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Abstract: Networks will continue to become increasingly heterogeneous as we move toward 5G.
Meanwhile, the intelligent programming of the core network makes the available radio resource be
more changeable rather than static. In such a dynamic and heterogeneous network environment,
how to help terminal users select optimal networks to access is challenging. Prior implementations
of network selection are usually applicable for the environment with static radio resources, while
they cannot handle the unpredictable dynamics in 5G network environments. To this end, this
paper considers both the fluctuation of radio resources and the variation of user demand. We model
the access network selection scenario as a multiagent coordination problem, in which a bunch of
rationally terminal users compete to maximize their benefits with incomplete information about the
environment (no prior knowledge of network resource and other users’ choices). Then, an adaptive
learning based strategy is proposed, which enables users to adaptively adjust their selections in
response to the gradually or abruptly changing environment. The system is experimentally shown to
converge to Nash equilibrium, which also turns out to be both Pareto optimal and socially optimal.
Extensive simulation results show that our approach achieves significantly better performance
compared with two learning and non-learning based approaches in terms of load balancing, user
payoff and the overall bandwidth utilization efficiency. In addition, the system has a good robustness
performance under the condition with non-compliant terminal users.

Keywords: network selection; dynamic bandwidth; reinforcement learning; prediction method

1. Introduction

Two major characteristics of the fifth generation wireless network (5G) are heterogeneity and
intelligentization. In terms of heterogeneity, wireless communications in 5G are making efforts to
integrate various wireless access technologies into a heterogeneous network (HetNet) environment.
Overlapping networks such as LTE, WLAN and WiMAX provide multiple access choices for terminal
users [1]. In term of intelligentization, different from the present network scenarios, diverse networks
(specifically, base stations) are managed by a single radio controller (SRC) to achieve an unified
and dynamic scheduling of radio resources, instead of allocating fixed resource blocks to each
network [2]. This centralized deployment is able to improve the resource utilization and reduce
the energy consumption. However, in the meantime, it also introduces challenges. One of the
difficulties lies in making the optimal choice for each user to fully utilize the dynamically changing
radio resources in multi-user, multi-provider HetNet environments [3].
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Many efforts have been made to help select appropriate networks from all available candidates to
satisfy users’ specific requirements. Commercial solutions usually involve rudimentary static network
selection policies (e.g., always select the WLAN, or always select the cheapest or fastest network) [4].
However, varying network characteristics and user preferences are omitted, which may often result
in lower quality of service (QoS). Many traditional methods in research literature use multi-attribute
decision making algorithms to evaluate and rank candidate networks in a preference order to guide the
selection decision [5–7]. This may cause the congestion situation when most users connect to the same
so-called “best" network. Game theory is widely employed to study the behaviour of selfish users
selecting the best access network and analyze the existence of equilibrium [4,8]. Q-Learning based
approaches are used to find the best strategy to maximize the reward function expressed in terms
of different criteria, such as received signal strength, perceived bandwidth, prices and so on [9,10].
Xu et al. in [11] give the simple analysis of the application of four kinds of distributed learning
algorithms in wireless networks.

Unfortunately, the above works suffer from the following two limitations: (1) requiring too much
state information (the amount of bandwidth, the number of users, other users’ choices, etc.) as a prior,
which is costly or impractical; (2) only focusing on static resources without considering the changing
characteristics in intelligent wireless network environments. Existing network selection algorithms
may work well with sufficient information when wireless resources are unchangeable; however,
they are vulnerable to uncertainties with incomplete knowledge in dynamic network environments.
In addition, the solutions of network resource management problems have already been proposed in
recent literature, which capture the decision of users to select a wireless internet service provider that
fulfills their demands. In [12], the combined problem of network provider selection and corresponding
power allocation is treated using machine learning mechanisms. Tsiropoulou et al. in [13] propose a
learning algorithm to achieve an energy efficient resource allocation. They all take the power/energy
resource into consideration; however, in the next intelligent network environment, the resource of
bandwidth should be firstly considered because the dynamic of bandwidth resource is designed for
reducing the power consumption.

To address the above problems, an adaptive learning based network selection strategy is proposed
in this paper. We are faced with two challenging issues. The first one originates from the consideration
of both varying user demand and changing radio resource. Secondly, given a bunch of selfish users,
how to achieve a load balance among a variety of networks is challenging. We modeled the problem
as a multiagent coordination problem. Within a dynamic and heterogeneous network environment,
a population of rational terminal users compete to select the optimal access networks to satisfy their
diverse requirements with incomplete information (no prior knowledge of changing bandwidth and
other users’ choices). Then, a learning based network selection strategy is designed, which enables
users to receive a good reward and adaptively adjust their selections.

Simulation results show that the system guarantees convergence towards Nash equilibrium,
which is proved to be Pareto optimal and socially optimal. Extensive results demonstrate that our
algorithm significantly outperforms either the learning or non-learning based approach in terms of
load balancing, user payoff and the overall bandwidth utilization efficiency. In addition, the system is
examined to have a good robustness performance under up to 50% non-compliant terminal users.

The contribution of the paper mainly includes the following three parts:

• The heterogeneous network selection scenario is abstracted as a multiagent coordination problem,
and a corresponding mathematical model is established. We analyzed the theoretical results of the
model, i.e., the system guarantees convergence towards Nash equilibrium, which is proved to be
Pareto optimal and socially optimal.

• The multiagent network selection strategy is proposed and appropriate algorithms are designed
that enable users to adaptively adjust their selections in response to the gradually or abruptly
changing environment.
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• The performances of the approach are investigated under various conditions and parameters.
Moreover, we compare our results with two existing approaches and get significantly better
performances. Finally, the robustness of our proposed approach is examined, for which the system
keeps desirable performances with non-compliant terminal users.

The remainder of the paper is organized as follows. We introduce the background in Section 2.
In Section 3, we formulate the model of the multiagent network selection problem. Then, we describe
our adaptive learning based network selection strategy. Section 4 presents the experimental results,
makes comparisons with existing approaches and examines the robustness for the adaptive approach.
Finally, we discuss the advantages and the limitations in Section 5 and conclude the paper in Section 6.

2. Background

2.1. Game Theory

Game theory is a mathematical tool used in understanding and modelling the strategic interactions
between rational decision-makers [4]. The idea is that multiple players compete or cooperate with each
other to achieve the maximization of their own benefits or the global utility. There are three important
properties in game theory:

• The most commonly adopted solution concept in game theory is Nash equilibrium (NE). Under an
NE, no player can benefit by unilaterally deviating from its current strategy.

• An outcome is Pareto optimal if there does not exist any other outcome under which no player’s
payoff is decreased while at least one player’s payoff is strictly increased.

• Socially optimal outcomes refer to those outcomes under which the sum of all players’ payoffs
are maximized [14].

Ilaria et al. in [15] employ a congestion game to model the interactions among terminal users,
where users selfishly select the access network that minimizes their costs. A mathematical programming
in this paper is proposed to find NE in the game. A similar game is also used in [16] to study the
behaviour of selfish users selecting the best radio access technology (RAT). They prove that the strategy
converges to NE and, under some conditions, the NE is also Pareto optimal. Monsef et al. in [17]
formulate the problem as a non-cooperative game, and study various properties (NE and fairness)
of distributed network selection with priority-based service. However, in a few works, the three
properties are satisfied simultaneously under a certain condition as our work (concretely analyzed in a
later section). Especially for social optimality, it is desirable in this problem, since it may indicate the
maximal utilization of the overall performance of the HetNet environment.

2.2. Q-Learning

Q-learning is a well-studied class of algorithms that allow agents to determine the ideal behaviour
within a specific context to maximize its performance through trial and error exploration in an unknown
environment [18,19]. It works by learning Q-function, which characterizes relative utility of a particular
action. An agent uses its experience to improve its function, bending new information into its prior
experience according to a learning rate, so that the actions which yield high rewards are reinforced.

Q-Learning based methods are promising candidate solutions used in the network selection
problem because it doesn’t require much prior information and the selection result can be learnt to
be better. A channel selection and Routing approach is proposed in [20], which models the problem
as a Marko decision process to design the method of learning the best resource allocation policies.
Q-learning is used in [21] to maximize the global reward in network selection decisions. The Q-learning
algorithm is also modeled in [22] to find the best strategy to maximise the reward function expressed
in terms of call blocking and call dropping probabilities. To sum up, existing Q-learning based
network selection approaches fail in designing reward functions to directly select networks, which
usually results in lower performance of other aspects except for the defined reward. From a different
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perspective, our optimal decisions of network selection mainly depend on the prediction and learning
of the state information. The Q-learning algorithm is used to evaluate the accuracy of prediction and
guarantee the network-level performance (more details are in later sections).

2.3. Dynamic HetNet Environments

One emerging trend of the future 5G network is the increasing heterogeneity. A key feature
therein would be the increasing integration between networks with different RATs [2]. Meanwhile,
the core network will also reach unprecedented levels of flexibility and intelligence. Multiple base
stations belonging to various networks are managed by a single radio controller (SRC) [23]. Under
such a centralized deployment of HetNet architecture, radio resources are allocated dynamically by
SRC to base stations as Figure 1. One practical example is the ZTE’s soft base station system [24].
Based on the emerging software defined radio (SDR) technology, the wireless resource of the soft base
station in the system is capable of software programming and redefining.

One natural way of dynamically allocating radio resources to different base stations is based on
their changeable traffic conditions. Figure 2 shows one typical traffic profile in real cellular-based
wireless access networks [25]. The traffic profile during the daytime period has higher value than
that of the nighttime period. Since traditional base stations are planned to support the daytime traffic,
infrastructures of access networks are underutilized during the nighttime [25]. What the SRC and
SDR soft base station system need to do is to provide the proper amount of resources according to its
historic statistics to support users’ demands over time.

SRC
Core 

Network

WiMAX

WiFi

LTE

Figure 1. HetNet architecture in 5G—a sample secenario.

Figure 2. Normalized traffic profile during one week [25].
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However, this centralized way of allocating radio resources clearly cannot support the
demand–supply balance well for different base stations. One intrinsic feature of the future 5G network
is allowing each terminal user to select his access point freely to maximize his personal experience.
For a given radio base station, its terminal users may join or leave in an unpredictable manner, which
may lead to frequent underloading or overloading of the base station. Therefore, one key question in
future 5G networks is how terminal users should adaptively select their radio access points in a rational
manner, while maximizing the network-level performance as much as possible simultaneously?

3. Methods

3.1. Network Selection Problem Definition

Based on the aforementioned dynamic HetNet environment, we make the following assumptions:
(1) The provided bandwidth of each base station is varying over time; (2) Each user can send a
connection request to at most one base station at a time; (3) Each user can only have access to the state
information of the base station it connected to from completed interactions and lacks prior knowledge
of any other networks or terminal users. The cooperation between the user and its connected base
station is helpful and doesn’t infringe upon any other’s interest.

3.1.1. Multiagent Network Selection Model

In practice, each user makes independent decisions based on its local information without
communication with others. However, actions taken by users influence the actions of others indirectly.
Therefore, we formulate the problem as a multiagent coordination model [26], in which a population of
terminal users located in the same or different service areas with no information about others learn to
compete to maximize their payoffs given that the available bandwidth varies dynamically. Formally, the
multiagent network selection scenario is modeled as a 6-tuple < BS, Bk(t), U, bi(t), Ai, Pi(t, a) >, where:

• BS = {1, 2, ..., m} is the set of available base stations (BSs) in the HetNet environment.
• Bk(t) denotes the provided bandwidth of base station k ∈ BS at time t, which varies over time.
• U = {1, 2, ..., n} is the set of terminal users involved.
• bi(t) denotes the bandwidth demand of user i ∈ U at time t, which also changes over time.
• Ai ⊆ BS is the finite set of actions available to user i ∈ U, and ai ∈ Ai denotes the action

(i.e., selected base station) taken by user i.
• Pi(t, a) denotes the expected payoff of user i ∈ U by performing the strategy profile a =

{a1, ..., ai, ...an} ∈ ×j∈U Aj at time t.

There are n users competing for m base stations in the system. The detailed definition of
instantaneous payoff of user i based on the joint strategy profile a can be expressed as

Pi(t, a) = α log(1 + β
wi(t, a)

bi(t)
), (1)

where α and β are constants that control the shape of the function, and wi(t, a) is the perceived
bandwidth of user i at time t. Here, perceived bandwidth is a theoretical value that does not consider
the transmission loss. The payoff function monotonically increases as the perceived bandwidth
increases. In this payoff function, we mainly consider the user’s bandwidth demand and the perceived
bandwidth, which are the two most rudimentary factors for users. The proposed formulation indicates
the relationship between the perceived bandwidth and the bandwidth demand, i.e., the bandwidth
satisfaction for a user. It is applicable to many applications on the Internet (e.g., elastic services like file
transfer and web browsing using transmission control protocol) [27].

3.1.2. Theoretical Analysis

We identify two major properties underlying the multiagent network selection problem. Nash
equilibrium (NE) is the most commonly adopted solution concept in game theory. Under an NE, no
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player can benefit by unilaterally deviating from its current strategy [4]. Underlying the multiagent
network selection problem, an NE is reached when there is no overload on any base station (this
situation is shown in later experiments). Under this condition, users’ perceived bandwidth equals
their demands and all users’ payoffs reach a maximum. Therefore, no one is willing to change his
strategy given that others’ strategies are unchanged.

Definition 1. a∗ ∈ ×i∈U Ai is a Nash equilibrium if for all k ∈ BS, ∑j bj(t) ≤ Bk(t), where j ∈ {j ∈ U|aj
= k, aj ∈ a∗}.

However, an NE may not be desirable in general since it may not necessarily correspond to
the maximization of the system-level payoff. Fortunately, any NE in our model is also Pareto
optimal and socially optimal [4]. The two properties guarantee both the system’s stability and
system-level optimization.

Theorem 1. Nash equilibrium, Pareto optimality and Social optimality are equivalent in the multiagent network
selection problem.

Proof. It can be deduced that, if profile a∗ is an NE, each user’s payoff reaches a maximum and cannot
be further increased. Therefore, it is impossible to find another outcome under which no user’s payoff
is decreased while at least one user’s payoff is strictly increased. This proves that a∗ is Pareto optimal.
In addition, Pi(t, a∗) = max Pi(t, a) ⇒ ∑i Pi(t, a∗) = max ∑i Pi(t, a), ∀a ∈ ×j∈U Aj. The sum of all
users’ payoffs reaching a maximum means a∗ is also socially optimal.

3.2. Multiagent Network Selection Strategy

The adaptive network selection strategy described in Algorithm 1 is integrated in each terminal
user. Each user only communicates with its currently connected base station and has no communication
with others. Any user is allowed to join or leave the environment and trigger a call request at any time.
The prior information before an initial selection available to user i ∈ U is its own bandwidth demand
bi and the available base station set BS.

For each user, its strategy consists of two steps: selection (Line 2) and evaluation (Line 4).
In selection procedure, the user learns to choose the best candidate network to satisfy its special demand.
Once the selection procedure is completed, the user gets the feedback of a 2-tuple < load, bandwidth >

from its connected base station in the last interaction as a historical record. After that, an evaluation
procedure will be triggered to update the strategy. More details about selection and evaluation are
described in Sections 3.2.1 and 3.2.2, respectively.

Algorithm 1 Network selection algorithm for each user

Input: available base station set BS

bandwidth demand bi
Output: selected base station seleBS
1: loop

2: seleBS← Selection()
3: receive the feedback of state information in the last compelted interaction
4: Evaluation()
5: end loop

3.2.1. Selection

To make an informed selection decision, a user may need the state information on each base
station, which, however, is either with high communication costs or unavailable beforehand. To address
this issue, our approach is based on different users’ beliefs, represented by diverse predictors and
historic information about the environment, in order to forecast the possible load and bandwidth for
further decisions.
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Algorithm 2 summarizes the selection procedure for user i ∈ U. For each available base station
k ∈ BS, the user checks whether it can satisfy its special demand (Lines 1–11). If the user sends a
connection request to a base station with no historic information, which is the standard case at the
beginning of the life-cycle, this unpredictable base station will be added in a spare list for a later
decision (Lines 2–3). Otherwise, the user predicts provided bandwidth and possible load of each base
station (Lines 5–6). If the predicted load plus the demand is below the predicted bandwidth, this base
station is added to the list of candidates (Lines 7–8).

Then, the user evaluates if any candidate base station is expected. There might be three cases.
In the case where the list of candidate base stations predicted having adequate bandwidth available
is not empty (Line 12), the “best network selection” is determined by the following policy: the base
station with the most expected free bandwidth is chosen as the most appropriate connection currently
(Line 16). In particular, in the case there is no available candidate, the user will randomly explore one
from all unpredictable base stations to gather its state information (Lines 17–18). There also might be
an exceptional case that no base station is generated from the algorithm (i.e., no base station could
satisfy the user’s demand) (Line 19). In this case, the original base station is used and f lag is set into –1.

Each user maintains a historic information table tablek for each connected base station k. The table
is composed of up to m items hj = (tj, loadj, bwj), comprising observed time tj, observed load loadj
and observed bandwidth bwj. The oldest item will be rewritten if m items are already recorded
because dynamic environments require more up-to-date information to make more reliable predictions.
Formally, tablek is expressed as the following equation:

tablek = (h0, ..., hp) =

((t0, load0, bw0), ..., (tp, loadp, bwp)), (0 ≤ p < m).
(2)

Algorithm 2 Selection

1: for all k ∈ BS do

2: if tablek = ∅ then

3: push k in unpredList
4: else

5: predLoad←LoadPredict(pA)// pA active predictor
6: predBW ←BWPredict()
7: if predLoad + bi ≤ predBW then

8: push k in candList
9: end if

10: end if
11: end for
12: if candList 6= ∅ then

13: for all cand ∈ candList do

14: availBW = predBW − predLoad
15: end for
16: seleBS← argmaxk∈BS(availBW)
17: else if unpredList 6= ∅ then

18: seleBS←random(unpredList)
19: else

20: seleBS← lastBS // stay at last BS
21: f lag = −1
22: end if
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The load prediction mechanism employs time series forecasting techniques to predict future load
value based on previously observed values. It involves three major steps:

1 Create predictor set. Each user keeps a set of r predictors P(a, k) = {pi|1 ≤ i ≤ r}, which is
created from some predefined set in evaluation procedure (Section 3.2.2, case 1), for each available
base station k. Each predictor is a function from a time series of historic loads to a predictive load
value, i.e., f : ((ti, loadi)|i = 0, .., p)→ predLoad.

2 Select active predictor. One predictor pA ∈ P is called active predictor, which is chosen in the
evaluation procedure (Section 3.2.2, case 2,3), used in real load prediction.

3 Make forecast. Predict the base station’s possible load via its historic load records and the
active predictor.

A similar prediction mechanism can also be adopted to bandwidth prediction.

3.2.2. Evaluation

After the user’s selection has finished, the evaluation procedure introduced in Algorithm 3 is
performed. This process is divided into three cases based on the selected base station.

Algorithm 3 Evaluation

1: if predictorSet = ∅ then

2: create predictorSet for seleBS
3: pA ←random(predictordSet)
4: update(tableseleBS)
5: else if f lag = −1 then

6: for all k ∈ BS do

7: delete h ∈ tableseleBS with a probability
8: end for
9: else

10: for all p ∈ predictorSet do

11: predLoad←LoadPredict(p)
12: rp = 1− |load−predload|

load
13: Qp = (1− α)Qp + αrp
14: end for
15: pA ←BoltzmanExploration(predictordSet)
16: //abruptly changing environment
17: if |BseleBS − predBW| > ∆ then

18: d = |B− lastBW|
19: for all h ∈ tableseleBS do

20: h← h± d
21: end for
22: end if
23: update(tableseleBS)
24: end if

Case 1 If the selected base station is visited for the first time, the user will create a new predictor
set for this base station and record its state information into the corresponding record table (Lines 1–4).
All predictors in the set are chosen randomly from a predefined set, hence users’ predictor sets may
be different from each other. As displayed in Table 1, the predefined set contains multiple types of
forecasting functions [28] differ in window sizes. Different types of predictors are suitable for different
situations and environments.
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Table 1. Time series forecasting methods.

Method Description (Window Size x ≤ p)

Weighted Average
predload = ∑x

i=0 wiloadi
∑x

i=0 wi = 1

Geometric Average predload = x+1
√

∏x
i=0 loadi

Linear Regression
predload = ât + b̂

(â, b̂ can be obtained by
using least square method)

Exponential Smoothing
predloadt+1 = αloadt
+(1− α)predloadt

= ∑x
i=0 α(1− α)iloadt−i

Case 2 If f lag = −1, it implies that currently historical records recommended no appropriate base
station (Line 5). In this case, some old records need to be removed from the table to get more up-to-date
information for further predictions (Line 6–8), which is necessary for a successful adaptation in the
future. Otherwise, the user will never get an opportunity to access other base stations, which may
satisfy its demand very well.

Old historical records are removed using a decay rate. The decay rate is a cumulative distribution
function used to calculate the probability that a historical record is deleted after it has reached a certain
age. An example of such a cumulative distribution function is given in Figure 3. A relatively newer
record has a lower deleting probability; otherwise, an older one has a higher deleting probability.
However, depending on the environment, the probability density function must be altered. If the
number of base station candidates per user is high, historical information must be kept longer to avoid
the exploration of unexplored base stations and reduce the switching rate.

D
e

ca
y

 r
a

te

0

1

age of the history record
older

Figure 3. An example of decay rate of the historical record.

Case 3 The general situation is that the user switched to a previously visited base station, i.e., it
already has historical records on this base station (Line 9). The evaluation mainly involves two aspects:
assessing the performance of all predictors in the set (Line 10–15) and dealing with the case of abruptly
changing bandwidth (Line 17–22). The assessment of predictors resorts to Q-learning. Specifically, the
Q-function in our approach is defined as the following equation:

Qp(t) = (1− α)Qp(t− 1) + αrp(t− 1), (3)

rp = 1− |load− predload|
load

, (4)

where p ∈ predictorSet denotes the predictor, Qp(t) is the Q-value of p, and α is the learning rate.
The prediction accuracy, which is the error of the prediction compared to the observed value, is taken
into consideration. We use the observed reward rp to denote the prediction accuracy of p. The predictor
that forecasted a more exact value receives a higher reward; otherwise, it receives a lower reward.
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In our approach, the Boltzman exploration mechanism [29] is adapted to explore the active
predictor (Line 15). The probability xp of selecting predictor p is given by

xp(t) =
eQp(t)/T

∑k eQk(t)/T
, (5)

where the temperature T > 0 balances the tradeoff between exploration and exploitation: when
T → 0, the user plays a Greedy policy in which the predictor with the maximum Q-valve is selected
(pure exploitation), whereas, for T → ∞, user’s selection is completely random (pure exploration).
Since xp(t) is the increasing function of Q-valve, the predictor with higher prediction accuracy is
chosen with a higher probability.

The above process works well in the environment with gradually changing bandwidth. However,
it is slightly different in an abruptly changing case. When detecting that the difference between
the observed bandwidth and predicted bandwidth of the base station is larger than a threshold ∆,
the user will consider that it encounters an abruptly changing environment (Line 17). At catastrophe
points, all historical records are invalid and may lead to inaccurate predictions. In order to eliminate
the adverse influence and achieve rapidly re-converging, records in the table are revised to be new
references. If there is a sudden rise of bandwidth, the difference d is added on each old record;
otherwise, d is subtracted from each old record.

This algorithm is based on the multiagent network selection model that may be influenced by
the parameter of the number of agents. Thus, the terminal user number has a great influence on the
complexity of the algorithm, i.e., the convergence time may increase with the increasing user number.

4. Results

In this section, we first present the simulation results of our approach in terms of adaptability,
user payoff, switching rate, bandwidth utilization and convergence time under various user numbers
in both gradually and abruptly changing environments. After that, we experimentally compare
the performance of our approach with two existing multi-user network selection algorithms ([9,17]).
Finally, the robustness of our approach is examined.

Parameter settings of the simulated scenario are given in Table 2. We consider a variety of HetNet
environments consisting of up to 800 users, which involve the following three aspects. All experimental
results are averaged over 50 independent runs.

• RAT type: we consider three typical networks with various radio access technologies (RATs),
namely IEEE 802.11 Wireless Local Area Networks (WLAN), IEEE 802.16 Wireless Metropolitan
Area Networks (WMAN) and OFDMA Cellular Network, which are represented by BSi(i = 0, 1, 2).
Multi-mode user equipment in the heterogeneous wireless network can access any of the
three networks.

• provided bandwidth: the maximum provided bandwidth of the three networks are 25 Mbps,
50 Mbps, and 5 Mbps, respectively [30]. Without loss of generality, two types of changing
environments based on historical statistic traffic are considered. One of them is simulated as
sinusoidal profiles, which change gradually. The provided bandwidth may also change abruptly
according to time division, such as dawn, daytime and evening.

• bandwidth demand: users’ bandwidth demands also vary in a reasonable range. There are two
types of traffic demand in the area: real-time voice traffic and non-real-time data traffic, which are
randomly distributed.
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Table 2. Parameter settings.

Access Tech Network Rep Base Station Maximum Bandwidth User Demand

WLAN Wi-Fi BS0 25 Mbps voice traffic: 32 kbps
WMAN WiMAX BS1 50 Mbps data traffic: 64

OFDMA Cellular Network 4G BS2 5 Mbps kbps ∼ 128 kbps

For the payoff function (Equation (1)), we set α = 1 and β = 1.7, so that, when perceived
bandwidth equals the demand, the payoff reaches a maximum value of 1. Here, a proportional
bandwidth allocation mechanism [31] is employed, which can be simply presented as

wi(t, a) =

bi(t), ∑j bj(t) ≤ Bai (t),
Bai (t)·bi(t)

∑j bj(t)
, otherwise,

(6)

where j ∈ {j ∈ U|aj = ai, aj, ai ∈ a} is the user who takes the same action ai (i.e., connects the same
base station) with user i. Here, the perceived bandwidth is a theoretical value that does not consider
the transmission loss.

4.1. Experiment Results

This section studies the impact of the number of users on system performances from the following
aspects. Two demand situations are simulated: (1) the total amount of bandwidth demand is close to,
but less than the provided bandwidth of all base stations; (2) the total amount of bandwidth demand
is beyond the total provided bandwidth.

Adaptability. Figure 4 shows the behavior of network selection on BS0 within gradually and
abruptly changing environments.When the user number increases from 600 to 700, the total demand is
less than the total provided bandwidth. Initially, all users randomly select their base stations, thus
resulting in high levels of overload or underload on different base stations. However, after a short
period of interactions, all users can learn to coordinate their selections and the network bandwidth
of BS0 becomes well-utilized without being overloaded. Moreover, we observe that the increase of
user number leads to better adaptability. Intuitively, this indicates that, when the total demand reaches
close to the upper bound of the provided bandwidth, users can more sensitively sense the dynamic
environment and quickly accommodate to the changes.
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Figure 4. Load situations on BS0 under various user numbers.
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When there are 800 users involved, the total demand exceeds the provided bandwidth, it can be
seen that, after a period of interactions, the amplitude of the load decreases significantly. A similar
phenomenon can be observed on BS1 and BS2.

User Payoff, Switching Rate and Bandwidth Utilization. In Figure 5, increasing user number
results in a slight decrease in user payoff while a marginal increase in switching rate. With increasing
competition of limited base stations and bandwidth, the average bandwidth utilization efficiency
increases approximately linearly. The three performances are a little worse in abruptly changing
environments due to jitters at catastrophe points.

Convergence Time. The terminal user number plays a great influence on the complexity of
our proposed algorithm (i.e., the convergence time). When the total demand is less than the total
provided bandwidth, the system guarantees convergence, i.e., if there is no overload on any base
station, the system converges to Nash Equilibrium, which is also Pareto optimal and socially optimal
(Definition 1, Theorem 1). Initially, the system takes a learning phase to achieve convergence. If the
provided bandwidth changes gradually or stays static, the equilibrium is sustained over time. We call it
first-convergence, and the average first-convergence time exponentially increases in an acceptable range
with the increasing user number from 640 to 720. Especially, in an abruptly changing environment,
when encountering catastrophe points, the equilibrium is broken but re-converges in a number of
steps. The average re-convergence time linearly varies with the number of users (see Figure 6).
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4.2. Experiment Comparisons
In this section, we compare our adaptive learning based algorithm (ALA) with two existing

multi-user network selection algorithms in both gradually and abruptly changing environments.
The first one is a classical Q-learning based algorithm (QLA) [9]. In QLA, each user maintains
a Q-value for each available network, which is learned knowledge about the network. The user
selects the network with maximal Q-value. The second one is RAT selection algorithm (RATSA) [17].
RATSA is similar with the best response, where each user always selects the network with maximal
expected throughput.

Communication Complexity. We first compare the communication complexity of the three
algorithms in Table 3. Before an initial selection, each user has the knowledge of its base station
candidates and bandwidth demand. In ALA, we assume that there exists a cooperation between a user
and it connected base station. The user gets the feedback of a tuple < load, bandwidth > from the base
station in previous connections, rather than any prior knowledge. Such a cooperation is available and
helpful, but does not infringe upon interests of any others.

RATSA requires a significant amount of global information, such as the provided bandwidth
of each base station at the next time, the number of users in each base station, and the number of
past consecutive migrations on the selected base station. However, in a real network scenario, it is
impossible for a user to get this future information. Therefore, ALA based on learned and predicted
information is more practically feasible and effective. In QLA, users making decisions only depends on
their local information (i.e., Q-values which are updated by their rewards) with lower communication
complexity. However, it turns out to give bad performances under a changing environment presented
in later experiments.

Table 3. Comparisons of communication complexity.

Algorithm ALA RATSA QLA

common information
required

before selection: BS candidates; bandwidth demand.
after selection: perceived bandwidth w from selected BS.

different information
required

1. previous provided bandw-idth
of selected BS.
2. histroical load on selected BS.

1. future provided bandwidth
of each BS.
2. number of users on each BS.
3. number of past consecutive
migrations on selected BS.

–

base stations to
be communicated selected BS all BS candidates selected BS

influencing parameter – switching threshold η –

Load Balancing Analysis. We investigate the load situations on the three base stations for some
time when there are 720 users involved (see Figures 7 and 8). It is the case that the total bandwidth
demand is quite close to the total amount of provided bandwidth.

We observe that, under ALA, after a few learning steps, there is no overload, and the load on
each base station dynamically changes with the amount of provided bandwidth. This implies that
the system converges to equilibrium and achieves load balancing among the three base stations. It is
worth noting that the jitter on BS2 in Figure 8 is because users are trying to join or leave this base
station in response to the abrupt changes on the other two base stations.

In RATSA, a user switches its base station only if the value of allocated bandwidth from other
base station divided by currently perceived bandwidth is higher than a given threshold η. Note that
only one user is allowed to make the switch each time. The threshold η can greatly impact the system
performance. For fair comparisons, we set η = 1.5 in the following comparisons, which gives RATSA
the best performance. The comparative figures show an unbalancing phenomena that there is too
much unmet demand on BS1 and BS2, but too little utilization on BS0 over some time. This indicates
that users cannot sense the dynamic environment and adjust their strategies timely.
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We also simulate the network selection scenario using another learning based approach. In QLA,
it can be observed that users are trying to adapt to the changing environment. However, it takes a long
time to get close to the varying bandwidth and complete load balancing cannot be achieved. Moreover,
when getting to catastrophe points, users have to relearn to adapt to the new environment.

User Payoff, Switching Rate and Bandwidth Utilization. Comparison results of the three
algorithms in terms of user payoff, switching rate and bandwidth utilization are presented in
Figures 9 and 10 under two changing environments, respectively. We observe that, in the beginning
period, RATSA performs better than ALA in bandwidth utilization and user payoff; however, ALA
outperforms it after a few interactions and shows better performance thereafter. The switching rate
of ALA is slightly higher because users try to switch their connections to respond to the dynamics to
get higher payoffs in the initial phase and at catastrophe points. It is important to highlight that the
jitters in the abruptly changing environment of ALA are because of the time-lag of detecting abruptly
changing bandwidth. This phenomenon may not exist in RATSA, since users are assumed to always
access the currently and next provided bandwidth of all base stations, which is usually not accessible
in practical environments.

As for QLA, although we can sense it is trying hard to adapt to the dynamic environments,
it demonstrates bad performances of any of the three criteria compared with ALA, especially switching rate.
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Figure 7. Comparisons of load situations in a gradually changing environment.
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Figure 10. Comparisons of performances in an abruptly changing environment.

4.3. Robustness Testing

It has been assumed so far that all terminal users have adopted the adaptive learning based
network selection approach (i.e., ALA) in previous simulations. In this section, the experimental study
for ALA examines the robustness of the approach when this assumption is violated. In practise, 100%
compliance by users is unlikely to be achieved [32]. This is because some users may not be convinced
to participate or, even if they are all willing to participate, some of them may come across different
problems such as information and sensing limitations.

Figure 11 depicts the system performance in the presence of 10%, 20%, 30% and 50%
non-compliant users when the environment changes gradually (it shows a similar phenomenon when
the environment changes abruptly, which is omitted due to the space limitation) with 720 terminal users
involved in total. Non-compliant users are simulated as agents sticking to their initial choice (OSA) or
keeping a random selection approach (RSA). It is observed that with 10% to 30% non-compliant users,
bandwidth utilization and user payoff are not affected much and, as a result, the system using ALA still
outperforms the system using the other two approaches (i.e., QLA and RATSA). The two performances
are almost equal to QLA or RATSA when there are 50% non-compliant users participating.
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Figure 11. Robustness of the adaptive and learning based network selection approach.
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As for switching rate, when non-compliant users takes OSA, this performance remains desirable.
When the non-compliant users take RSA, the switching rate increases linearly with the number
of non-compliant users because of the random selection of these users. However, within 30%
non-compliant users, the switching rate is still lower than the performance when users use QLA.
The results suggest that ALA works well under non-compliant users within 50% and the system
demonstrates a good robust performance.

5. Discussion

From Section 4, extensive simulation results show that our approach achieves significantly
better performance compared with two learning and non-learning based approaches in terms of load
balancing, user payoff, switching rate, the overall bandwidth utilization efficiency, etc. It is also robust
against failures of terminal users: when they occasionally join or leave, the system can self-organize
quickly and adapt to a newly created environment. Our approach overcomes the defect of requiring
too much state information, and can handle the unpredictable dynamics of wireless network resources.
It can be well applicable for dynamic 5G network environments to make heterogeneous network
selection decisions.

The idea of the paper is inspired by some learning algorithms in literatures [33,34]. However the
application in wireless network environments has some shortcomings. Even though the switching rate
has been reduced to a relatively low level, there still exist some ping-pong effects due to the fact that
terminal users may switch among base stations when unnecessary. Therefore, one interesting direction
is to investigate eliminating the ping-pong effect and better improving QoS of users. Unfortunately,
the performance of power consumption cannot be simulated due to limited experiment conditions, but
it should be investigated in the next work. Additionally, future work should take into account more
complicating factors such as distance and mobility.

6. Conclusions

In this paper, an adaptive learning based approach is presented to tackle the network selection
problem with changing bandwidth in HetNet environments. We investigate the performance of
the algorithm under various conditions and parameters: the bandwidth of networks changes both
gradually and abruptly, the number of terminal users increases from less to more, and the requirements
of users also vary over time. The simulation results demonstrate that our approach enables a population
of terminal users to adapt effectively to the dynamics, which, on the whole, results in little overload
or underload. The system ideally converges to Nash equilibrium when there is no overload on any
base station, which is also Pareto optimal and socially optimal. Moreover, we compare our results
with two existing approaches and get significantly better performances. Finally, the robustness of our
proposed approach is examined, for which the system keeps desirable performances with up to 50%
non-compliant terminal users.
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