lacto-
bacillus plantarum, 8.8 ml/g(72h)

Hydrogen consumption Guo et al. (2020)

Acetic acid bacteria *** 1% Proteiniphilum acetatigenes
GA03; -

Reduced the number of
methanogens

Kim et al. (2018c); Kim et al.
(2020b)

Enterococcus faecium
SROD

*** 0.1%; 2.08 mM/mL Alters microbial flora Mamuad et al. (2019)

Probiotic products
of Ruminococcus
flavefaciens

*** 2 g probiotic products in
powder; 1.2 ml/g of dry matter
10 ml probiotic products in liquid;
1.2 ml/g of dry matter

Reduce the number of
rumen protozoa

Hassan et al. (2020)

Bacillus licheniformis *** 2. 5×109; 2.7 L/d Unknown Deng et al. (2018)
Saccharomyces
cerevisiae

**(Pedraza-Hernández et al., 2019)
* (Darabighane et al., 2019)

– Affects rumen microbes Pedraza-Hernández et al. (2019);
Darabighane et al. (2019)

Notes.
***The additive has a significant effect on methane inhibition.
**The additive has a general effect on methane inhibition.
*The additive has no obvious effect on methane inhibition.
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Table 3 Inhibitory effects of prebiotics on ruminal methane emissions and their mechanisms.

Types of prebiotics Inhibitory effects Addition amount; maximum
methane suppression amount

Inhibition mechanism References

Chitosan *** 3000 (molecular weights)
dry matter; 22.9%
ml/day (Tong et al., 2020)
2% Chitosan + 21% of crude
glycerin; 53.67% (Seankamsorn,
Cherdthong & Wanapat, 2020)

(1) Alters microbial
community structure
(Tong et al., 2020)
(2) Alters fermentation
pathway (Seankamsorn,
Cherdthong &
Wanapat, 2020)
(3) Influences
methanogenic bacteria
cell wall permeability
(Zanferari et al., 2018)

Tong et al. (2020); Seankamsorn,
Cherdthong & Wanapat (2020);
Zanferari et al. (2018); Haryati et
al. (2019)

Yeast products *** 4 mg/1 g dry matter; - Indirect consumption of
hydrogen

Vallejo-Hernández et al. (2018)

Notes.
***The additive has a significant effect on methane inhibition.
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researchers, the reduction in CH4 is associated with the degree of chitosan deacetylation,
which could alter the permeability of the methanogen cell wall. In addition, Vallejo-
Hernández et al. (2018) observed that various yeast products could reduce CH4 emissions
by stimulating acetic acid-producing bacteria to compete with methanogens or metabolize
hydrogen. Overall, compared with other feed additives, prebiotics are still relatively less
applied in feed, and their types are limited. Therefore, future research should target
strategies to promote the adoption prebiotic feed additives. For example, when conducting
scientific research, it is necessary to strengthen contact with breeding companies so that
companies can see the effects of prebiotic additives and reduce penalties due to pollution. It
is also necessary to enforce the guidelines and requirements of the national environmental
protection department for low environmental pollution and exploit consumers’ demand
for healthy food to promote the widespread use of prebiotic additives.

Effects of plant extracts on methane production in ruminants
In recent years, the effects of plant-derived feed additives on rumenmicrobial fermentation,
rumen CH4 production, and ruminant performance have been increasingly recognized.
Many previous studies have demonstrated that natural plant-derived compounds are
promising anti- CH4-generation compounds, including tannins, essential oils, and saponins
(Table 4). Although plant extracts have potentially significant effects on CH4 emission
reduction in ruminants, most of the inhibition mechanisms are not clear. According
to research findings, the effects of plant-derived feed additives on ruminant methane
emission reduction are mainly based on competition for hydrogen and rumen microbes.
Competing for hydrogen is manifested in the form of increased propionic acid contents
in fermentation products. Effects on rumen microbes are manifested in the number and
activity of protozoa, methanogens, and total bacteria, and the results vary based on types
of plant-derived feed additives.

Medicinal plant extracts (for example: patchouli, atractylodes, and honeysuckles),
tannins, and essential oils have all been shown to suppress the production of CH4 by
altering ruminal microbial structure and abundance (Kim et al., 2016). The inhibitory
effects of tannins on CH4 reduction are influenced by their molecular weight (Petlum et al.,
2019; Piñeiro Vázquez et al., 2018a). However, if the molecular weights of tannins are too
high, the palatability of the diet would be adversely affected, and, in turn, the performance
of animals. Therefore, it is critical to determine the optimal tannin supplementation
levels. The effects of plant essential oils on rumen microorganisms could be linked to their
antibacterial, antiviral, antifungal, and insecticidal properties. Plant essential oils contain
various active ingredients that can regulate rumen fermentation and reduce CH4 emissions
(Soltan et al., 2018). As antibiotic substitutes, medicinal plant extracts could have unique
influences on rumen microbes due to their equally unique medicinal properties, including
CH4 emission reduction (Kim et al., 2016; Yadeghari et al., 2015).

Generally, plant extracts have a significant effect on reducing methane emissions from
ruminants, but most of its mechanism of action is still unclear. Almost all tests are in
vitro tests, which are short-term tests. At present, research on plant extracts in animals is
still lacking, and the effect of long-term use of plant extracts on animals is still unclear.
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Table 4 Inhibitory effects of plant extracts on ruminal methane emissions and their mechanisms.

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Plant extracts Corymbia citriodora leaf
extract

*** 10 ml/calf/day; – (1) Protozoa number re-
duced (1. 84×105/ml)
(2) Ratios of volatile fatty
acids altered

Hassan et al. (2020)

Aloe vera, Carica
papaya, Azadirachta
indica,Moringa oleifera,
Tithonia diversifolia,
Jatropha curcas, and
Moringa oleifera pod
extracts

*** 25 mg/L and 50 mg/L Azadirachta
indica, Carica papaya, Tithonia
diversifolia; 15%. Jatropha cur-
cas and Moringa oleifera pods;
30% (Akanmu & Hassen, 2018)
Eragrostis substrate, 4 ml plant ex-
tracts; 50% reduction in methane
/ Total gas production (Akanmu,
Hassen & Adejoro, 2020)

Unknown Akanmu & Hassen (2018);
Akanmu, Hassen & Adejoro
(2020); Parra-Garcia et al. (2019)

Pomegranate peel ex-
tract and Desert teak
extract

*** 2% of dry matter intake,
Punica granatum; 46%
Tecomella undulata; 42%

Unknown Hundal et al. (2019)

Rhus succedanea extract *** 50 mg/L; lowest Unknown Kim et al. (2018a)
Areca catechu and Acacia
nilotica extract

** 2% dry matter basis, Areca
Catechu; 21%; Acacia nilotica;
23%

Unknown Wadhwa, Sidhu & Bakshi (2020)

Asparagopsis armata *** 1.0%; 67.2% (Roque et al., 2019) Unknown Roque et al. (2019); Lee et al. (2018)
Garlic extract *** 0.5%; –(Kim et al., 2018b)

1 g the experimental mixture; 6.9
±10.7 ml/d (Eger et al., 2018)

Decreased abundance of
methanogenic archaea

Kim et al. (2018b); Eger et al.
(2018)

Plant extract; resveratrol *** 25 mg, high-forage diets; 60%;
high-concentrate diets; 41%

Decreased abundance of
Methanobacter

Ma et al. (2020)

Plant extracts: caffeic
acid and p-coumaric
acid

*** 12 mM, Caffeic acid; 37.58%;
p-coumaric acid; 28.33%

Unknown Berchez et al. (2019)

(continued on next page)
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Table 4 (continued)

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Licorice extract *** 1 g/L; 51% (1) Decline in the number
of rumen protozoa
(1.27 log cells/mL)
(2) Decrease in
bacterial diversity
(3) Change in bacterial
and archaea community
structure

Ramos-Morales et al. (2018)

Eucalyptus leaf extract *** 100 mg ethyl acetate extract;
93.4%

Unknown Boussaada et al. (2018)

Ginkgo extract *** 1.6% fruit equivalent, Forage-to-
concentrate ratio 5:5; 41.9%

(1) Hydrogen
consumption
(2) Reduce the
number of rumen
flora (Decrease in total
bacteria, Ruminococcus
flavefaciens, Ruminococcus
albus and Fibrobacter
succinogenes. Increase in
the levels of Selenomonas
ruminantium, Anaerovibrio
lipolytica, Ruminobacter
amylophilus, Succinivibrio
dextrinosolvens and
Megasphaera elsdenii)

Oh, Koike & Kobayashi (2017)

Olive leaf extract *** In oaten chaff treatments: Leccino
leaf chloroform extract; 86.4%
Kalamata leaf chloro-
form extract; 69.9%
In commercial concentrate
treatments: Leccino leaf
chloroform extract; 94.5%
Kalamata leaf chloroform extract;
92.5%

Decreased ratio of acetic
acid and propionic acid,
Hydrogen consumption

Shakeri et al. (2017)

Radish extract *** 12 hr incubation time 5, 7 and
9%; highest methane reduction

Unknown Lee et al. (2017)

Propolis extract *** Within 5 h, the methane
production decreases linearly

Hydrogen consumption Santos et al. (2016)

(continued on next page)
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Table 4 (continued)

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Malic acid or disodium
malate

*** Treatment of sunflower
meal with malic acid; 11.3%
Treat sunflower seeds with malic
acid; 15.5%

Propionic acid increases,
consumption of hydrogen

Vanegas et al. (2017a);
Vanegas et al. (2017b)

Mulberry leaf flavonoids *** 2 g/head/day; 12% (1) Reduction in the
number of methanogens
in the rumen;
(2) Decline in the number
of rumen protozoa
(3) Increase in populations
of Fibrobacter succinogenes,
R. albus and Butyrivibrio
fibrisolvens

Ma et al. (2017)

Saturated medium chain
fatty acids

*** 2.5% Krabok (Irvingia malayana)
seed oil and Flemingia (Flemingia
macrophylla) leaf powder; Lowest
yield

(1) Hydrogen
consumption
(2) Decrease in the
numbers of methanogens
and ciliates or inhibition of
their activity.

Kang et al (2017);
Dohme et al. (2000);
Patra (2013)

Lauric acid *** 30 g/kg dry matter; the methane
to total gas ratio with the Lauric
acid diet was significantly reduced
from day 4 onwards, to almost 0
at day 8

1) Hydrogen consumption Klop et al. (2017)

Grape pomace Powder *** 5.0 kg Dried grape marc
dry matter/day; 23%
5.0 kg Ensiled grape marc dry
matter/day; 18%

(1) Hydrogen
consumption
(2) Significant decrease in
the number of protozoa
and Cellulolytic bacteria.

Foiklang, Wanapat
& Norrapoke (2016);
Moate et al (2014)

Medicinal plant extracts Honeysuckle extract *** Methane production (ml/g dig dry
matter ) decreased linearly with
increasing concentrations of the
Honeysuckle extract

Decrease in the total num-
ber of microorganisms,
methanogenic archaea,
and ciliate protozoa. And
at 3%, Ruminococcus albus,
Fibrobacter succinogenes,
and Ruminococcus flave-
faciens decreased signifi-
cantly.

Yejun et al. (2019)

(continued on next page)
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Table 4 (continued)

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Papaya leaf extract *** Methane production (mL/250 mg
dry matter ) decreased with in-
creasing levels of Papaya leaf ex-
tract.

(1) Hydrogen
consumption
(2) Decreases in the total
bacteria, total protozoa,
Butyrivibrio fibrisolvens
and methanogen
populations

Jafari et al. (2018); Jafari et al
(2016)

Bamboo Leaf *** 25%; 62% Hydrogen consumption Jafari et al. (2020)
Chicory *** Pure chicory; 23%( when ex-

pressed per kg dry matter intake)
Unknown Niderkorn et al. (2019)

Patchouli and Atracty-
lodes

*** 25 g/kg dry matter; Cablin
patchouli herb and Amur cork
tree abated methane release

(1) Decrease in
methanogens,
Ruminococcus
flavefaciens, and total
fungi populations
(2) Hydrogen
consumption

Wang et al. (2019a);Wang et al.
(2019b)

A mixture of absinthe,
chamomile, fumigant
and sunflower

** Potential to reduce methane emis-
sions from the rumen

Unknown Petrič et al. (2020)

Rhubarb *** 1 g/d; 14%(García-González,
González & López, 2010)
1.33 g/L; 55%(Kim et al., 2016)

(1) Hydrogen
consumption
(2) Increase in numbers
of Prevotella and
Lactobacillus, but decrease
inMethanobrevibacter.
(3) Depletion of methyl-
Coenzyme M reductase
binding sites

García-González, González & López
(2010); Kim et al. (2016); Aroki-
yaraj, Stalin & Shin (2019)

Boerhovia diffusa,
Holarrhena
antidysentericum,
Solanum nigrum,
Trigonella foenum-
graecum,Withania
somnifera and
Woodfordia fruticosa

*** When compared irrespective
of the source of inoculum,
methane production reduced
linearly with the increasing
dose of supplementation.
Withania somnifera, Woodfordia
fruticose and Boerhovia diffusa
more effective in reducing
methanogenesis;

Unknown Pattanaik et al. (2018)

(continued on next page)
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Table 4 (continued)

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Myrobalan *** Ruminal methane production was
linearly decreased with increasing
level of Terminalia chebula supple-
mentation

(1) Hydrogen
consumption
(2) Reduction in the
number of protozoa

Anantasook et al. (2016)

Sanguisorba *** 40 mg and 100 mg; methane ex-
pressed per units of total gas pro-
duction decreased in a linear and
quadratic manner

(1) Decrease in the
protozoal population
(2) Reduction of in vitro
dry matter digestibility

Cieslak et al. (2016)

Centella asiatica powder
and Mangosteen peel
power

*** 25 g/kg dry matter intake; 4.8% (1) Reduction in the num-
ber of rumen protozoa
(2) Increase in Cellulolytic
bacteria, Proteolytic bacte-
ria, and F. succinogenes

Norrapoke et al. (2014)

Plant tannins Rambutan peel *** 16 mg; 1.3 mL/0.5 mg dry matter Hydrogen consumption Gunun et al. (2018)
Black wattle bark extract *** 30 g Acacia/kg of dietary dry mat-

ter; Linear decline, 0.18 g/day or
0.16 g/kg dry matter intake

Unknown Denninger et al. (2020)

Acacia leaf *** 36% of dry matter; 19.6%
(Montoya-Flores et al., 2020)
100% leaves; 55%
Rira et al. (2019)
100% pods; 64% (Rira et al.,
2019)

Unknown Montoya-Flores et al. (2020); Rira et
al. (2019)

Pitaya peel powder ** 4% of dry matter; roughage
to concentrate ratio 100:0;
2.4 mmol/L.70:30;3.8
mmol/L.30:70;2.9 mmol/L

(1) Reduction of the num-
ber of rumen protozoa
(2) Hydrogen consump-
tion

Matra et al. (2019)

Chinese chestnut ** 1.5 g/day chestnut tannins; 65% Decrease in methanogens,
Ruminococcus albus,
Methanobrevibacter sp.,
Methanobrevibacter
ruminantium, and
Methanosphaera
stadtmanae.

(Witzig, Zeder & Rodehutscord,
2018)

Quebracho tannin *** 3%/kg dry matter; 41% (
(Pineiro-Vazquez et al., 2018b))
4.5% of dry matter; 20.38 L/d
(Norris et al., 2020)

Unknown Pineiro-Vazquez et al. (2018b); Liu
et al. (2019a); Norris et al. (2020)

(continued on next page)
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Table 4 (continued)

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Red bean grass and
Hazelnut peel extract

** 15.2% Sainfoin pellets+4.1%
hazelnut pericarps; -

Unknown Niderkorn et al. (2020)

Tannin-rich peanut
skins and wet lees

*** 20% peanut skin+15%
Wet distiller’s grains plus
solubles; 0.17 ml/24 h
15% peanut skin+10%Wet
distiller’s grains plus solubles; 0.28
ml/24 h

(1) Hydrogen
consumption
(2) Decrease in the
average populations
of Bacteroidetes,
total methanogens,
Methanobrevibacter sp.
AbM4, and total protozoa.

Min et al. (2019)

Legumes leaves and
pods

*** 15% of dry matter; 4.7 g/day
(Molina-Botero et al., 2019a)

Unknown Molina-Botero et al. (2019a);
Molina-Botero et al. (2019b)

Grape seed extract *** 2 g/kg dry matter; 2.7 mg/day (1) Hydrogen
consumption
(2) Significant increase
in the relative abundance
ofMethanomassiliicoccus;
Significant reduction in
the relative abundance
ofMethanobrevibacter.
(3) Significant reduction
in the number of
Ciliate protozoa, and
Methanogens; Significant
increase in the number of
Anaerobic fungi.

Zhang et al. (2020b)

Mangosteen Peel *** 30 mg/500 mg dry matter;
0.549/total gas (Paengkoum
Phonmun et al., 2015)
50%Mangosteen peel+50%
concentrate; 1.7 ml/ dry matter
(Shokryzadan et al., 2016)
25 g/kg dry matter intake; 2.5
(Norrapoke et al., 2014)

(1) Hydrogen
consumption
(2) Decrease in the
number of total protozoa,
total methanogens,
Ruminococcus
flavefaciensand, and
Butyrivibrio fibrisolvenes;
Increase in the total
number of bacteria,
cellulolytic bacteria,
Proteolytic bacteria and
F.succinogenes.

Paengkoum Phonmun et al. (2015);
Shokryzadan et al. (2016);Wanapat
et al (2014); Norrapoke et al. (2014)
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Table 4 (continued)

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Contains tannins of
sumac, chestnut, oak
and mimosa

** 0.5,0.75 and 1 mg/ml; decrease
linearly with added amount

Decrease in the number
of total methanogens, Ru-
minococcus flavefaciens,
and Fibrobacter succino-
genes

Jayanegara et al. (2015)

Delonix regia seed meal *** 16.7 mg of dry matter; 42.4% Reduction in the number
of protozoa

Supapong et al. (2017)

Banana flower powder
pellet

** 0, 30, and 60 g/kg of dietary
substrate; decrease linearly with
added amount

Reduction in the number
of protozoa; Increase in
number of bacteria

Kang, Wanapat & Viennasay
(2016)

Plant essential oil Lippen and Marigold es-
sential oil

*** 300 mL/L incubated substrate; day
6 onward > 90%

Unknown Garcia et al. (2019)

Patchouli essential oil *** 90 µg/g incubated substrate; 9% Unknown El-Zaiat & Abdalla (2019)
Thymol and carvacrol
oils

** 0.2 g/L bovine ruminal
culturemedium, (Castañeda
Correa et al., 2019)
100 µL/L; 2.89 mmol per 100 mol
VFAs (Baraz, Jahani-Azizabadi &
Azizi, 2018)

Unknown Castañeda Correa et al. (2019);
Baraz, Jahani-Azizabadi & Azizi
(2018)

Agolin *** 0.05 g/kg dry matter; - Unknown Belanche et al. (2020); Klop et al.
(2017)

Oregano essential oil *** 52 mg/L; 6.4 ml( 24 h) Increase in the relative
abundance of Prevotella
and Dialister bacteria

Zhou et al. (2020)

Citrus essential oil ** 0.8 mL / L; - Reduction in rumen mi-
crobial adaptability

Wu et al. (2018)

Microencapsulated
blend of essential oil

*** 200 mg of microencapsulated
blend of essential oils/kg dietary
dry matter; 13.7/kg digestible or-
ganic matter

Unknown Soltan et al. (2018); Yatoo et al.
(2018)

Moringa seed oil *** Roughage to concentrate ratio
70:30, 4% incubated substrate;
3.29 total CH4 mL/g dry matter
Roughage to concentrate ratio
50:50, 1% incubated substrate;
2.81 total CH4 mL/g dry matter
Roughage to concentrate ratio
30:70, 1% incubated substrate;
1.31 total CH4 mL/g dry matter

(1) Hydrogen
consumption
(2) Roughage to
concentrate ratio 30:70,
50:50; Reduction in the
number of Firmicutes
to Bacteroidetes
ratio, protozoa
and methanogens.
70:30; Significant
increases in the numbers
of protozoa, methanogens
and bacteria.

Ebeid et al. (2020)
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Table 4 (continued)

Types of probiotics Inhibitory
effects

Addition amount; maximum
suppressionmethane amount

Inhibition mechanisms References

Eucalyptus oil *** 10 ml/kg dry matter, Roughage to
concentrate ratio 60:40; 46%

Reduction in the number
of rumen protozoa

Abdelrahman et al. (2019);
Wang et al. (2018)

Anise oil *** 400 mg/L; 39 mL/g of digestible
dry matter

Unknown Wang et al. (2018)

Silkworm pupa oil *** 5%; 30% (Thirumalaisamy et al.,
2020)

Reduction in the number
of rumen protozoa

Thirumalaisamy et al. (2020)

Tucumã oil *** 1%, forage:concentrate, 70:30;
0.66 mg/g dry matter

Hydrogen consumption Ramos et al. (2018)

Linseed oil *** 4%; 17% (Guyader et al., 2015)
4.8 mg/mL; 18% (Ruiz-
Gonzalez et al, 2017)
6%; 46 mL/day (Vargas et al.,
2020)

(1) Hydrogen
consumption
(2) Reduced the number
of protozoa and copy
number of total bacteria

Ruiz-Gonzalez et al (2017);
Vargas et al. (2020);
Guyader et al. (2015)

Plant saponins Tea extract ** 0.028%, forage-to-
concentrate ratio 60:40;
3g/day (Kolling et al., 2018)
2.0 g/head/day; 8.80% (emissions
scaled to metabolic body weight)
(Liu et al., 2019b)

Unknown Kolling et al. (2018); Liu et al.
(2019b)

Ivy fruit saponins *** 5% dry matter; 1.98 mmol/day Anaerobic fungi and
Methanogens content
decreased

Belanche et al. (2016)

Waste products Humic acid *** 3.6 mg/mL; 1.6 mL/g dry mat-
ter(48 h)

Unknown Sheng et al. (2019)

Geen tea waste *** 40 g/kg dry matter; 3.39 ml/200
mg dry matter

Unknown Nasehi et al. (2018)

Palm oil industrial waste
phospholine gum

*** 50%; completely inhibited
methane production.

(1) Reduced the content
of methanogens,
Lactoba-cillus sp.
and Megasphaera sp.
(2) Hydrogen
consumption

Sheng et al. (2019); Nasehi et al.
(2018);Mustapha et al. (2017)

Wastes of tomato fruit *** Replacing 50% of cereals-based
concentrate; 28%

Hydrogen consumption Romero-Huelva &
Molina-Alcaide (2013)

Notes.
***The additive has a significant inhibitory effect on methane.
**The additive has an inhibitory effect on methane.
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Therefore, in the future, we should focus on using plant extracts in animals and study the
effects of long-term use on animals.

CONCLUSIONS
Considering the results of the studies that have been published over the past 5 years,
the application of nitrogenous compounds, probiotics, prebiotics, and plant extracts has
been shown to reduce ruminal CH4 emissions. There are three main ways of reducing
CH4 production: (1) reducing the number of rumen protozoa and inhibiting methanogen
activity; (2) increasing propionic acid production to compete with methanogens for
hydrogen; (3) inhibiting the activity of enzymes involved in methanogen activity. However,
the mechanisms of action of most plant extracts remain unclear; and almost all studies are
based on in vitro fermentation tests. In addition, most plant extracts have no adverse effects
on animals, and they are rich in resources. Consequently, research on the effects of plant
extracts in animals and their mechanisms of action should be the main research direction
in the future, to enhance their application in animal production and the mitigation of the
adverse effects of global warming.
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