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Abstract: Asthma phenotyping and endotyping are constantly evolving. Currently, several biologic
agents have been developed towards a personalized approach to asthma management. This review
will focus on different eosinophilic phenotypes and Th2-associated endotypes with eosinophilic
inflammation. Additionally, airway remodeling is analyzed as a key feature of asthmatic eosinophilic
endotypes. In addition, evidence of biomarkers is examined with a predictive value to identify
patients with severe, uncontrolled asthma who may benefit from new treatment options. Finally,
there will be a discussion on the results from clinical trials regarding severe eosinophilic asthma and
how the inhibition of the eosinophilic pathway by targeted treatments has led to the reduction of
recurrent exacerbations.
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1. Introduction

The Global Initiative for Asthma (GINA) defines asthma as “a heterogeneous disease,
usually characterized by chronic airway inflammation with a severe global impact on
quality of life, mortality, economy, and health care utilization” [1,2]. Although asthma
affects 1–18% of the population, its diagnosis remains a challenge in everyday clinical
practice [3], leading to both over- and under-diagnosis, particularly in the elderly and in
low- and middle-income countries [3–5]. Nowadays, the diagnostic algorithm is mainly
based on GINA recommendations and differs in cases of patients already receiving con-
troller treatment [6]. The clinical course of the disease presents inter-individual variability,
suggesting distinct underlying pathophysiological mechanisms mediating symptoms and
signs of the disease. These multiple pathophysiological mechanisms may also explain, at
least to some extent, the differential response to therapy [7–9].

As a result, personalized approaches and treatments are valuable in the management
of severe uncontrolled asthma. Severe asthma is nowadays described as “asthma that is un-
controlled despite adherence with maximal optimized high dose ICS-LABA and treatment
of contributory factors, or asthma that worsens when high dose treatment is decreased”.
Patients diagnosed with severe asthma experience a heavy burden of symptoms, exacerba-
tions, and financial distress [5]. Despite the progress in pharmacological therapy and the
continuously updating recommendations for asthma management, there is still an unmet
clinical need to detect and treat the appropriate patients suffering from severe, uncontrolled
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asthma with new agents [10]. For this purpose, the identification of different phenotypes of
asthma and biomarkers in everyday clinical practice to guide decisions is crucial.

This review discusses the distinct phenotype of eosinophilic asthma and the endotypes
associated with eosinophilic inflammation. It also focuses on biomarkers that are used in
everyday clinical practice and evaluates the use of eosinophilic-targeted treatment based on
the results of several studies, aiming to inform clinicians on how to use clinical phenotypes
to achieve an optimal personalized approach and further management.

2. Asthma Classification

The classification of asthma was initially developed on the role of allergens, and
asthma was divided into extrinsic and intrinsic [11]. Classification systems were later based
on clinical features (persistent airflow limitation or exacerbation-prone asthma), airway
inflammation (eosinophilic, neutrophilic, mixed, or paucigranulocytic), and cluster analy-
sis [12]. Specifically, according to GINA, “asthma phenotypes” are defined by recognizable
clusters of demographic, clinical, and/or pathophysiological features [5,7], while the term
endotype describes a subtype of a disease defined functionally and pathologically by a
molecular mechanism or by treatment response [12,13]. Consequently, the PRACTALL
consensus report in 2011 recommended the use of endotypes for the classification of asthma,
since it could offer the possibility to optimize management and precision therapy [7].

In the context of classification strategies, Wenzel attempted to link biology to phe-
notypes and described six different categories in 2012, including early-onset allergic Th2,
late-onset eosinophilic, exercise-induced, obesity-related, neutrophilic, and paucigran-
ulocytic asthma [14]. Furthermore, Wenzel’s proposal to distinguish two subtypes of
corticosteroid-dependent asthma depending on the level of bronchial eosinophilia led to
the identification of two asthma endotypes: Th2-high and Th2-low [15]. The Th2-high
endotype is usually associated with some degree of eosinophilic airway inflammation and
a variable allergic or nonallergic background [16].

Overall, studies show that the most common and well-understood phenotype is
eosinophilic asthma, as it affects over half of the patients that are diagnosed with severe
asthma [17]. The diagnosis of eosinophilic asthma is based on the detection of sputum
or peripheral blood eosinophilia and airway eosinophilic infiltration [18]. Numerous
studies focus on the high importance of identifying different severe asthma phenotypes.
Cellular phenotyping based on the type of airway inflammation is nowadays the most
appropriate approach to guide the type of treatment the patient may benefit from in severe
or difficult-to-treat asthma [12].

3. Eosinophilic Asthma

All subtypes of asthma were initially considered to be eosinophilic; however, over
time, a thorough understanding of its pathogenesis led to the recognition of phenotypes as-
sociated with the underlying type of inflammation [11,19]. The complex role of eosinophils
in the pathogenesis of asthma has been extensively investigated in the past two decades.
These major effector cells mainly induce airway hyperresponsiveness and Th2 inflamma-
tion by releasing multiple molecules including cytokines (IL-2, IL-4, IL-5, IL-10, TNFα,
TGFβ, etc.), chemokines (macrophage inflammatory protein 1 alpha, etc.), and granule
proteins in response to allergens and parasitic, bacterial, fungal, and viral infection [20].

More specifically, eosinophilic asthma makes up approximately 70% of all severe
asthmatic cases. It is characterized by tissue and sputum eosinophilia, the thickening
of the basement membrane, and, usually, corticosteroid responsiveness [8]. Although
a standard definition has not been developed yet, peripheral blood eosinophil counts
of ≥150 cells/µL, ≥300 cells/µL, or ≥400 cells/µL have been used in trials to describe
eosinophilic asthma and can readily be identified in a primary care setting [21,22]. There
needs to be a more balanced discussion of the utility of conducting a blood eosinophil
count in the primary care setting, as phenotyping/endotyping mainly applies for more
severe cases under specialist care.
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Exhaled nitric oxide (FeNO) levels are also used to suggest airway eosinophilia [21,23].
Experts of the ISAR Steering Committee developed a multicomponent, eosinophilic gradi-
ent algorithm based on variables including details on asthma onset, atopy, comorbidities,
and biomarker concentration, aiming to facilitate asthma phenotyping and, ultimately, the
selection of appropriate phenotype-specific treatment [24].

Eosinophilic asthma could be either atopic or non-atopic. Interestingly, patients with
eosinophilic asthma could be further categorized into subtypes that may predict their
response to specific therapeutic approaches. Unbiased clustering analyses resulted in the
identification of different phenotypes associated with eosinophilic inflammation [16]. These
phenotypes are: (1) childhood-onset atopic asthma, (2) adult late-onset eosinophilic asthma,
and (3) aspirin-exacerbated respiratory disease (AERD).

3.1. Childhood-Onset Atopic Asthma

This phenotype is mainly characterized by the presence of clinically significant atopy/
allergy, with Th2 inflammation as an underlying mechanism. The onset of symptoms
dates to childhood and a diagnosis of eczema or another allergic/atopic condition in a
patient predisposed to an allergic immune response. These children, due to their genetic
and environmental background, could precede an asthma diagnosis [6,16]. In a patient
predisposed to allergic immune response, the inhalation of aeroallergens initiates an inflam-
matory cascade including the differentiation of naïve T-cells into Th2-cells, the production
of Th2-inflammatory cytokines, and IgE production by B-cells [18]. Airway and/or pe-
ripheral blood eosinophilia could be challenging to detect in the pediatric population.
Eosinophilia is not uniformly present. However, studies have shown that airway and/or
peripheral blood eosinophilia is attributed to IL-5 stimulation, resulting in the congregation
of eosinophils.

3.2. Adult Late-Onset Eosinophilic Asthma

The initial description of this phenotype dates to 1947, when Rackeman detected
a phenotype that was different from the classical childhood-onset allergic asthma [12].
Adult late-onset asthma presents in the fourth or fifth decade of life as a non-atopic and
eosinophilic disease. Patients who are diagnosed with this phenotype often suffer from
difficult-to-treat/severe asthma. A dominant feature is the presence of frequent exacerba-
tions, poor control, persistent eosinophilic inflammation that may lead to a dependence on
oral corticosteroids, and the early development of fixed airway obstruction and remodel-
ing [6,16,25].

Several comorbidities are described, including other adult-onset eosinophilic airway
diseases (allergic bronchopulmonary aspergillosis/mycosis (ABPA/ABPM), nonsteroidal
anti-inflammatory drug-exacerbated airway disease (N-ERD), eosinophilic granulomatosis
with polyangiitis (EGPA), etc.), which implies the potential existence of common genetic, im-
munological, and pathophysiological mechanisms among the aforementioned diseases [25].

Even though late-onset eosinophilic asthma resembles childhood-onset atopic asthma
in Th2-high inflammation, there is no sign of elevated IgE. Persistent airway inflammation
is caused by the production of IL-5 and IL-13 through allergen-independent ILC2s [12].

3.3. Aspirin-Exacerbated Respiratory Disease (AERD)

The prevalence of this phenotype ranges from 5.5 to 15% globally. The initial diag-
nosis usually takes place in the third decade of life, and it mainly affects women [12].
Asthma severity and prognosis vary among different cases. Patients experience severe and
sometimes fatal exacerbations after the ingestion of aspirin or other NSAIDs [6,16]. This
asthma subtype is usually linked to nasal polyposis and chronic sinusitis. The combination
of aspirin sensitivity, asthma, and chronic rhinosinusitis with nasal polyposis forms the
traditional description of “Samter’s Triad” [12].

Diagnosis can be challenging in the absence of “Samter’s Triad”, and an observed
aspirin challenge may be required. Although atopy is usually related to AERD, evidence
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shows that the latter is not an allergic disease [6,16]. Specific asthma biomarkers are usually
not useful in diagnosing AERD. Airway inflammation consists of elevated eosinophil levels
along with the proliferation and increased activity of mast cells. COX-1 inhibition elevates
the proinflammatory cysteinyl leukotrienes (LTC4, LTD4, LTE4) and reduces the level of
anti-inflammatory PGE2 [6,16].

The successful treatment of AERD is based on aspirin desensitization, inhaler medica-
tions, and leukotriene modifiers. Current evidence suggests the use of anti-IgE treatment
(omalizumab), as it has been shown to improve symptoms, quality of life, and lung func-
tion [12]. Recently, in a randomized crossover trial in AERD patients, it was demonstrated
that subjective symptoms were improved with a reduction in nutritional salicylate intake [12].
Indeed, in addition to the therapeutic routines, a low dietary intake of food salicylate has
been suggested in several studies as an adjunctive therapy for this condition [26].

4. Endotypes of Eosinophilic Inflammation

Current knowledge highlights the importance of moving from a clinical diagnosis
of asthma followed by treatment to the identification of the specific asthma endotype for
every patient followed by a patient-centered therapeutic approach based on the principles
of personalized medicine. The history of endotyping dates to the mid-1920s; yet, there is
no consensus on the definition of inflammatory endotypes—neither specific criteria nor a
universal algorithm or classification system [7,11,27].

Since the landmark study that was conducted by Wenzel et al., and led to the recogni-
tion of two distinct inflammatory endotypes of severe asthma depending on the presence
of eosinophils in endobronchial biopsy or lavage, research focuses on defining the right
combination of different biomarkers to describe distinct endotypes [11,27]. Novel strate-
gies are also used, such as omics-based technologies which are described in this review.
Different endotypes could possibly co-exist in some patients. Currently, two endotypes
based on biomarkers such as Th2 cells and type 2 cytokines are broadly used: Th2-high
and Th2-low (or non-Th2) asthma [11,28].

The Th2-high endotype is the best-understood endotype. It is generally characterized
by the presence of eosinophilic airway inflammation due to a Th2 cytokine response (IL-5,
IL-4, IL-13, IL-25, IL-33) and thymic stromal lymphopoietin (TSLP). The IgE levels could
be elevated but are not specific for any common antigen because of the lack of antigen
presentation by antigen-presenting cells. The interaction between innate and adaptive
immune responses results in Th2-high inflammation. The most important cells in this type
are Th2 helper CD4+ cells, which lead to cytokine secretion and activate other innate and
adaptive immune cells, basophils, mast cells, and B cells. In the airways, ILC2s generate Th2
inflammatory responses by producing IL-5 and IL-13. IL-5, IL-3, IL-4, IL-9, and IL-13 are
the most important eosinophilic cytokines, and their function is to stimulate eosinophilic
production, bone marrow extrusion, proliferation, and differentiation factors [11,19,29–31].

The current therapeutic approach for Th2-high severe asthma is based on biologics
targeting allergy molecules (IgE) and eosinophilic interleukins (IL-5, IL-4, IL-13, TSLP). Due
to the heterogeneity of Th2 endotype, the treatment response and clinical outcomes vary
between patients. Many approaches have been proposed on how to select the appropriate
agent; however, we still do not have a consensus on this issue [11,29].

The Th2-low endotype is characterized by excessive remodeling and a poor response
to anti-inflammatory therapy. The underlying mechanisms in this asthma subtype are
under investigation. Research suggests the existence of several modulators, such as age
and metabolic or epigenetic factors, while the role of different pathways including IL-17,
neutrophil intrinsic abnormalities, and the inflammasome pathway remains obscure [29,30].
Until now, there have not been useful biomarkers in clinical practice to predict T2-low
asthma. MicroRNAs have recently drawn attention, and they are evaluated as potential
biomarkers for T2-low asthma [11].

Recent progress in the treatment of severe asthma has been marked by the introduction
of mixed endotypes. Patients could be classified into the Th1/Th2 and Th2 endotypes,
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which are associated with increased disease severity and a resistance to corticosteroids,
or into TAC1, TAC2, and TAC3. The increased levels of IL1β, IL6, IL23, C3a, and serum
amyloid A in patients with Th2/Th17-high type could enhance the development of patient-
centered therapy [29].

5. Airway Remodeling/Smooth Muscle Function/Mucus Hypersecretion

Persistent airway inflammation aroused by eosinophils results in continuous tissue
damage and airway remodeling, which is described by structural changes of the air-
ways [32]. Airway remodeling is associated with fibrosis, angiogenesis, hypertrophy, and
increased airway smooth muscle mass [33]. The combination of these results in airway
wall thickening, luminal occlusion, and small airway obliteration. In addition, several
inflammatory molecular factors are involved in these structural changes, such as platelet-
derived growth factor (PDGF), transforming growth factor β (TGFβ), fibroblast growth
factor (FGF), epidermal growth factor (EGF), TSLP, and cytokines that are produced in
Th2- and non-Th2-inflammatory pathways, including IL-13, IL-4, IL-17, IL-21, IL-22, and
TNFα [33].

Current evidence shows that airway remodeling may be a key feature of asthma
endotypes, as eosinophils are associated with remodeling. Recently, the effect of the anti-
interleukin 13 monoclonal antibody lebrikizumab in airway remodelling was investigated
in a phase II bronchoscopy trial [34]. Researchers found that lebrikizumab treatment was
associated with a reduced degree of subepithelial fibrosis apart from improved lung func-
tion and reduced key biomarkers in bronchial tissues. Moreover, according to research
studies, the degree of remodeling depends on the severity of the disease, while its distri-
bution is highly heterogeneous [35]. Although a close interaction with inflammation is
established, causality is not yet clear. In fact, airway remodeling may occur in parallel with
chronic inflammation or/and as a consequence of the inflammatory response [36]. On the
other hand, the uncoupling of airway hyperresponsiveness and remodeling from airway
inflammation has been recently described in T2-low asthma [37,38].

Concerning the role of bronchial smooth muscle in patients with asthma, it has been
thoroughly researched in the past decades; however, the precise mechanism involved in its
remodeling remains uncertain [35,39]. The smooth muscle increases airway inflammation by
releasing numerous inflammatory mediators (e.g., endothelin, TGFβ), proliferating, and ac-
tivating cells that are a part of different inflammatory pathways, such as T-lymphocytes [39].
The conduction of studies on novel therapeutics, including endothelin- or TGF-β-receptor
antagonists could provide new data on personalized severe asthma therapy.

Furthermore, on the basis of bronchial smooth muscle, bronchial thermoplasty (BT) is
an endoscopic method involved in the management of persistent, uncontrolled asthma, as it
reduces airway smooth muscle mass (ASM) and nerve fibers in the airway epithelium [40].
Some studies demonstrated a clinical benefit after the use of BT, and that was depicted
in improvements in lung function, asthma control, and quality of life and increases in
symptom-free days [41,42]. On the other hand, the AIR2 trial raised concerns due to the
high clinical meaningful improvement in the sham group, and in the randomized TASMA
trial, the decrease in ASM mass failed to show a correlation with clinical outcomes [43–45].
Although the long-term follow up of the patients that participated in three randomized
trials, AIR, AIR2, and RISA, showed sustained clinical improvement for ten years or longer,
there is limited available evidence on the long-term safety and efficacy [42,44,46]. For these
reasons, international guidelines do not recommend BT as a routine practice but only in
the context of an independent Institutional Review Board-approved systematic registry or
clinical study [5,47].

In addition, mucus hypersecretion has been related to asthma, as there is evidence of
an increased MUC5AC presence in severe asthma epithelial cells [36]. Studies have shown
that there is no association between the detection of mucus plugs and a differential response
to therapy with the anti-IL-5Rα antibody benralizumab [39]. There is also evidence that
mucus hyperplasia is promoted by the IL-4/IL-13 pathway. Therefore, biologic agents
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targeting this pathway, such as dupilumab, could be beneficial for patients presenting with
mucus hypersecretion [48].

6. Current Trending in Eosinophilic Biomarkers
Types of Biomarkers

According to the 2016 FDA-NIH Biomarker Working Group, there are different types
of biomarkers based on their main clinical application, as described in Table 1 [49]. Th-2
biomarkers such as urinary biomarkers and microRNAs or respiratory biomarkers have
been revealed in several clinical trials (Table 2, Figure 1). Furthermore, ongoing research
reveals that endotypes of asthma require more in-depth analysis and the use of omics
technologies and systems biology [50].

Table 1. Different types of biomarkers and their clinical application.

Types of
Biomarkers Clinical Application

Diagnostic Confirm the presence of a disease or medical condition

Monitoring Assess the presence, status, or extent of a medical condition

Response Evaluate the response to a clinical intervention

Predictive Identify patients more likely to experience an effect (positive or negative)
after the exposure to a medical product or an environmental agent

Prognostic Identify the likelihood of a clinical event, disease recurrence, or
progression in patients with a medical condition

Safety Predict toxic adverse events induced by drugs, medical interventions, or
environmental agents’ exposure

Risk Indicate the potential for developing a disease or medical condition in an
individual not currently presenting a clinically apparent medical condition

Table 2. Biomarkers of severe eosinophilic asthma and their clinical implication.

Biomarkers Biological Sample Clinical Implication

Eosinophils Blood/Sputum

Indicative of airway eosinophilia
Response
Predictive

Monitoring

IgE Blood Predictive
Response

EDN Blood
Indicative of airway inflammation

Predictive
Response

Periostin Blood Predictive
Response

EPO Blood Indicative of airway inflammation

Neutrophils Sputum Indicative of airway inflammation

FeNO Exhaled breath

Indicative of airway eosinophilia
Monitoring
Response
Predictive

EBC Exhaled breath Response

Bromotyrosine Urine Predictive
Response
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Table 2. Cont.

Biomarkers Biological Sample Clinical Implication

Omics: ALP, ALPL, CLC,
CPA3, CXCR2, DNASElL3 Blood

Indicative of airway inflammation
Response
Predictive

Micro-RNAs: miR-21,
miR-135a, miR-142, miR-143,

miR-146b, miR-193b and
miR-223, miR-365, miR-375,

miR-452, miR-1165-3p

Blood
Indicative of airway inflammation

Predictive
Response

EDN: eosinophil-derived neurotoxin, EPO: eosinophil peroxidase, EBC: exhaled breath condensate.

Figure 1. Established and proposed biomarkers in the management of severe eosinophlic asthma
(EDN: eosinophil-derived neurotoxin, EPO: eosinophil peroxidase, EBC: exhaled breath condensate).

7. Th2-High Biomarkers
7.1. Blood/Serum Biomarkers

Peripheral blood eosinophils are routinely counted in clinical practice and are often
used as a surrogate of airway eosinophilia in severe asthma [51–54]. However, peripheral
eosinophilia can also be found in other conditions such as parasitic infections and there-
fore lacks specificity [55]. Although blood eosinophilia has the highest accuracy among
biomarkers in predicting sputum eosinophilia [54], there is also the possibility of a great
discrepancy between blood and airway eosinophils, as the latter is more sensitive to predict
Th2-high asthma [56]. It is noteworthy that 45% of patients with severe asthma will have a
different cellular profile in induced sputum at one year [57].

Regarding severe asthma, persistent peripheral blood eosinophilia is associated with
poor asthma control, followed by frequent exacerbations, hospital admissions, and gradual
lung function decline [58,59]. Low blood eosinophil levels, similar to sputum eosinophils, are
usually described in patients under therapy with anti-eosinophilic agents (mepolizumab) [60],
reslizumab [61,62], benralizumab [63,64], tezepelumab [65], and corticosteroids [66]. This is
why the role of blood eosinophils is currently discussed as a potential response biomarker
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for the above therapies. On the other hand, no significant change in eosinophil levels was
observed after treatment with dupilumab [67].

IgE immunoglobulin is a principal molecule in allergic inflammation and contributes
to the pathophysiology of severe asthma. Total IgE levels vary depending on numerous
extrinsic and intrinsic factors, including IL-4 and -IL5 [68]. During severe exacerbations,
IgE levels rise and then start falling and are expected to return to normal levels within
1–2 months after the beginning of the severe exacerbation [69]. When compared to other
biomarkers of airway eosinophilia (e.g., blood eosinophils and FeNO), serum IgE seems to
be a poor predictor of asthma exacerbations [70,71]. However, free serum IgE is reduced in
response to omalizumab, and this reduction is associated with fewer exacerbations [72].
Consequently, increased levels of total serum IgE are a good biomarker for the screening of
patients that will respond to omalizumab before treatment initiation [73,74].

Eosinophil-derived neurotoxin (EDN), is released by eosinophils, and, when found in
serum, it may be a marker of eosinophil activation. It has been reported that EDN levels
decrease after treatment with anti-IL5 agents (e.g., benralizumab), meaning that EDN could
also be used as a response biomarker for these biological agents [64]. EDN has shown a
similar sensitivity in studies [75,76] when compared to serum eosinophils, suggesting that
EDN levels could also indicate the extent of eosinophilic airway inflammation [77].

It is well known that eosinophil peroxidase (EPO) is released from eosinophils follow-
ing stimulation by an IgE-dependent mechanism [78]. In the study of Sanz et al., the EPO
serum levels were higher in severe asthmatic patients when compared to those in healthy
controls. It is thus suggested that EPO be used as an eosinophilic activation biomarker in
asthma for the early discrimination between eosinophilic and non-eosinophilic asthma [79].
In this study, the EPO levels were correlated with the peripheral blood eosinophil count as
a reflection of blood eosinophilia. On the contrary, Durham et al., found that EPO signifi-
cantly decreased in asthmatic patients in comparison with high levels of other granular
secretions, such as EDN [80].

Concerning periostin, which is referred to as osteoblast-specific factor 2, is a matricel-
lular protein that mediates cell activation and promotes subepithelial fibrosis. Periostin
can be secreted by bronchial epithelial cells and subepithelial fibroblasts as a response
to mediators such as IL-4 and IL-13 [81,82]. Following secretion, periostin enters the
bloodstream and therefore can be easily measured in serum; it is suggested as a systemic
biomarker of airway eosinophilia [82,83]. However, the sensitivity of periostin was proven
to be inferior when compared to blood eosinophils and FeNO [70]. Furthermore, IL-13-
induced periostin upregulation established serum periostin as a probable biomarker of
the response to anti-IL13 agents (lebrikizumab, tralokinumab) during clinical trials [84,85],
although later on, serum periostin levels were considered to be not specific for severe
asthma inflammation [86].

7.2. Sputum Eosinophils

The sputum eosinophil count obliquely reflects the eosinophilic airway inflammation
levels and is therefore a sensitive and specific noninvasive diagnostic biomarker. The
procedure encompasses either spontaneous or induced sputum collection from the indi-
viduals [87,88]. The data from numerous clinical trials indicate that a cell count of > 2–3%
is considered diagnostic of eosinophilic airway inflammation [89]. The vast majority of
severe asthmatics with high levels of sputum eosinophilia will respond to corticosteroids
and targeted biological anti-eosinophilic therapies. Specifically, anti-IL-5 (mepolizumab,
reslizumab), anti-IL-5 receptor α (benralizumab), and prostaglandin D2 receptor antagonist
(fevipiprant) reduce sputum eosinophilia, and the efficacy of IL-4 receptor (dupilumab) has
already been proven [90–93]. What is questionable is the efficacy of the biological agents
targeting IL-13 (tralokinumab, lebrikizumab) [94,95].

The diagnostic, monitoring, responsive, and predictive value of sputum eosinophilia
as a biomarker is unfortunately attenuated by the complex and time-consuming process of
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sputum induction and quantification. Point-of-care alternative methods, such as EPO in
upper airway swabs, are therefore under development due to these challenges [96].

7.3. Fractional Exhaled Nitric Oxide (FeNO)

As a biomarker indicating eosinophilic airway inflammation, FeNO was initially sug-
gested by the American Thorasic Society (ATS). The 2011 ATS guidelines recommended
that low FeNO (<25 ppb) correlates with the absence of severe eosinophilic asthma, while
high FeNO (>50 ppb) is diagnostic for eosinophilic airway inflammation. GINA guidelines
advise that increased FeNO indicates residual Th2 inflammation for patients under treat-
ment [97]. FeNO generally correlates with blood eosinophilia in most cases but not always,
as FeNO and eosinophilia derive from different Th2 inflammatory pathways. According
the 2020 ATS/ERS guidelines, it seems that it would be very useful to combine FeNO
and eosinophil measurements in clinical practice in order to better guide the management
of patients with uncontrolled, severe asthma. GINA recommends FeNO as a predictive
biomarker of the available biological agents as well. High levels of baseline FeNO come
with an adequate response to omalizumab, lebrikizumab, and dupilumab, while these
levels are suppressed after treatment initiation. Raised FeNO levels could also predict
the prognosis of severe asthmatics. Elevated FeNO at baseline was correlated with a bad
prognosis and accelerated lung function decline in difficult-to-treat asthma, even in patients
with normal spirometry at baseline [98]. Furthermore, persistent high levels of FeNO could
be used as an indication of non-adherence to ICS treatment in clinical practice. In a small
clinical trial, a rapid fall in FeNO was noted after 7 days of directly observed ICS (DOICS)
treatment in non-adherent patients with “difficult- to-treat asthma”, and that decrease in
FeNO was significantly greater than that in adherent patients. Thus, FeNO could be a
useful tool to monitor adherence to ICS [99].

7.4. Exhaled Breath Condensate (EBC)

The evaluation of EBC is another noninvasive diagnostic technique used in severe
asthma assessment. Exhaled Breath Condensate (EBC) is a biofluid directly obtained from
the airway lining fluid non-invasively. The compounds being quantified in the EBC are
mainly cysteinyl leukotrienes, which have been related to frequent exacerbations [100].
The pH of the EBC is also evaluated and seems to be reduced in asthma exacerbations,
whereas low lipotoxin A4 in EBC is associated with severe asthma and declining lung
function. Mediators of oxidative stress such as hydrogen peroxide H2O2 and 8-isoprostane
were increased in steroid-naïve patients compared to the control [101]. Recently, there
is increasing interest in conducting metabolomic analysis in EBC. The ATS/ERS recom-
mendations on the EBC sample collection procedure and the technical standards of EBC
analysis were published in 2017 and should serve as a guide for future studies, as it seems
to be a promising material for obtaining a better understanding of asthma pathology and
management [101].

7.5. Urinary Biomarkers

The urinary metabolite repertoire changes significantly during asthma exacerbations,
and the content shifts to increased levels of alkanes and aldehydes. EPO secreted by
eosinophils promotes the generation of brominated products in response to oxidative stress.
Particularly, high bromotyrosine levels in urine were associated with uncontrolled asthma
and an increased risk of exacerbations [102]. However, concordance with other severe
asthma biomarkers (sputum eosinophils, FeNO) is not adequate [103]. According to studies,
bromotyrosine could also be used as a biomarker of the response to steroid treatment, as its
concentration in urine has been found to be decreased during steroid treatment [104].

7.6. OMICS

Regarding transcriptomics, Kuo et al., created a different approach to inflammatory
endotyping using asthmatics from the U-BIOPRED cohort. According to this approach,



J. Pers. Med. 2022, 12, 1093 10 of 18

three transcriptome-associated clusters (TACs) were identified. The first is TAC1, with
the highest enrichment of gene signatures for IL-13/Th2 and innate lymphoid cell type 2
(ILC2) associated with the highest sputum eosinophilia. This grouped patients with severe
asthma with oral corticosteroid dependency, frequent exacerbations, and severe airflow
obstruction. The second is TAC2, and the third is TAC3. TAC2 and TAC3 are not as-
sociated with Th2 inflammation. TAC2 is characterized by elevated INFγ, TNF-α, and
inflammasome-associated genes, whereas TAC3 indicates metabolic and mitochondrial
clusters [19,105,106].

Baines et al., investigated the gene expression profiles in the induced sputum specimen
of asthmatic patients [107]. The study revealed six gene expression markers: alkaline phos-
phatase, Charcot–Leyden crystal protein (CLC), carboxypeptidase A3 (CPA3), chemokine
receptor 2 (CXCR2), tissue-nonspecific isozyme (ALPL), and deoxyribonuclease l-like 3
(DNASElL3). The expression of this gene panel is correlated with a better response to corti-
costeroids and could help in distinguishing asthma endotypes [108]. Ongoing proteomics
research in airway tissues identified a great variety of compounds that are elevated in severe
asthmatics (e.g., IFN-γ, PDGFBB, IL-2, TNF-β, CCL27, CXCL7, CTAP-III, HPLN1, trypsin2,
cathepsin G, ARSB, etc.) when compared to Th2-low asthma. Novel anti-inflammatory
monoclonal antibodies targeting these molecules could be produced in the future [108,109].

7.7. Micro RNAs

Over the last decade, a variety of microRNAs have been linked to different diseases
with profound Th2 activity. For instance, miR-21, miR-135a, miR-142, miR-143, miR-
146b, miR-193b, miR-223, miR-365, miR-375, miR-452, and miR-1165-3p are only some of
them [110]. Mi-RNAs profiling could interestingly contribute to distinguishing clinically
inactive asthma from completely healthy individuals or predicting which patients will
favorably respond to the available therapies [111].

A very promising application of the miRNA breakthrough is in differentiating asthma
from chronic obstructive pulmonary disease (COPD). In everyday clinical practice, the
discrimination between the two situations is very challenging, as they share a lot of clinical
features. This is particularly difficult in the case of chronic severe asthma, where airway
remodeling is observed. According to research studies, molecules such as miRNA-338
and miRNA-145 in sputum analyses could be utilized to distinguish patients with severe
eosinophilic asthma from COPD patients [112].

8. Biologic Agents Targeting Type 2 Inflammation

In recent years, the development of biologic agents targeting the chain of pathogenic
events leading to Th2 inflammation at different levels has significantly changed severe
asthma management on a global level. Current guidelines on the management of severe
asthma suggest that the patient’s inflammatory phenotype should be assessed and that an
add-on Th2-targeted biologic should be considered for eligible patients. The currently used
biologic agents and biomarkers appear in Table 3, and the biologic agents’ sites of action
appear in Figure 2.

IgE is the primary immunoglobulin involved in Th2-high inflammation, so an anti-
IgE antibody (omalizumab) was the first to be developed and has been approved for
patients ≥ 6 years of age with moderate-to-severe allergic asthma. Omalizumab binds
to the third constant region of IgE, preventing its binding to the FcεRI receptor, which is
expressed primarily on basophils and mast cells. The eligibility criteria for this biologic
include poor asthma control on conventional therapy, sensitization to inhaled allergen(s)
on skin prick testing or specific IgE, increased total serum IgE, a body weight within
the local dosing range, and more than a specified number of exacerbations within the
past year [19,27,30,105]. The results from numerous randomized clinical trials (RCTs) and
real-life studies have demonstrated that omalizumab has a good safety profile, improves
asthma control, lung function, and quality of life, and reduces exacerbations, emergency
visits, hospitalizations, and the use of oral corticosteroids [19,27,30,105,113]. In addition,
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the evidence also suggests that omalizumab is more effective in patients with higher levels
of Th2 inflammation biomarkers, such as peripheral eosinophil levels [113]. However, the
presence of autoantibodies and immune complexes in allergic airways could impede the
action of omalizumab [113].

Table 3. Phase III and IV biological agents targeting Th-2 inflammation and relevant suggested
biomarkers indicative of a response.

Biological Agent Target Route of
Administration

Relevant Biomarkers
(Response/Predictive)

Omalizumab IgE SC
Sputum Eosinophils
FeNO
IgE

Mepolizumab IL-5 SC Blood/Sputum Eosinophils
Reslizumab Il-5 IV Blood/Sputum Eosinophils

Benralizumab IL-5 receptor α SC Blood/Sputum Eosinophils
EDN

Dupilumab IL-4 receptor SC FeNO

Tezepelumab thymic stromal
lymphopoietin SC *

EDN: eosinophil-derived neurotoxin, SC: subcutaneous, IV: intravenous. * no established biomarker for this
biologic agent.

Figure 2. Currently used biologic agents and their sites of action targeting Th-2 inflammation in
severe asthmatics.

In addition, the major role of IL-5 in the differentiation, maturation, and survival of
eosinophils led to development of agents that target IL-5. Mepolizumab and reslizumab are
antibodies that bind to IL-5, preventing eosinophil activation. The combination of blood
eosinophil counts and FeNO levels are considered as useful predictors of exacerbations in



J. Pers. Med. 2022, 12, 1093 12 of 18

mepolizumab-treated patients. Another antibody, benralizumab, blocks the IL-5Rα, inhibit-
ing the effect of IL-5 and resulting in eosinophil apoptosis through antibody-dependent
cell-mediated cytotoxicity (ADCC) [105,113]. Eligible patients present with more than a
specified number of severe exacerbations in the last year and an elevated blood eosinophil
level (e.g., ≥150 or ≥300/µL). Data from RCTs and real-time observational studies show
that these agents improve asthma control, lung function, and quality of life, while reducing
severe exacerbations and blood eosinophils. Benralizumab has found to deplete periph-
eral blood basophils [114]. Oral corticosteroid use was also reduced with mepolizumab
or benralizumab in comparison with placebo [19,27,30,105,113–117]. Despite their com-
parable effects, anti-IL-5 and anti-IL-5Rs have different mechanisms of action, and their
effects vary depending on specific asthma endotypes. Some eligible patients may show
suboptimal responses with anti-Il-5 biologics. This could be attributed to the presence of
innate immune deficiencies, an alternate autoimmune pathology, or even inadequate doses
of biologics [19].

Several clinical trials were conducted to develop biologics that target IL-4 and/or
IL-13. Two anti-IL-13 agents, lebrikizumab and tralokinumab, were extensively studied,
but the clinical outcomes were not satisfactory. An anti-IL-4 biologic, pascolizumab, was
also used in studies, with disappointing results [27]. While the isolated blockade of either
IL-4 or IL-13 has not been shown to be effective in severe asthma, the dual blockade of
IL-4 and IL-13 has been promising [19,27,113]. Dupilumab, a biologic that inhibits both
IL-13 and IL-4 by binding to the α-subunit of the IL-4 receptor, has been demonstrated to
significantly decrease exacerbation rates and corticosteroid use and to improve symptom
control and lung function [19,27,105,113,116]. Dupilumab is indicated for the treatment of
patients with more than a specified number of severe exacerbations in the last year and
increased Th2 biomarkers (e.g., blood eosinophils ≥ 300/µL or FeNO ≥ 25 ppb) or who
require the use of oral corticosteroids. [11] Anti-IL-4/IL-13 agents mainly reduce airway
hyperreactivity (AHR), showing sub-optimal results in patients with AHR and airway
inflammation [19].

Currently, several novel biologic agents are under investigation, including inhibitors
of the thymic stromal lymphopoietin (TSLP), anti-IL-33, and anti-IL-25. Alarmins TSLP,
IL-33, and IL-25 are released by bronchial epithelial cells upon contact with pathogens,
promote the production of Th2 cytokines, and result in Th2-high inflammation [19,30,113].
Tezepelumab, an anti-TSLP antibody which regulates Th2 immunity through Th2 and
ILC2 cells, has been shown to reduce severe asthma exacerbations, blood eosinophil levels,
total serum IgE, and FeNO and to improve FEV1 [19,30,105,113,114]. It is the only biologic
approved by the FDA for severe asthma with no phenotype (e.g., eosinophilic or allergic)
or biomarker limitations. Another anti-TSLP antibody (CSJ117) is currently used in clinical
trials. An anti-IL-33 antibody, REGN3500, and the IL-25 blockade have been shown to
prevent airway remodeling and AHR in animals, but studies on humans are awaited [113].

9. Future Perspectives on Treatment

The wide availability of monoclonal antibodies for T2-high asthma allows the physi-
cians to have a more personalized approach regarding the selection of the most appropriate
agent for each patient. However, the challenge is that almost one-third of the patients
exhibit overlapping allergic and eosinophilic phenotypes [118] and are eligible for more
than one treatment option. In the case of an inadequate response to the initial treatment,
there is now the possibility to switch to another agent. Real-life data of switches from
omalizumab to mepolizumab or benralizumab have started to be published with satisfac-
tory results [118,119]. After 12 months of treatment with mepolizumab and benralizumab,
asthma exacerbations and blood eosinophils were reduced, and pre-bronchodilator FEV1
as well as the asthma control test score (ACT) were improved [118,119]. There are also
emerging real-world data on the switch from mepolizumab or reslizumab to benralizumab,
with favorable outcomes in a considerable proportion of patients [120]. Dupilumab has
also been proven to be an effective option for switches from either anti-IgE or anti-IL5/5Ra,
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also leading to a decrease in oral corticosteroids [121] A 4-month trial is the minimum
needed to assess a patient’s response to therapy according to the GINA consensus for
the management of severe asthma, and the decision for the switch has to be made by the
treating physician without a predefined algorithm (GINA 2019).

A novel therapeutic approach, such as a combination of anti-IL-5 biologics with
agents targeting other Th2 pathways, is studied. Until now, limited data exist for the use
of combination biologics upon the treatment of severe persistent asthma. Case reports
have been published referring to the combination of biologic therapies with controversial
results [122,123]. The eligible patients were subjects that, despite clinical improvement on
one biologic agent during the first 6 months of treatment, still did not meet the goals of
therapy and have too high of a risk to discontinue the initial agent before achieving steady-
state concentrations of an alternate drug [123]. Physicians consider de-escalating to a single
agent after 3 to 6 months of combination treatment. For this purpose, further investigation
on the precise inflammatory profiles that would benefit the most in combination with other
biologics is needed.

10. Conclusions

During the last two decades, the development of biologics is promising in the man-
agement of severe asthma. Despite that fact, a significant burden of severe uncontrolled
asthma remains. This may be due to the wide clinical heterogeneity of asthma pheno-
types and endotypes or the lack of data on distinct factors that could predict a suboptimal
response to therapy or guide the treatment option among available agents. Although
there is great progress in identifying and managing endotypes with T2-high inflammation,
T2-low asthma remains a challenging and not-deeply-understood endotype with limited
therapeutic options. Tezepelumab and other agents under investigation will probably con-
tribute to the management of this challenging endotype, but the pathophysiology should
be further explored.

Furthermore, the implementation of personalized therapy is not widely applicable in
clinical practice. The key to personalized medicine is the understanding of the immunology
of asthma and the detection of biomarkers with high predictive and prognostic value for all
different endotypes. Research should focus on biomarkers linked to the treatment choice
and the prediction of clinical failure and exacerbations. Clinicians should approach every
patient with difficult-to-treat, severe asthma based on the updated GINA guidelines, focus
on the precise characterization of phenotypes and endotypes, and regularly review the
response to targeted therapy.
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