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In the last few decades, the algebraic coding theory found widespread applications in various disciplines due to its rich fascinating
mathematical structure. Linear codes, the basic codes in coding theory, are significant in data transmission. In this article, the
authors’ aim is to enlighten the reader about the role of linear codes in a fuzzy environment.(us, the reader will be aware of linear
codes over lattice valued intuitionistic fuzzy type-3 (LIF-3) R-submodule and α-intuitionistic fuzzy (α-IF) submodule. (e proof
that the level set of LIF-3 is contained in the level set of α-IF is given, and it is exclusively employed to define linear codes over α-IF
submodule. Further, α-IF cyclic codes are presented along with their fundamental properties. Finally, an application based on
genetic code is presented, and it is found that the technique of defining codes over α-IF submodule is entirely applicable in this
scenario. More specifically, a mapping from theZ64 module to a lattice L (comprising 64 codons) is considered, and α-IF codes are
defined along with the respective degrees.

1. Introduction

(e process of data hauling in the recent decades has been
significantly escalated. To widen the utility of commu-
nication networks, the employment of intricate technol-
ogies such as wavelength division multiplexing has been
enforced through the development in signal processing.
Due to these advancements, a dire obstacle of unreliability
in data transmission is faced; this may be impacted by the
means of transmission or any other reason. For the
maximum efficacy, there is an urge to control and process
the glitches with the assurance of data transmission. To
circumvent this problem, one may utilize the under-
standing of the rules to digitally interpret and store in-
formation. (e system of rules for digital data
transmission is known as a code. (e algorithm that
represents a sequence of numbers to detect and correct an
error is called an error-correcting code. Initially, codes are

defined over finite field F2, among which the binary codes
are the simplest. Say, in a binary field F2, two codewords
110 and 111 are considered; then, both codewords
comprise three bits. Now, when a message carrying 111 is
sent in binary coding, the received message should con-
tain 111 theoretically. Often, the transmission is cor-
rupted, and the received message could be carrying 110.
(is error can be corrected by understanding the coding
theory, and data transmission can be made more reliable
and accurate. Linear codes are the most basic error-
correcting codes which are the subspaces of a vector space.
(ese codes are crucial to data transmission and data
storage [1]. Just like vector spaces, codes are defined over
groups and applied in channel and source coding [2–4].

Now, when dealing with the data transmission, one
cannot always get crisp zeros and ones with data trans-
mission ambiguity being an often occurring scenario. (ere
may be plenty of reasons behind the emergence of
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uncertainty. (ese may be lack of knowledge, chance, im-
precision, lack of information, and complexity. (e im-
precision inherent in the process can be dealt with by using
fuzzy logic. Fuzzy sets (IF) are opposite to ordinary sets
(crisp sets). In crisp set theory, things are categorized by the
values 0 and 1, but the full membership and nonmembership
are determined in a fuzzy set. (is technique copes math-
ematically with the vagueness of determining boundaries by
assigning grades of membership to the elements. Fuzzy set
theory as a generalization of the classical set theory was
established by Zadeh [5] in which each element under
consideration is graded with a membership value ranging
between zero and one. For instance, a membership extent
μA(x) � 0.7 shows that x belongs to set A with the degree 0.7
on a scale whereas zero indicates that there is no mem-
bership and one suggests complete membership. He also
defined various properties of a fuzzy set such as union,
intersection, and complements. (is theory of fuzzy set was
proved to be more effective against ambiguity. Atanassov [6]
proposed the notion of an intuitionistic fuzzy set (IFS) which
is a generalized concept of the fuzzy set governed by in-
corporating the degree of nonmembership along with the
degree of membership. Goguen [7] discussed order structure
and L-fuzzy set which is the generalization of fuzzy subset X,
as a function from subset X to a lattice L. Atanassov and
Stoeva [8] proposed the definition of lattice valued intui-
tionistic fuzzy set (LIFS-1) where a complete lattice with a
unary operation N: L⟶ L is considered. Gerstenkorn and
Tepa v

⌣ cev _i [9] extended the concept formulated by Ata-
nassov and defined LIFS-2 by replacing unary operation
with unary operator N by a linearization function
ℓ: L⟶ [0, 1]. (e choice of linearization creates a prob-
lem; to overcome this drawback, it is replaced by Lattice
homomorphism α: L⟶ [0, 1], and it is said to be LIFS-3.

(e Fuzzy set is the most suitable framework to model
uncertain data which plays an important role in the data
transmission. (e vagueness in data transmission can be
handled by involving fuzzy theoretic concepts in coding
structures. Many researchers have worked on and proposed
significant results related to this field. Kaenel and Pierre [10]
considered n-dimensional vector space and defined fuzzy
codes which are fuzzy subsets of n-tuples over the field.
Hamming distance is also defined between two fuzzy
codewords. Hall and Dial [11] investigated whether the
distance between the fuzzy codeword and fuzzy subsets of n-
tuples depends on the dimension of the space and distance
between codewords which are non-fuzzy.

�S e �s elja and Tepav �c evi c
�
[12] introduced another

method of involving fuzzy theory in coding based on de-
fining a map A from a non-empty set S � 1, 2, . . . , n{ } to
partially ordered set P. S

⌣
e s

⌣ elja et al. [13] used the concept
and defined binary block codes over lattice valued fuzzy sets
(L-fuzzy sets). Z

⌣
i z

⌣ ovi _c and Lazarevi _c [14] discussed the
length and cardinality of block codes over L-fuzzy sets.
Amudhambigai and Neeraja [15] examined fuzzy codes and
defined some basic operations including fuzzy complement,
fuzzy intersection, and fuzzy union of fuzzy codes. Tsafack
et al. [16] considered the Galois ring. (ey presented fuzzy
linear codes and fuzzy cyclic codes. Shijina [17] investigated

the notion of multi-fuzzy code, which is defined as multi-
fuzzy subset of n-tuples over F, and proposed fundamental
properties of these codes. Hamming distance of multi-fuzzy
codes was also presented.

(e algebraic codes are also studied in various other
disciplines and have a wide range of applications in numerous
fields like data compression, cryptography, network pro-
cessing, and neuroscience. Considerable work relevant to
these fields has been done. Timm and Lapish [18] studied the
encoding of information in neuroscience. To understand
brain functions, it is important to know how a neural system
integrates, encodes, and computes information. Various
models were also analyzed to illustrate the strengths of the
information theory analysis. Dong and Li [19] considered the
linear network coding based qualitative communication and
proved its importance. Kong et al. [20] discussed Alamouti
code based on block repetition in FBMC/OQAM systems. A
novel block-wise Alamouti code, where a repeated block is
designed to remove the imaginary interference among
FBMC/OQAM symbols, was presented. Marani [21] exam-
ined G-invariant codes from primitive permutation repre-
sentations of Mathieu groups M24 and M23.

In this article, LIFS-3 codes over R-submodule are
defined. Module is a useful algebraic structure introduced
as an extensions of vector space where scalars are from the
arbitrary ring instead of a field. Fuzzy logic has significant
importance in the theory of modules and rings. Re-
markable work has been done by the researchers in this
field. Further, Negoita and Ralescu [22] presented the
concept of fuzzy modules. Many other researchers have
also worked in this field and studied fuzzy modules.
Zahedi [23] studied L-fuzzy modules. He also presented
basic operations on L-fuzzy modules such as addition and
intersection and proved some properties related to these
operations. Sharma [24] introduced the concept of an
intuitionistic fuzzy module over an intuitionistic fuzzy
ring. Sharma and Kanchan [25] in the continuation of this
research work on the intuitionistic L-fuzzy modules
discussed some important results related to the L-fuzzy
module and L-prime fuzzy module.

(is article is based on the construction of linear codes over
lattice valued intuitionistic fuzzy type-3 R-submodule. Already
existing fuzzy linear codes are defined overR-submodulewhich
involves only the degree of membership. Although fuzzy set
theory provides a convenient way to model uncertain data, in
some situations, these are notmore helpful whenwe need some
extra information along with a membership degree. Lattice
valued intuitionistic fuzzy sets which are the extension of fuzzy
sets provide an effective tool to study the case of vagueness and
have a significant role in various branches of mathematics such
as group theory and module theory. Linear codes defined over
lattice valued intuitionistic fuzzy type-3 R-submodule are more
efficient as compared to ordinary fuzzy linear code over
submodule because these involve both the degrees of be-
longingness and non-belongingness.

2. Preliminaries

In this section, some basic definitions will be discussed.
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2.1. Linear Codes. Let F be a finite field; then, Fn is an
n-dimensional vector space over F . A code C over F is simply
a subset of Fn. (e elements of code C are called the
codewords, and these codewords are represented as
(a1, a2, . . . , an). A code C is said to be linear code over field F
if u, v ∈ C; then, αu + βv ∈ C for all α, β ∈ C. (us, C is a
subspace of Fn. If F � Z2 � 0, 1{ } under addition and
multiplication modulo 2, then the code is said to be a binary
code, and if the code is linear, then it is called a binary linear
code. Let F be a finite field. A code C is called cyclic if the
cyclic shift of each codeword in C is also a member in C. Let
C be a code over F . (en, the corresponding dual code is
defined to be

C
⊥

� u ∈ F : u.v � 0,∀v ∈ C{ }. (1)

(us, the dual code consists of all the codewords that are
orthogonal to every codeword in C.

2.2. Lattice Order Set. A relation ϱ on a non-empty set is S is
a subset of S × S. If (x, y) belongs to a relation ϱ, this implies
x is related to y, or we can write it as xϱy. A relation on a set
S is said to be a partial order relation if it satisfies three
properties, that is, reflexive property (x≤ x, for allx ∈ X),
antisymmetric property (x≤y∧y≤x imply x � y), and
transitive property (x≤y∧y≤ z imply x≤ z).

Consider two non-empty sets A and B, where B is a
subset of A. An element a ∈ A is said to be the upper bound
of B provided that

b≤ a for all b ∈ B. (2)

In addition, the element a is said to be lower bound of set
B if

b≥ a for all b ∈ B. (3)

If U is the set of all upper bounds, then the least element
of this set is called a supremum or join (∨) and if L is the set
of all lower bounds, then the greatest element of set L is
called an infimum or meet (∧).

A set together with partial order is said to be a lattice if
every set of two elements have supremum and infimum.

2.3. Lattice Valued Intuitionistic Fuzzy Set. (e notion of
fuzzy set introduced by Zadeh [1] is an extension of an
ordinary set. Given universe S, a fuzzy set A is an ordered set
(element of universe, degree of that element).
Mathematically,

A � (x, μ(x)): x ∈ S . (4)

(e grade of membership indicates the confirmation of
an element that belongs to that set, but it does not give any
information about the element which does not belong to that
set. For this purpose, a generalization of the fuzzy set was
introduced. For a given universe S, an intuitionistic fuzzy set
is a triplet that consists of an element of universe, value of

membership of that element, and value of nonmembership
of that element. Mathematically, it can be represented as

A � 〈x, μ(x), ](x)〉: x ∈ S , (5)

with 0≤ μ(x) + ](x)≤ 1.
Let S be a non-empty set and L be a lattice. Consider

f: S⟶ L, g: S⟶ L, where f and g are membership and
nonmembership functions; then, a lattice valued intui-
tionistic fuzzy set of type-1 (LIFS-1) is the set (S, L, f, g, N),
whereN is an involutive order reversing unary operator on L

such that f(x)≤N(g(x)).
Let S be a non-empty set and L be a lattice. Consider

f: S⟶ L, g: S⟶ L; then, a lattice valued intuitionistic
fuzzy set of type-2 (LIFS-2) is the set (S, L, f, g, ℓ), where
ℓ: L⟶ [0, 1] is a linearization function satisfying
ℓ(f(x)) + ℓ(g(x)) ≤ 1.

Let S be a non-empty set and L be a complete lattice with
top element T and bottom element B. Consider f: S⟶ L,
g: S⟶ L which are membership and nonmembership
functions; then, a lattice valued intuitionistic fuzzy set of
type-3 (LIFS-3) is the set (S, L, f, g, α), where α: L⟶ [0, 1]

is a lattice homomorphism with α(T) � 1, α(B) � 0
satisfying

α ℓ1 ∧ ℓ2(  � α ℓ1( ∧α ℓ2( ,

α ℓ1 ∨ ℓ2(  � α ℓ1( ∨α ℓ2(  ∀ℓ1, ℓ2 ∈ L,
(6)

and α(f(s)) + α(g(s))≤ 1 for all s ∈ S.

2.4.R-Module. Ring theory is one of the extensions of group
theory that encompasses a broad set of present study topics
in mathematics, computer science, and mathematical/the-
oretical physics. (ey have a wide range of applications in
the studies of geometric objects and topology, and their
connections to other fields of algebra are quite well un-
derstood in several contexts. A ring R is a set equipped with
two binary operations, namely, addition + and multiplica-
tion · and satisfying the following axioms:

(1) (R, +) is an Abelian group.
(2) (R, ·)⟶ is a semigroup.
(3) Multiplication is distributive over addition; that is,

a · (b + c) � a · b + a · c and (b + c) · a � b · a + c · a

for all a, b, c ∈ R.

(e ring R is called commutative if a · b � b · a for all
a, b ∈ R. Consider a commutative ring R. An R-module is a
set M together with a binary operation addition ‘⊕’ and
scalar multiplication ‘∗ ’, where ∗: R × M⟶M; then, for
all r, s ∈ R, a, b ∈M, we have the following:

(1) r(a⊕ b) � ra⊕rb.
(2) (r⊕ s)a � ra⊕sa.
(3) (rs)∗ a � r(s∗ a).
(4) 1Ra � a where 1R is the multiplication identity of the

ring R.

Let R � Zpk be a ring; then, Zn
pk is an R-module.
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3. Lattice Valued Intuitionistic Fuzzy
Type-3 R-Submodule

If A � (M, f, g, L, α) is a lattice valued intuitionistic fuzzy
subset of type-3, where f: M⟶ L and g: M⟶ L, thenA

is called an LIF-3 submodule of M if for r ∈ R and a, b ∈M

we have the following:

(1) f(a + b)≥f(a)∧f(b).
(2) f(r.a)≥f(a).
(3) g(a + b)≤g(a)∨g(b).
(4) g(r.a)≤g(a).

Let fα, gα: M⟶ [0, 1] be two composition functions,
where fα � αof and gα � αog. (en, A � (M, fα, gα) is
called an α-intuitionistic fuzzy (α-IF) submodule if for r ∈ R

and x, y ∈M we have the following:

(1) fα(x + y)≥fα(x)∧fα(y).
(2) fα(r.y)≥fα(x).
(3) gα(x + y)≤gα(x)∨gα(y).
(4) gα(r.y)≤gα(x).

Remark 1. If A � (M, f, g, L, α) is an LIF-3 submodule, then

f(0)≥f(x),

g(0)≤g(x).
(7)

Moreover, if A � (M, fα, gα) is an α-IF submodule, then

fα(0)≥fα(x),

gα(0)≤gα(x).
(8)

Proposition 1. Let A � (M, f, g, L, α) be an LIF-3 sub-
module. 8en, the necessary and sufficient conditions for A to
be an R -module are as follows:

(1) f(k1x + k2y)≥f(x)∧f(y),
(2) g(k1x + k2y)≤g(x)∨g(y),

∀x, y ∈M and k1, k2 ∈ R.

Definition 1. An LIF-3 submodule A � (M, f, g, L, α) of a
ring R is called an LIF-3 ideal if for each x, y ∈ R,

(1) f(x − y)≥f(x)∧f(y).
(2) f(x.y)≥f(x)∨f(y).
(3) g(x − y)≤g(x)∨g(y).
(4) g(x.y)≥g(x)∧g(y).

Definition 2. Let A � (M, f, g, L, α) be an LIF-3 submodule;
then, the level sets are defined as

Al1l2
� m ∈M: f(m)≥ l1, g(m)≤ l2 . (9)

In a similar fashion, we can define level sets for an α -IF
submodule A � (M, fα, gα) as follows:

At1t2
� m ∈M: fα(m)≥ t1, gα(m)≤ t2 . (10)

We can also write that

fαt1
� m ∈M: fα(m)≥ t1 ,

gαt2
� m ∈M: gα(m)≥ t2 .

(11)

3.1. LIF-3 Codes overModules. If we consider a module M �

Zn
pk which is a Zpk-module, then an LIF-3 submodule A of

M is termed as an LIF-3 linear code having length n over
Zpk .

Proposition 2. Let A � (M, f, g, L, α) be an LIF-3 sub-
module and A � (M, fα, gα) be an α -IF submodule. Let Al1l2

and At1t2
be the level sets for A and A , where α(l1) � t1 and

α(l2) � t2 . 8en, Al1l2
⊆At1t2

.

Proof. Let Al1l2
and At1t2

be two level sets for A and A. Let
m ∈ Al1l2

; then, f(m)≥ l1 and g(m)≤ l2 imply that
fα(m)≥ α(l1) and gα(m)≤ α(l2), where α(l1), α(l2) ∈ [0, 1].
From this, we get that m ∈ Aα(l1)α(l2). (us, Al1l2

⊆Aα(l1)α(l2).
Let α(l1) � t1 and α(l2) � t2; then, Al1l2

⊆At1t2
.

From the above proposition, we have concluded that the
level set of LIF-3 submodule is contained in α-IF submodule,
so we will use α-IF submodule for further discussion of
codes. Let us consider a module M � Zn

pk which is a Zpk

module, and let A � (M, fα, gα) be an α-IF submodule;
then, A is said to be an α-IF linear code of length n over the
module Zpk . □

Example 1. Consider Z4 -module and lattice L � 0, 1, a, b,{

c, d, } having 0, 1 as bottom and top elements with a≤ c, a≤ d,
and b≤ c . Letf, g: Z4⟶ L and α: L⟶ [0, 1] be defined as

f �
0 1 2 3

1 a b c
 ,

g �
0 1 2 3

0 c d a
 .

(12)

Let α(0) � α(b) � 0, α(a) � 0.2 � α(c), and
α(d) �α(1) � 1. (en, A � (M, fα, gα) is an α -IF Z4
module; therefore, A is an α -IF linear code.

Definition 3. Consider an α-IF submodule A � (M, fα, gα);
then, the number of the elements mapped in to the same
element, say, t ∈ [0, 1], is said to be the degree of that ele-
ment t and it is denoted by pt. In example 1, p0 � 2, p1 � 2,
p0.2 � 2.

Proposition 3. Consider an α -IF submodule A �

(M, fα, gα); A is an α -IF linear code overZpk iff At1t2
≠ϕ are

linear codes.
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Definition 4. Let A be an α-IF submodule and k be non-
empty subset of A. (e α-IF characteristic function of k is
denoted by χk � 〈fαχk

, gαχk
〉, where fαχk

, gαχk
: M⟶ [0, 1];

then,

fαχk
(x) �

1, if x ∈ k;

0, if x ∉ k,

⎧⎨

⎩

gαχk
(x) �

0, if x ∈ k;

1, if x ∉ k.

⎧⎨

⎩

(13)

Theorem 1. Let C be a subset of an α -IF submodule Zn
pk ;

then,C is an α -IF linear code overZpk iff χC forC is an α -IF
linear code over the same ring Zpk .

Proof. Let C be a linear code implying that C is an α-IF
submodule. Now, if x, y ∈ C, then by Definition 4 of χC, we
have

fαχC
(x) � 1 � fαχC

(y),

gαχC
(x) � 0 � gαχC

(y).
(14)

As C is an α-IF submodule, then x + y, r.x ∈ C and for
all r ∈ R imply that fαχC

(x + y) � 1 � 1∧1 � fαχC
(x)∧

fαχC
(y) and fαχC

(r.x) � 1 � fαχC
(x). Similarly, gαχC

(x +

y)≤gαχC
(x)∨gαχC

(y) and gαχC
(r.x)≤gαχC

(x). (us, the χC

of C is an α-IF submodule; hence, it is an α-IF linear code.
Conversely, suppose that the χC be a linear code; hence, it

is an α-IF submodule. Let x, y ∈ C; then, by Definition 4,

fαχC
(x) � 1 � fαχC

(y),

gαχC
(x) � 0 � gαχC

(x),
(15)

imply that fαχC
(x + y)≥fαχC

(x)∧fαχC
(y) � 1∧1 � 1

and fαχC
(r.x) ≥fαχC

(x) � 1. Similarly, gαχC
(x + y)≤

gαχC
(x)∨gαχC

(y) � 0∨0 � 0 and gαχC
(r.x)≥gαχC

(x) � 0;
hence, x + y, r.x ∈ C; thus,C is an α-IF submodule, soC is
an α-IF linear code. □

Proposition 4. Let A be an α -IFS ofZn
pk . A is an α -IF linear

code over Zpk iff χ
At1t2

is an α -IF linear code.

Definition 5. Let A � (M, fα, gα) be an α -IF fuzzy sub-
module; then, A is also a linear code such that for t1, t2 ∈
[0, 1], fα(x) � t1 and gα(x) � t2; then, A is said to be a
trivial α -IF linear code.

Definition 6. Let M � Zn
pk be a module over the ring Zpk .

8en, two α -IF submodules A � (M, fα, gα) and B �

(M, fα′, gα′) are said to be orthogonal if

Im fα′(  � 1 − m: m ∈ Im fα(  ,

Im gα′(  � 1 − m′: m′∈ Im gα(  .
(16)

Furthermore, for all t1, t2 ∈ [0, 1], we have

fα1−t1
� fαt1

 
T

� b ∈M|〈a, b〉 � 0, for all a ∈ fαt1
 ,

gα1−t2
′ � gαt2

 
T

� b ∈M: 〈a, b〉 � 0 for all a ∈ gαt2
 ,

(17)

where 〈·, ·〉 is the inner product on module M.

Example 2. Let A, B: Z4⟶ [0, 1] be two α -IF submodules
which are defined as

fα �
0 1 2 3

0.5 0.25 0.33 0.25
 ,

gα �
0 1 2 3

0.125 0.33 0.2 0.33
 ,

(18)

and

fα′ �
0 1 2 3

0.75 0.2 0.67 0.5
 ,

gα′ �
0 1 2 3

0.67 0.875 0.8 0.875
 .

(19)

As fαt1
� a ∈M: fα(a)≥ t1 , we can compute the values

fαt1
for t1 ∈ [0, 1].

fα0.5
� a ∈M: fα(a)≥ 0.5 

� 0{ },

fα0.25
� a ∈M: fα(a)≥ 0.25 

� 0, 1, 2, 3{ }

� Z4,

fα0.33
� a ∈M: fα(a)≥ 0.33 

� 0, 2{ }.

(20)

Similarly, the remaining values given in Table 1 and2 can
be obtained from the definition of level set.

Hence, A is orthogonal to B. We have shown the or-
thogonality of two sets, but under some conditions, the two
sets are not orthogonal. (is can be verified through the
following remark.

Remark 2. Let M be Zpk module and A, B be two α -IF
submodules. If for all w ∈M, fα(w) � r or gα(w) � r, where
r ∈ [0, 1], then set A is not orthogonal to set B.

Remark 3. Let A � (M, fα, gα) be an α -IF submodule, so A

is a linear code over Zpk having length n. Consider sets

im fα(  � fα(x)|x ∈ Zn
pk ,

im gα(  � fα(x)|x ∈ Zn
pk .

(21)
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As the setZn
pk is finite, im(fα) and im(gα) are also finite.

Consider an order t1 ≥ t2 ≥ · · · ≥ tr ; then, the set im(fα)

satisfies this order. Similarly, suppose t1′ ≤ t2′ ≤ . . . ≤ tr
′ and

this order is satisfied by im(gα). At1t2
is a level set which is a

linear code, where the generator matrix for this linear code is
given by Gtjtj

′ . Hence, A can be obtained from the matrices
Gt1t1′

, Gt2t2′
, . . . , Gtrtr

′.

Theorem 2. Let M � Zn
pk be a finite module and A �

(M, fα, gα) be an α -IF submodule of M . 8en, there is an α
-IF submodule B � (M, fα′, gα′) such that A is orthogonal to B

if and only if |Im(fα)|, |Im(gα)|> 1, and for any r ∈ Im(fα),
there exists an element η ∈ Im(fα) with fαr � (fαη)T. Sim-
ilarly, for any element p ∈ Im(gα), there exist ∈ Im(gα) such
that gαp � (gα)T.

Proof. Let M be a module and A � (M, fα, gα) be an α-IF
submodule of M. Suppose that |Im(fα)| � s> 1 and
|Im(gα)| � k> 1 and for any element r ∈ Im(fα) there is an
element η ∈ Im(fα) such that fαr � (fαη)T. Moreover, for
any element p ∈ Im(gα), there exists an element ∈ Im(gα)

such that gαp � (gα)T.Now, consider an order for Im(fα)

and Im(gα) as

Im fα(  � t1 ≥ t2 ≥ · · · ≥ tm( ,

Im gα(  � t1′ ≤ t2′ ≤ · · · ≤ tm
′( .

(22)

By using these compositions, we can also define sets
which form partition of module M as

Mj � a ∈M: fα(a) � tj ,

Mj � a ∈M: gα(a) � tj
′ ,

(23)

where j � 1, . . . , m. Now, if we define an α-IF set
B � (M, fα′, gα′), where fα′, gα′: M⟶ [0, 1], then for
a ∈M, we have fα′(a) � 1 − tm−j+1 and gα′(a) � 1 − tm−j+1′ .

As we know, Im(fα) � t1 ≥ t2 ≥ · · · ≥ tm  imply that
fαt1
⊆fαt2
⊆ · · ·⊆fαtm

. Similarly, for Im(gα) � t1′ ≤ t2′ ≤

· · · ∈≤ tm
′}, we have gαtm

⊆ · · ·⊆gαt2
⊆gαtm

. As for any element

r ∈ Im(fα), there is an element η ∈ Im(α°f) such that
fαr � (α°fη)T. Similarly, for any p ∈ Im(gα), there is an
element ∈ Im(gα) such that gαp � (gα)T, as in finite module
there is a property related to orthogonality by which
fαtj

� (fαtm−j+1
)T. Accordingly, we have fα1−tm−j+1

′� a ∈M:{

fα′(a)≥1− tm−j+1} � MjUMj−1U · · · UM1 � fαtj
� (fαtm−j+1

)T.
Furthermore, gαtj

′ � (gαtm− j+1′
)T and gα1−tm−j+1′

′� a ∈M:{

gα′(a)≥1− tm−j+1′} � M1U . . .UMj−1UMj � gαtj
� (gαtm−j+1′

)T.
(us, B � (M,fα′,gα′) is an α-IF submodule.

Conversely, suppose that A � (M, fα, gα) and
B � (M, fα′, gα′) be two α-IF submodules such that these two
sets are orthogonal to each other; then, we have |Im(fα)|> 1
and |Im(gα)|> 1. For all t, t′ ∈ [0, 1], we also have fα1−t1

′ �
(fαt)

T and gα1−t1′
′ � (gαt
′)T; then, for any element

r ∈ Im(fα), there exist η ∈ Im(fα) such that fαr � (fαη)T,
and for any element p ∈ Im(gα), there exist ∈ Im(gα) such
that gαp � (gα)T; this is due to the reason that im(fα)′ �
1 − t: t ∈ fα  and im(gα′) � 1 − t′: t′ ∈ gα . □

Theorem 3. Suppose that A � (M, fα, gα), B � (M, fα′, gα′) ,
and C � (M, fα″, gα″) be three α -IF fuzzy submodules of a
module M such that A is orthogonal to B and B is orthogonal
to C ; then, B � C.

Proof. Let A � (M, fα, gα), B � (M, fα′, gα′), and
C � (M, fα″, gα″) be three α-IF fuzzy submodules of a
moduleM such thatA is orthogonal to B and B is orthogonal
to C. Let b ∈ fα1−t

′ , for t ∈ [0, 1]. (en, for a ∈ fαt
, 〈a, b〉 � 0.

B is orthogonal to C, which implies that b ∈ fα1−t
″ . (us,

fα1−t
′ ⊆fα1−t
″ . (erefore, fαt

″⊆fαt
′. By following the same

strategy, we get fαt
′⊆fαt
″.(us, fα′ � fα″. In a similar manner,

we can show that gα′ � gα″. Hence, B � C. □

Corollary 1. Let M be a finite Zpk module and A �

(M, fα, gα) be an α -IF submodule of M ; if there exists α -IFS

Table 1: Values of orthogonal set for membership.

t1 fαt1
fα1−t1

(fαt1
)T

0.5 0{ } Z4 Z4
0.25 Z4 0{ } 0{ }

0.33 0, 2{ } 0, 2{ } 0, 2{ }

0.25 Z4 0{ } 0{ }

Table 2: Values of orthogonal set for nonmembership.

t2 gαt2
gα1−t2

(gαt2
)T

0.125 0{ } Z4 Z4
0.33 Z4 0{ } 0{ }

0.2 0, 2{ } 0, 2{ } 0, 2{ }

0.33 Z4 0{ } 0{ }
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B � (M, fα′, gα′) such that B is orthogonal to the submodule A,
then B is an α -IF submodule of module M.

Definition 7. Consider two α -IF linear codes A � (M,

fα, gα) and B � (M, fα′, gα′) ; then, these two α -IF codes are
said to be equivalent if the level sets At1t2

and Bt1t2
(which are

also linear codes) for A and B are equivalent.

3.2. α-IFCyclicCodes. Cyclic codes have long since been one
of the most interesting families of codes because of their rich
algebraic structure, and these codes play an important role in
coding theory. In this section, we will discuss α-IF cyclic
codes and some important results related to these codes.

Definition 8. Consider an α -IF submodule A � (M, fα, gα)

of module Zn
pk ; then, A is called an α -IF cyclic code having

length n overZpk if for each (w0, w1, . . . , wn−1) ∈ Zn
pk we have

fα wn−1, w0, . . . , wn−2( ≥fα w0, w1, . . . , wn−1( ,

gα wn−1, w0, . . . , wn−2( ≤gα w0, w1, . . . , wn−1( .
(24)

Proposition 5. 8e α -IF submodule A � (M, fα, gα) is an α
-IF cyclic code overZpk if and only if At1t2

≠∅ are cyclic codes
over Zpk .

Proof. LetA � (M, fα, gα) be an α-IF submodule and A be a
cyclic code if At1t2

is non-empty; then, for any (wi) ∈ At1t2
,

where i � 0, 1, . . . , n − 1 we have

fα w0, w1, . . . , wn−1( ≥ t1,

gα w0, w1, . . . , wn−1( ≤ t2.
(25)

As A is a cyclic code, we have

fα wn−1, w0, . . . , wn−2( ≥fα w0, w1, . . . , wn−1( ≥ t1,

gα wn−1, w0, . . . , wn−2( ≤gα w0, w1, . . . , wn−1( ≥ t2,
(26)

which imply that (wn−1, w0, . . . , wn−2) ∈ At1t2
. (us, At1t2

is cyclic code.
Conversely, suppose that At1t2

≠ ϕ and At1t2
is a cyclic

code. If A is not a cyclic code, then there is an element
(w0, w1, . . . , wn−1) ∈ Zn

pk such that fα(wn−1, w0, . . . , wn−2)

<fα(w0, w1, . . . , wn−1). Suppose t1′ � fα(w0, w1, . . . , wn−1).
Similarly, t2′ � gα(w0, w1, . . . , wn−1) imply that
(w0, w1, . . . , wn−1) ∈ At1′t2′

; thus, At1′t2′
≠ ϕ is a cyclic code but

(wn−1, w0, . . . , wn−2) ∉ At1′t2′
, which is a contradiction, so A is

a cyclic code. □

Proposition 6. Let Zn
pk be a module and A � (M, fα, gα) be

an α -IF submodule. A is an α -IF cyclic code on moduleZn
pk if

and only if the characteristic function of a level set At1t2
is an α

-IF cyclic code on Zn
pk .

Proposition 7. Consider a module Zn
pk ; then,

A � (M, fα, gα) is an α -IF cyclic code on module Zn
pk if and

only if for each (w0, w1, . . . , wn−1) ∈ Zn
pk we have

fα w0, w1, . . . , wn−1(  � fα wn−1, w0, . . . , wn−2( 

� · · ·

� fα w1, w2, . . . , wn−1, w0( ,

gα w0, w1, . . . , wn−1(  � gα wn−1, w0, . . . , wn−2( 

� · · ·

� gα w1, w2, . . . , wn−1, w0( .

(27)

Proof. Let Zn
pk be a module and A � (M, fα, gα) be an α-IF

cyclic code on module Zn
pk ; then, we have

fα w0, w1, . . . , wn−1( ≥fα wn−1, w0, . . . , wn−2( ≥ · · ·

≥fα w1, w2, . . . , wn−1, w0( 

≥fα w0, w1, . . . , wn−1( ,

gα w0, w1, . . . , wn−1( ≤gα wn−1, w0, . . . , wn−2( ≤ · · ·

≤gα w1, w2, . . . , wn−1, w0( 

≤gα w0, w1, . . . , wn−1( .

(28)

(us,

fα w0, w1, . . . , wn−1(  � fα wn−1, w0, . . . , wn−2( 

� · · ·

� fα w1, w2, . . . , wn−1, w0( 

� fα w0, w1, . . . , wn−1( ,

gα w0, w1, . . . , wn−1(  � gα wn−1, w0, . . . , wn−2( 

� · · ·

� gα x1, w2, . . . , wn−1, w0( 

� gα w0, w1, . . . , wn−1( .

(29)

Conversely, suppose that the above equality holds for fα
and gα; then, by Definition 8, A is an α-IF cyclic code. □

Theorem 4. Consider two α -IF cyclic codes A and B ; then,
we have the following:

(1) A∩B is an α -IF cyclic code.
(2) A + B is an α -IF cyclic code.
(3) AB is an α -IF cyclic code.

Proof

(1) Let A � (M, fα, gα) and B � (M, fα′, gα′) be two α-IF
modules of module Zn

pk such that A and B are α-IF
cyclic codes corresponding to α-IF modules. (en,
for (w0, w1, . . . , wn−1) ∈ Zn

pk ,
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fα ∩fα′ wn−1, w0, . . . , wn−2( ( 

� min
fα wn−1, w0, . . . , wn−2( ( ,

fα′ wn−1, w0, . . . , wn−2( ( 
 

≥min fα w0, w1, . . . , wn−1( ( , fα′ w0, w1, . . . , wn−1( (  

� fα w0, w1, . . . , wn−1( ( ∩fα′ w0, w1, . . . , wn−1( ( .

(30)

In a similar manner, we have

gα ∩gα′ w0, w1, . . . , wn−1( ( ≤gα w0, w1, . . . , wn−1( ( 

∩gα′ w0, w1, . . . , wn−1( ( .

(31)

By taking intersection of two α-IF modules, we get again
an α-IF module; thus, A∩B is an α-IF cyclic code.

(2) Now, for (w0, w1, . . . , wn−1) ∈ Zn
pk ,

fα + fα′(  wn−1, . . . , wn−2( 

� maxj minyj+zj�wj
fα yn−1, . . . , yn−2( , fα′ zn−1, . . . , zn−2(   

≥max min fα y0, y1, . . . , yn−1( , fα′ zn−1, z0, . . . , zn−1(   

� fα + fα′(  w0, w1, . . . , wn−1( ( .

(32)

Similarly, we can show (gα + gα′)(wn−1, w0,

. . . , wn−2)≤ (gα + gα′)(w0, w1, . . . , wn−1). (us,
A + B is an α-IF cyclic code.

(3) Proof follows from (2). □

Proposition 8. If Zn
pk is a module, then A is said to be an α

-IF cyclic code iff the non-empty level sets At1t2
are α -IF ideals

of the factor ring (Zpk [X]/(Xn − 1)).

Proof. Consider a module Zn
pk and a factor ring (Zpk [X]/

(Xn − 1)). Define a mapping as ϕ: Zn
pk⟶ (Zpk [X]/

(Xn − 1)) which is also an isomorphism. Let
b � (b0, b1, . . . , bn−1) ∈ Zn

pk such that ϕ(b) � 
m−1
j�0 bjX

j.
Suppose that A be an α-IF cyclic code; this implies that

At1t2
≠∅ is an α-IF cyclic code over Zpk . Cyclic codes are

ideals in factor ring, which implies that At1t2
is ideal of factor

ring.
Conversely, suppose that for t1, t2 ∈ [0, 1], the set At1t2

is
non-empty; At1t2

being an ideal of a factor ring implies that
At1t2

is a submodule. (us, the level set At1t2
is a linear code

implying the linearity of A. If we define mapping ϕ, then the
level set At1t2

is an α-IF cyclic code; thus, A is an α-IF cyclic
code over ring Zpk .

As Zpk is a finite ring and if A � (M, fα, gα) is a sub-
module, then im(fα) and im(gα) are also finite; then, we
have At1t1′

⊆At2t2′
⊆ · · ·⊆Atr−1tr−1′

⊆At2t2′
� Zn

pk . Suppose gk
j(X) ∈

Zpk [X] is the generator polynomial for Atiti
′; then,

gk
j+1(X)/gk

j(X), j � 1, . . . , r − 1. □

Theorem 5. Let S � gk
1(X), gk

2(X), . . . , gk
r(X)  be a set of

polynomials such that the polynomial gj(X) divides Xn − 1
for each j � 1, . . . , r . If gk

j+1(X)|gk
j(X) for j � 1, 2, . . . , r − 1

and Zn
pk � gk

j+1(X) , then the set of polynomials determines
an α -IF cyclic code A , where gk

j(X) is the collection of level
cut cyclic subcodes of A.

Proof. Proof follows from Proposition 8. □

3.3. IF Gray Map. (e gray code, which is also called re-
flected binary code, is an ordering of the binary numeral
system such that two successive values vary in a single bit.
We will define α-IF gray code by using the compositions fα
and gα. Consider a map η: Z22⟶ Z2

2; then, η is called a
gray map defined as η(0) � 00, η(1) � 01, η(2) � 11,
η(3) � 10.

Definition 9. Consider a mapping η: Z22⟶ Z2
2 which is a

gray map. Suppose that S(Z22) and S(Z2
2) be two α -IF fuzzy

subsets of Z22 and Z2
2 . For fα, gα ∈ S(Z22) , an α -IF gray

map η∗: S(Z22)⟶ S(Z2
2) is defined as

η∗ fα∧gα( (b) � sup fα∧gαa|b � η(a) . (33)

Example 3. Consider two mappings fα, gα: Z4⟶ [0, 1]

defined as follows:

fα �
0 1 2 3

1 0.4 0.4 0.4
 ,

gα �
0 1 2 3

0 0.3 0.3 0.3
 .

(34)

By definition, we have

η∗ fα∧gα( (b) � sup fα∧gαa|b � η(a) . (35)

Now, for a � 0,

η∗ fα∧gα( (b) � sup fα∧gα0|b � η(0) 

η∗ fα∧gα( (00) � sup fα∧gα0|00 � η(0) 

� sup fα(0)∧gα(0)|00 � η(0) 

� sup 1∧0{ }

� 0.

(36)

(e values for α-IF gray map corresponding to these
mappings are given in Table 3.

Table 3: Values of gray map and α-IF gray map.

(η(a) � b) (η∗(fα∧gα)(b))

00 0
01 0.3
11 0.3
10 0.3
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Now, we consider generalizing fuzzy gray map which is a
mapping from Zpk to Z

pk− 1

p . Using this map, an α-IF gen-
eralized gray map can be defined.

Definition 10. A mapping η∗: S(Zpk )⟶ S(Z
pk− 1

p ) is said to
be an α -IF generalized gray map if for any fα, gα ∈ S(Zpk )

we have

η∗ fα∧gα( (b) �
fα∧gα( a, if b � η(a);

0, otherwise.
 (37)

Definition 11. If A is an α -IF code overZpk , then it is said to
be an α -IF Zpk -linear code if it is an image under the α -IF
generalized gray map of a linear code over Zpk .

Definition 12. Consider an α -IF code C ; then, it is an α -IF
Zpk cyclic code if C is an α -IFZpk -linear code and also if it is
the image under the α -IF generalized gray map of a cyclic
code over Zpk .

Example 4. Consider mappings fα, gα: Z6
2⟶ [0, 1] where

fα x0, x1, x2, x3, x4, x5(  �
1, if x4 � x5 � 0;

0, otherwise,
 (38)

and

gα x0, x1, x2, x3, x4, x5(  �
0, if x4 � x5 � 0;

1, otherwise.
 (39)

Then, C � (M, fα, gα) is an α -IF linear code having
length six over Z2 . Now, if we consider another code where
fα, gα: Z3

4⟶ [0, 1] defined asfα′(x0, x1, x2) �

1, if x2 � 0;

0, otherwise, and gα′(x0, x1, x2) �
0, if x2 � 0;

1, otherwise;

then, C � (M, fα, gα) is an α -IF linear code having length 3
over Z4.

Theorem 6. An α -IF gray map η∗ is a bijective map.

Proof. (is is due to the fact that η∗ is a one-to-one
function. □

3.4. ErrorCorrection. (e coding theory deals with encoding
and decoding a message. During transmission of data, errors
may occur; they can be detected and corrected by using
different procedures such as parity check, syndrome
decoding, and redundancy check which are for ordinary
codes. Similarly, a method can be adopted in fuzzy codes for
the confirmation about the codeword, that is, whether it
belongs to the transmitted code or not. (is can be done by
considering the level set from which one can determine the
confirmation degree as to whether a received codeword
belongs to the original code. (is method can be explained
through the following example.

Example 5. Consider a module Z4
2 , where

Z
4
2 � 0000, 1000, 0100, 0010, 0001, 1100, 1010, 1001, 0101, 0110, 0011, 1011, 1101, 1110, 0111, 111{ }. (40)

Let A � (M, fα, gα) be an α-IF submodule where
fα, gα: Z4

2⟶ [0, 1] and

C � 0000, 0001, 0010, 1100, 0011, 1101, 1110, 1111{ }, (41)

which is a subset of Z4
2 and also a linear code. Now, by

transmitting this code, the received codeword has errors;
assume that the received codewords are 000; .01, 010;{

0.001, 011; 0.01, 100; 0.1, 101; 0.01, 110; 0.1, 001; 0.01, 111;

0.999}.
Table 4 shows the values of fα, gα corresponding to the

codewords of code C.
(e level set is defined as At1t2

� a ∈M: α{

of (a)≥ t1, αog(a)≤ t2}; from this, we get for t1 > 0.9 and
t2 ≤ 0.01 that the received codeword is in C.

3.5. Application

3.5.1. Sphere in α-IF Linear Code. Suppose Zm
pk be a module

and A � (M, fα, gα) be an α-IF submodule. If C is an α-IF
linear code, then the level setCt1t2

ofC is also an α-IF linear
code. As the elements in Zm

pk are the words of length m over
the alphabet 0, 1, 2, . . . , pk − 1  and the level set Ct1t2

also
consists of the elements of Zm

pk , then for a member a ∈ Ct1t2
and for any integer r≥ 0, the sphere of radius r and center a

is defined as follows.

Theorem 7. Consider a module M � Zm
pk ; then, the sphere

having radius r(where 0≤ r≤m)) contains

Table 4: Recovering of codewords

a fα gα a fα gα a fα gα a fα gα

0000 1 0 1000 0.9 0.1 0100 0.9 0.1 0010 0.99 0.01
0001 0.99 0.01 1100 0.99 0.01 1010 0.9 0.1 1001 0.9 0.1
0101 0.9 0.1 0110 0.9 0.1 0011 0.99 0.01 1011 0.9 0.1
1101 0.99 0.01 1110 0.99 0.01 0111 0.9 0.1 1111 0.99 0.01
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Table 5: Codons along with their respective degrees.

a f(a) g(a) a(f(a))
0 UUU AAA 1
1 UCU AGA 0.35
2 UUG CAA 0.4
3 UCG AGC 0.3
4 GGU AAC 0.4
5 GCU CGA 0.3
6 UUC GAA 0.35
7 UCC AGG 0.28
8 GUG CAC 0.35
9 GCG CGC 0.28
10 CUU AAG 0.35
11 CCU GGA 0.28
12 UUA UAA 0.3
13 UCA AGU 0.28
14 GUC GAC 0.3
15 GCC CGG 0.25
16 CUG CAG 0.3
17 CCG GGC 0.25
18 AUU AAU 0.3
19 ACU UGA 0.25
20 GUA UAC 0.28
21 GCA CGU 0.2
22 CUC GAG 0.28
23 CCC GGG 0.2
24 AUG CAU 0.28
25 ACG UGC 0.2
26 CUA UAG 0.25
27 CCA GGU 0.35
28 AUC GAU 0.25
29 ACC UGG 0.15
30 AUA UAU 0.25
31 ACA UGU 0.1
32 UGU ACA 0.4
33 UAU AUA 0.3
34 UGG ACC 0.35
35 UAG AUC 0.28
36 GGU CCA 0.35
37 GAU CUA 0.28
38 UGC ACG 0.3
39 UAC AUG 0.25
40 GGG CCC 0.3
41 GAG CUC 0.25
42 CGU GCA 0.3
43 CAU GUA 0.25
44 UGA ACU 0.28
45 UAA AUU 0.28
46 GGC CCG 0.28
47 GAC CUG 0.28
48 CGG GCC 0.28
49 CAG GUC 0.28
50 AGU UCA 0.28
51 AAU UUA 0.28
52 GGA CCU 0.25
53 GAA CUU 0.2
54 CGC GCG 0.25
55 CAC GUG 0.2
56 AGG UCC 0.25
57 AAG UUC 0.2
58 CGA GCU 0.2
59 CAA GUU 0.15
60 AGC UCG 0.2
61 ACC UUG 0.15
62 AGA UCU 0.15
63 AAA UUU 0
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words.

Proof. Consider a moduleZm
pk . Let x be a fixed word inZm

pk .
(en, the number of the words which differ from x in m

position is m

w
 (pk − 1)w. □

Example 6. Let M � Z2
2 , where Z

2
2 � 00, 01, 10, 11{ } . Here,

k � 1, p � 2, m � 2 , and 0≤ r≤ 2 . If we take a word x � 10 ,
then its distances from the remaining codewords are
d(10, 00) � 1, d(10, 01) � 2, d(10, 11) � 1 , and the sum of

these distances is equal to 4. Now, 2
0 +

2
1 (2 − 1) +

2
2 (2 − 1)2 � 1 + 2 + 1 � 4, which is also equal to 4.

3.6. Genetic Code withModuleZ64. Amino acid sequence of
a protein can be determined from the sequence or order of
DNA and RNA molecules [26]. Although the information
about protein sequence is found in the sequence of nu-
cleotides in DNA, we cannot say that the proteins formed
directly from the DNA. RNAmolecules are also involved in
the formation of proteins. RNA is composed of four bases
which are adenine (A), guanine (G), cytosine (C), and
uracil (U). One unit is formed from the three adjacent bases
which are called a codon which codes for an amino acid.
For instance, the amino acid methionine is encoded by the
codon AUG. (ere are 64 codons; 20 amino acids are
specified by the 61 codons that make up proteins. (e
remaining three codons do not code for any amino acid.

(ere is another important aspect related to genetic code
which is the algebraic structure of a genetic code from which
some important information can be obtained [27]. Many
scientists [28, 29] have studied the algebraic structure of co-
dons. (ey explore various methods to model the genetic code
mathematically and use binary representation for the four
bases. Nemzer [30] established binary representation of genetic
codes. Press et al. [31] described the HEDGES (Hash Encoded,
Decoded by Greedy Exhaustive Search) error-correcting code
to repair basic DNA errors. Rocha et al. [32] analyzed the DNA
sequence generated by linear codes over the ringZ4. Bennenni

et al. [33], Dinh et al. [34], and Gowthaman et al. [35] in-
vestigated DNA cyclic codes over rings.

In the presented study, codon structure is investigated by
involving the lattice structure of codons along with module
over a ring. As there are 64 possible codons, we take Z64
module. From this, we conclude that α-IF submodule with
module Z64 is a linear code. Consider a module M � Z64
and let fα, gα: Z64⟶ [0, 1]. Suppose f, g: Z64⟶ L

where L is a lattice consisting of 64 codons; the values for
these functions and their composition are shown in Table 5.
Here, A � (M, fα, gα) is an α-IF submodule so it is an α-IF
linear code. We will use the following methodology.

Consider the lattice L comprises 64 codons and a module
Z64 � 0, 1, . . . , 63{ } which also consists of 64 elements. Let
a � 0 ∈ Z64; we know that f, g: Z64⟶ L. (en,
f(0) � UUU, g(0) � AAA, which are top and bottom ele-
ments of the lattice L as shown in [36]. As
fα, gα: Z64⟶ [0, 1], assign the values to these functions as
fα(0) � 1 ∈ [0, 1], gα(0) � 0 ∈ [0, 1], where
fα(0) + gα(0)≤ 1. Similarly, values can be assigned to the
remaining codons, which is shown in Table 5. (en, by
Definition 3, α-IF submodule with module Z64 is referred to
as a linear code. By using Definition 4, we can compute the
degrees of element t ∈ [0, 1]; for example, for t � 1, the
degree is 1 and for t � 0.3 the degree is 10. (e remaining
values can be computed in a similar way. Degrees of re-
spective codons are also given in Table 5.

(e most important properties of amino acids are their
hydrophobic and hydrophilic properties. As in lattice dia-
gram, codons with second base U show hydrophobic amino
acids, and those with second base A show hydrophilic amino
acids. (ere are total 16 codons that specify hydrophobic
and hydrophilic amino acids, so we can define an α-IF linear
code by considering the Z16 module. Let f, g: Z16⟶ L

and fα, gα: Z16⟶ [0, 1], where lattice L consists of 16
elements. A comparison can be made between the two
properties of amino acid by employing the concept of degree
given in Definition 4. It can be seen in Table 6 that the
average degree of hydrophobic amino acids is greater than
the hydrophilic amino acids.

4. Conclusion

Communication systems are designed for data transmission,
working on the principle of encoding and decoding infor-
mation. In classical coding theory, different procedures can be
adopted to detect and correct errors that may arise during

Table 6: Codons with U or A as a second base which are coding for hydrophobic or hydrophilic amino acid.

a f(a) fα(a) Degree g(a) gα(a) Degree a f(a) fα(a) Degree g(a) gα(a) Degree

0 UUU 1 1 AAA 0 1 1 AUA 0.1 1 AAC 0.01 2
2 AUC 0.12 2 CAA 0.01 2 3 CUA 0.12 2 AAG 0.05 3
4 AUG 0.2 3 CAC 0.05 3 5 CUC 0.2 3 GAA 0.05 3
6 GUA 0.2 3 AAU 0.1 4 7 AUU 0.25 4 CAG 0.1 4
8 CUG 0.25 4 GAC 0.1 4 9 GUC 0.25 4 UAA 0.1 4
10 UUA 0.25 4 CAU 0.12 2 11 CUU 0.3 3 GAG 0.12 2
12 GUG 0.3 3 UAC 0.12 2 13 UUC 0.3 3 GAU 0.2 2
14 GUU 0.35 2 UAG 0.2 2 15 UUG 0.35 2 UAU 0.25 1
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communication. (e communication process is highly
influenced by vagueness, inaccuracy, imprecision, and un-
certainty. (e classical coding methodologies are sometimes
not efficient in handling such situations.(erefore, fuzzy logic
is a viable option to handle such type of information. Lattice
valued intuitionistic fuzzy sets are the generalization of basic
fuzzy sets that incorporated the degree of both membership
and nonmembership. (us, they constitute a more efficient
framework to model uncertain data. In this article, LIF-3
submodule and α-IF submodule are defined. (ese two
structures are related by means of their level sets; that is, the
level set of LIF-3 submodule is contained in the level set of
α-IF submodule. After obtaining this result, further codes are
discussed over α-IF submodule. Linear codes and cyclic codes
are defined over α-IF submodule. Some important properties
and results related to these codes are investigated. It is also
concluded that this concept of α-IF linear codes is entirely
applicable in genetic code. (ere are 64 codons that specify
different amino acids, so Z64 module is considered here and
α-IF linear codes are defined over Z64 module.

In literature, conventional codes such as hamming codes
and Hadamard codes are defined, which are constructed by
considering vector spaces and fields. Modules are the ex-
tension of vector spaces. (us, this work can be extended
further by employing the present methodology and by using
modules instead of vector spaces and fields.(is can be done
by investigating these codes over α-IF submodule by in-
volving Zn

pk module over a ring Zpk instead of the field F .
Moreover, there are several generalizations of fuzzy sets like
picture fuzzy sets [37], Pythagorean fuzzy sets [38], hesitant
fuzzy sets [39], and neutrosophic sets [40] where the concept
of lattices and codes can be extended to cope with the
uncertainty in a better way. In “Application,” a link is made
by incorporating the genetic code along with the concept of
lattice valued intuitionistic fuzzy sets of type-3, and α-IF
codes are defined by considering the modules Z64 and Z16.
(is methodology seems to be attractive for further inves-
tigation of genetic codes.
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