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Abstract
Natural ecological variability and analytical design can bias the derived value of a biotic

index through the variable influence of indicator body-size, abundance, richness, and

ascribed tolerance scores. Descriptive statistics highlight this risk for 26 aquatic indicator

systems; detailed analysis is provided for contrasting weighted-average indices applying

the example of the BMWP, which has the best supporting data. Differences in body size

between taxa from respective tolerance classes is a common feature of indicator systems;

in some it represents a trend ranging from comparatively small pollution tolerant to larger

intolerant organisms. Under this scenario, the propensity to collect a greater proportion of

smaller organisms is associated with negative bias however, positive bias may occur when

equipment (e.g. mesh-size) selectively samples larger organisms. Biotic indices are often

derived from systems where indicator taxa are unevenly distributed along the gradient of tol-

erance classes. Such skews in indicator richness can distort index values in the direction of

taxonomically rich indicator classes with the subsequent degree of bias related to the treat-

ment of abundance data. The misclassification of indicator taxa causes bias that varies with

the magnitude of the misclassification, the relative abundance of misclassified taxa and the

treatment of abundance data. These artifacts of assessment design can compromise the

ability to monitor biological quality. The statistical treatment of abundance data and the

manipulation of indicator assignment and class richness can be used to improve index

accuracy. While advances in methods of data collection (i.e. DNA barcoding) may facilitate

improvement, the scope to reduce systematic bias is ultimately limited to a strategy of opti-

mal compromise. The shortfall in accuracy must be addressed by statistical pragmatism. At

any particular site, the net bias is a probabilistic function of the sample data, resulting in an

error variance around an average deviation. Following standardized protocols and assign-

ing precise reference conditions, the error variance of their comparative ratio (test-site:refer-

ence) can be measured and used to estimate the accuracy of the resultant assessment.
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Introduction
The unprecedented threats to earth’s ecosystems have given critical importance to the science
of bioassessment [1, 2]. Progressive environmental laws, defined by biological criteria, offer a
valuable opportunity to reduce biodiversity loss [3,4]. Attainment of their aims and objectives
depends on the provision of accurate information about the ecosystems they are intended to
protect. Obtaining a representative measurement of biological quality represents a considerable
challenge [5]; over the last century a multitude of alternative approaches have been proposed
[6]. The oldest and most widely employed is based on the assignment of indicator taxa and the
subsequent interpretation of assemblage composition [7]. The concept of describing indicator
assemblages in terms of a composite index was first applied to terrestrial plants [8]. It was sub-
sequently embraced by freshwater scientists to measure the pollution status of plants and ani-
mals of freshwaters and, more recently, of estuarine and coastal waters [6, 9]. As the vanguard
of bioassessment, biotic indices are fundamentally important to the management of biodiver-
sity. Yet in sharp contrast to the scrutiny that the relatively simple (two-dimensional) indices
of biodiversity have received [10], little effort has been made to gain a better understanding of
how the component dimensions of biotic indices influence index performance.

Knowledge of the natural world provides the starting point for a critique of ecological meth-
ods. In the case of the component dimensions of biotic indices, ecologists acknowledge a gen-
eral relationship between richness and abundance [10, 11] and well-established patterns of
abundance and body size [12]. Human perception and pragmatism are applied in describing
abstract models of natural phenomena. In the case of biotic indices, the assignment of ranked
indicator scores results in a contrived distribution of indicator richness (explicitly) and indica-
tor size (implicitly) across the range of indicator classes. When samples are collected in the
field and processed in the lab, the reality of the natural world is filtered according to the meth-
ods and equipment employed. The resultant “raw data” are ground-down once more as it is
arranged in accordance with the indicator system and statistical algorithm(s) employed to gen-
erate the index value. During this analytical process, four parameters—body-size, abundance,
richness and indicator score—contribute defining roles in the derived index value (Fig 1).
Knowledge of their respective influence and potential synergistic/antagonistic interactions pro-
vides a theoretical perspective to review the risks of index bias.

Abundance is arguably the single most important parameter in ecology [13]; its treatment is
fundamental to the myriad of published biotic indices [6,9]. While biomass may represent a
more informative expression of abundance compared to count data, processing costs associated
with data acquisition have precluded its widespread application [13,14]. The derivation of
count data, has been guided by pragmatic trade-offs between precision, accuracy and process-
ing costs. In the simplest scenario, presence/absence data, the abundance of organisms is
neglected [15]. More commonly, indices are based on a count of all individuals [16,17,18].
Between these extremes various abundance-weighted treatments have been applied including
the allocation of abundance categories [19], taxonomically defined abundance-weightings
(based on presumed size-abundance relationships [20]), and the statistical transformation of
count data [14].

The incorporation of abundance data can bias accuracy and reduce precision in two ways.
Numerically dominant taxa can skew the result in the direction of their indicator scores. At the
other extreme, presence/absence data or strongly transformed abundances can skew the result
in favor of rare taxa by assigning them equal weighting as abundant taxa. These beguilingly
simple alternatives need to be appreciated in context. Natural populations of species demon-
strate differentially aggregated distributions [21, 22] with the degree of aggregation varying in
time and space and in relation to the scale of the sampling unit [23]. Survey methods impose
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bias in capture efficiency. More generally, ecological communities are characterized by skewed
distributions where the majority of species are rare and few are dominant [24]. Species may be
rare for different reasons including vagrancy, implying that they are unrepresentative of the
local environment [25]; this may be particularly problematic in aquatic habitats that wash-in
allochtonous material and exacerbated when analysis is based on dead organisms (e.g. inverte-
brates, algae). Aquatic communities typically demonstrate inverse size-abundance relation-
ships with abundance decreasing as size increases. Pollution is thought to distort size—
abundance distributions, leading to scenarios where smaller organisms become proportionally
more abundant in relation to larger organisms [26]. While indices of diversity aim to strike a
pragmatic balance between the resultant patterns in richness and abundance [10], the classifi-
cation of indicator taxa adds a further layer of complexity to biotic indices.

Factors affecting pollution tolerance and therefore indicator assignment are complex and
can distort the precision of biotic indices. Organisms are differentially sensitive to different
forms of environmental degradation, compromising the accuracy of generalized “pollution”
indices [27]. Taxa can also differ in their sensitivity in time and space [28]. Yet the desire for
greater regional integration has led to the application of indicator values over increasingly large
geographic scales, resulting in highly generalized indicator values [29,30]. Pollution may inter-
act with local environmental conditions, influencing the delivery and uptake of pollutants,
exacerbating or ameliorating an individual’s susceptibility [31]. As organisms are ascribed tol-
erance ranks, human subjectivity can contribute to error; tolerance ranks are sometimes mis-
classified [32]. On a pragmatic level, classification of indicators at higher taxonomic levels (e.g.
family) can represent a strategic compromise based on the average rank of constituent species

Fig 1. Interaction between the natural world and scientific strategy combine to define the derived value of a biotic index.

doi:10.1371/journal.pone.0158383.g001
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[16] or, in a precautionary approach, the most tolerant species [33]. When the realized toler-
ance of an organism at a particular site differs from its classified tolerance value it will bias the
derived index.

In bioassessment the overall measurement of error is based on the combined effect of multi-
ple factors [34]. As contrasting biases may be counter-balanced, this holistic description of
error can provide a useful “fit-for-purpose” evaluation with an interpreted meaning defined by
the particular study. However, such case-specific knowledge limits an understanding of the
respective causes of error and reduces the scope to evolve methods that might best address the
emerging issues of global change. As biotic indices are multi-dimensional measurements, the
variability of natural communities can confound the elucidation of the source(s) of measure-
ment bias. To overcome this limitation, this study combines the analysis of real and idealized
indicator systems and datasets to assess how indicator assignment, abundance, richness and
body size impose fundamental limits on the range and accuracy of biotic indices. Explicitly,
comparative analysis considers:

1. The skewed distribution of taxa across indicator ranks; when taxon richness of respective
indicator classes differs.

2. Trends in organism size and pollution tolerance; when smaller organisms tend to be tolerant
and larger organisms tend to be sensitive.

3. Misclassified taxa; when taxon occurrence reflects its’ true tolerance score but the indicator
contributes an inaccurate score to the derived index.

4. How the treatment of abundance data influences the derived index value in the above
scenarios.

Methods
A wide range of biotic indicator systems were subject to descriptive review (Table 1).

Detailed analysis was based on the seminal example of the BMWP [15]. It was selected to
exemplify biotic indices in general because of its widespread influence [35, 36, 37] and the
wealth of supplementary information on its constituent taxa [32,33, 38, 39, 40]. Derivation of
the biotic index value is based on contrasting treatments of abundance data (see below). The
comparable risk of bias for biotic indices based on alternative indicator systems can be inferred
from their respective summary statistics (Table 1).

The BMWP system incorporates 85 taxa (defined by family, except Oligochaeta), respec-
tively ascribed to indicator rank scores ranging from 1–10, that correspond to a perceived qual-
ity gradient from pollution tolerant (one) to intolerant (ten). No indicators are ascribed the
rank score nine, which acts as a null (empty) group. Assessment of the statistical characteristics
of the BMWP was facilitated by comparison with a hypothetical indicator system (IH), repre-
sented by 100 indicators with 10 taxa ascribed to each of the ten indicator classes. Index values
were derived according to a weighted-average of respective indicator abundance, where abun-
dance was based on a range of increasingly severe transformations: raw abundance, square-
root, logarithmic, presence/absence.

Index value ðabundance weighted � averageÞ ¼
P

ajsjP
aj

where: aj = relative abundance of species j; sj = pollution tolerance score
Numerous researchers have proposed that the indicator mode provides a more accurate

estimate of environmental conditions than a derived weighted-average [41]. The counter
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Table 1. Indicator systems used to derive a biotic index for the bioassessment of inland and coastal waters. Indicator richness is the number of indi-
cators in a discrete tolerance class; Null group refers to a non-linear range of indicator scores (i.e. an “empty group”); Evenness is Simpson’s D measuring
indicator distribution across classes, D for upper/lower is based on the four indicator classes at the max/min of the indicator range.

Acronym*
(reference)

Stressor
type

Indicator
range

Indicator
richness min-
max

Null
group

Evenness of
indicator classes
(D)

D for
upper/
lower

reference

FRESHWATER
MACROINVERTEBRATES

BMWP Organic/
General

1–10 1–24 Yes 0.8094 0.555
0.507

Armitage et al.
1983

IBMWP Organic/
General

1–10 2–27 Yes 0.8468 0.584
0.592

Alba-Tercedor &
Pujante 2000

FBI Organic/
General

0–10 2–17 No 0.871 0.740
0.748

Hilsenhoff 1987

BI Organic/
General

0–10 13–56 No 0.893 0.713
0.744

Hilsenhoff 1988

AWIC Acidity 1–6 3–33 Yes 0.524 0.373
0.712

Davy-Bowker et al.
2005

LIFE Flow 1–6 3–38 Yes 0.651 0.578
0.623

Extence et al.
1998

SIGNAL2-fam General 1–10 8–28 No 0.883 0.721
0.747

Chessman 2003

SIGNAL2-order General 1–8 Yes 0.8466 0.640
0.737

Chessman 2003

MCI Organic 1–10 3–34 No 0.854 0.708
0.545

Stark & Maxted
2007

panUSnutrient Nutrients 1–10 9–11 No 0.900 0.749
0.750

Carlisle et al. 2007

panUSDO/temp DO/ Temp. 1–10 9–11 No 0.900 0.750
0.750

Carlisle et al. 2007

FRESHWATER DIATOMS TDI Trophic N
+P

1–5 196–585 No 0.762 0.710
0.693

Kelly 1998

Trophic VD Trophic 1–7 17–188 No 0.799 0.708
0.598

van Dam et al.
1994

CEE General 1–12 14–148 No 0.863 0.722
0.739

Descy & Coste
1991

IPS General 1–3 1–947 Yes 0.789 0.201
0.130

Cemagref 1982

Saprobic-W Organic 2–3 15–162 No 0.155 NA Wanatabe et al.
1990

Saprobic-S Organic 0.1–4.0 1–79 Yes 0.949 0.736
0.524

Sládeček, 1986

Halobion Salts 1–4 3–112 No 0.562 NA Ziemann (1971)

pH VD Acidity 1–6 1–310 No 0.702 0.650
0.581

van Dam et al.
1994

Descy Organic 1–5 4–54 No 0.647 0.611
0.620

Descy 1979

Pan-Euro trophic Nutrients 1–10*
intermeds

1–71 Yes (3) 0.709 0.578
0.326

Besse-Lototskaya
et al. 2011

MARINE BENTHOS BQI west Organic 1–15 1–56 Yes 0.901 0.686
0.563

Leonardsson et al.
2009

BQIeast Organic 1–15 4–32 Yes 0.682 NA Leonardsson et al.
2009

BITS General 1–3 22–285 No 0.456 NA Mistri & Munari
2008

ABMI General 1–5 12–474 No 0.587 0.587
0.575

Borja et al. 2000

BENTIX General 2–3 31–81 No 0.400 NA Simboura &
Zenetos 2002

*for convenience (not necessarily official acronym), see citation for definitive reference (S1 File).

doi:10.1371/journal.pone.0158383.t001
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argument is that the mode discards information that is integrated within a weighted-average.
As indicator analysis assumes species are distributed in relation to their environmental optima
[8], theory suggests that under ideal conditions the derived weighted-average and the mode
will coincide. While deviation from this theoretical scenario can arise from competitive dis-
placement [42], it can also result from the intrinsic properties of index design and survey pro-
tocols. As this review is focused on the latter, comparative analysis is based on the assumption
that the “true” index value corresponds to the indicator mode; herein a deviation from the
mode is considered to represent bias.

All statistical analyses were carried out in R [43]. Simulation models were based on 20 repli-
cates, each sampling 3000 individuals. Simulations were defined by a unimodal response func-
tion that spanned a fixed range of indicator classes. For mid-range modal values (indicator
ranks 4–7), the response function was symmetric and spanned 7 rank scores (70% of the range;
Fig 2a). For modal values at the extremes of the indicator range (1–3 and 8–10) the response
function was truncated (as there are no indicator ranks<1 or>10). Under these scenarios the
“lost” proportion of the symmetric distribution—that would be assigned to the absent indicator
ranks (i.e. hypothetical indicators<1 or>10)–were redistributed in proportion amongst the
indicator classes present (Fig 2b). Within rank classes all taxa had an equal probability of
selection.

Indicator evenness
Simpson’s diversity [44] was used to summarize the evenness of taxa across indicator classes.
Evenness considered the entire range of indicator scores and, additionally, the lower and upper
limits (i.e., the evenness of the four sequential indicator classes representing the respectively
highest and lowest indicator ranks).

The effects of skewed indicator richness were elucidated by simulating specific scenarios of
an increasing skew in the richness of the modal class and a single adjacent class. The initial
even distribution of IH (10 indicators per class) was progressively skewed by transferring
modal taxa to the designated adjacent class. The influence of distance between the skewed clas-
ses was assessed by locating the enriched class 1, 2 and 3 ranks from the mode. Sampling was
based on a symmetric, unimodal distribution (Fig 2a). For the BMWP system, skewed richness
was assessed by comparing the index values from a series of simulations on the BMWP and the
idealized system, IH, where the mode ranged from 1 to 10.

Size bias
Ecological theory predicts a relationship between body-size and disturbance that has been
extended to incorporate pollution, whereby smaller organisms are regarded as more pollution
tolerant than larger organisms [26]. The consequence of a size-tolerance bias was investigated
by defining an extreme size-biased indicator system (IHs) where organism size and indicator
scores were linearly correlated and associated with consequent differences in indicator densities
(Table 2). Body-size—indicator interactions were assessed by considering a hypothetical habi-
tat where space (n = 3000) could be occupied by one or more individual, depending on organ-
ism size. Habitat space was defined in terms of quality niches, corresponding to indicator
scores, assigned in direct proportion to the unimodal response function applied in sample col-
lection (as above). Overall size bias was assessed by comparing index values from simulations
where the mode ranged from 1 to 10 for IHs vs the non-size-biased indicator system, IH. Spe-
cific size-bias issues considered the decimation (reduction by 90%) of the largest taxa (to
mimic selective predation, habitat loss, etc.), where the resultant vacant space was colonized by
indicators (drawn from the range of quality classes present) that were assigned (i) randomly,
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(ii) with a probability inversely proportional to organism size (i.e. smaller taxa had a higher
probability of colonization). Finally, scenarios where the smallest, lowest scoring taxa were
beyond the limits of detection were simulated (to mimic the effects of increasing mesh-size).

The size vs tolerance score of diatom indicator systems was assessed by Spearman’s rank
correlation, applying Rimet & Bouchez’s [47] biovolume classes; omitting indicators that were
not included in their summarized database. The lack of data on biovolume precluded statistical
analysis for macroinvertebrates and marine benthic organisms.

Fig 2. The unimodal probability distribution applied to indicator selection in simulationmodels
illustrating two generalized examples. a). A symmetric distribution ranging across 7 indicator classes that
occurs for mid-range scores defined by probabilities = 0.05,0.10,0.20,0.30,0.2,0.1,0.05. b). A truncated
distribution that occurs for end-group scores, in this case associated with a mode of 10 where the “missing”
probabilities, totaling 0.35 (i.e., the right-hand probabilities = 0.20,0.10,0.05, respectively corresponding to
the non-defined indicator ranks of 11,12,13) are divided in proportion of the indicator ranks present (giving
truncation-adjusted probabilities = 0.8,0.15,0.31,0.46).

doi:10.1371/journal.pone.0158383.g002
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Misclassification
The influence of misclassified taxa can be defined by: (i) their proportionate occurrence, and
(ii) their degree of misclassification. Scenario (i) was addressed by considering an indicator,
misclassified by 3 ranks below the mode that was sampled with a modal frequency and repre-
sented an increasingly large proportion of the modal abundance (0–67% of the mode, cf.
0–18% of the total sample). Scenario (ii) was addressed by including an indicator representing
20% of the modal population which was misclassified with the lowest score (one) in simula-
tions considering an increasingly distant mode (ranging from 3–10).

Although Chironomidae and Oligochaeta are classified as the most pollution tolerant indi-
cators in the BMWP (scoring two and one, respectively; cf. IBMWP, MCI, pan-US) they occur
in habitats of all qualities [48,49]. Based on the averaged percent-abundance for 29 contrasting
rivers (the UK’s ECN long-term monitoring program [39]) where Chironomidae and Oligo-
chaeta represented over one-quarter of macroinvertebrate taxa (mean±sd: 15.1±8.9 and 11.1
±17.3, respectively), the influence of their misclassification was evaluated by assigning Chiron-
omids and Oligochaeta 25% of the total abundance (12.5% each) in simulated runs where the
mode spanned the range of BMWP scores (1–10). A more comprehensive evaluation of mis-
classified BMWP taxa was based on the revised indicator scores presented byWalley & Hawkes
[32] where it was reported that three quarters of BMWP taxa were misclassified. Here, the
probability of selection was defined by the revised BMWP scores and index values were subse-
quently calculated from both the original and revised tolerance scores, comparing the absolute
difference in their derived index values.

Composite, net bias
As the effects of respective biases are additive, I combined the biases of truncated frequencies,
skewed indicator distribution and misclassified taxa for the BMWP (other biases cannot realis-
tically be assumed for real data) to describe the trend in net index bias across the range of
BMWP scores by comparison with the hypothetical system, IH. The resultant predicted gener-
alization was subsequently tested by comparison with data from 309 sites on Scottish rivers
[40], representing a range of environmental qualities.

Results

Truncated frequencies
The truncation of the frequency distributions caused a positive and negative bias for the lowest
and highest index scores, respectively (Fig 3). Bias was greatest for presence/absence data and

Table 2. Hypothetical size-biased indicator system (IHs) where macroinvertebrate size and indicator value are linearly correlated, resulting in a
non-linear increase in organism densities with respect to size. Size differences were converted to differences in relative abundance by assuming an allo-
metric size (S) density (d) relationship (S = d-0.75; [45]) and taking organism size as the diameter of a circle (which was mapped in two-dimensions). The
seven classification groups of macroinvertebrate size described by Tachet et al. (2000) [46] are provided for comparison.

Hypothetical, Size-biased Indicator System (IHs)

Indicator score 1 2 3 4 5 6 7 8 9 10

Organism size (mm) 2.5 3.75 5.63 8.44 12.66 18.98 28.48 42.71 64.41 96.27

Relative density (per unit habitable space) 130.04 75.73 44.11 25.69 14.96 8.71 5.07 2.96 1.71 1

Organism size classes from the trait database of Tachet et al. (2000)

Size classes 1 2 3 4 5 6 7

Organism size (mm) <2.5 2.5–5.0 5.0–10.0 10.0–20.0 20.0–40.0 40.0–80.0 >80

doi:10.1371/journal.pone.0158383.t002
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lowest for non-transformed data with a range compression represented by: presence/absence
(7.00)< logarithmic (7.37)< square-root (7.72)< raw (8.30).

Indicator evenness
Skewing indicator distributions in IH caused a bias in the direction of the taxonomically rich
indicator class. Divergence increased with the severity of data transformation and as the dis-
proportionately rich class became more distant from the mode (Fig 4a–4c). Indices based on
raw abundance data always conformed to the mode.

The evenness of indicator distributions differed considerably between the reviewed indica-
tor systems, with none completely equitable (Table 1). Overall evenness was a good indicator
of skew amongst the lower scoring classes in respective indicator systems (Pearson’s correlation
0.444, p = 0.04), which tended to be more extreme among low-value (pollution tolerant) indi-
cators compared to high-value indicators (Table 1).

BMWP-based indices revealed a positive deviation for low values and a negative deviation
for high values for indices based on transformed abundance data (Fig 5). The raw abundance
index was unbiased for low scores and alternately positively then negatively distorted for scores
above five due to the distorted frequency distributions associated with the null group (indicator
rank = 9).

Size bias
The systematic correlation between size and indicator scores resulted in an overall negative
bias that was reduced by data transformation (Fig 6a). Despite detrending for index compres-
sion, size bias was associated with a marked “end-effect” as the influence of size was mitigated
by the truncated frequency distributions (Fig 6a). Both random colonization and the

Fig 3. Truncated frequency distributions at the extremes of the range of indicator scores causes a positive (lower end)
and negative (upper end) bias in the derived value for an idealized biotic index, resulting in an overall compression of
the index range.

doi:10.1371/journal.pone.0158383.g003
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preferential colonization of vacated space by small-sized organisms was associated with a
negligible difference in index scores (data not presented). Omission of the smallest organisms
increased the derived index value (Fig 6b), compensating the overall size-abundance-indica-
tor bias (Fig 6a & 6b). Combining correlated size—tolerance scores with the systematic loss
of larger organisms resulted in a negative bias that increased as the number of large-sized
indicator classes affected increased; again, overall bias was mitigated by the increasingly
harsh data transformations (Fig 6c).

Rimet & Bouchez’s [46] biovolume classes indicated a negative correlation between diatom
size and TDI tolerance scores (-0.208, p<0.001), however, other indicator systems demon-
strated weak positive correlations with size: CEE (0.173, p<0.01), IPS (0.084, p<0.05), Van
Dam pH (0.177; p<0.001). Despite the absence of comprehensive data for freshwater macroin-
vertebrates it was notable that the comparatively small Chironomidae and Oligochaeta often
represented the most tolerant scoring classes (e.g. BMWP, IBMWP, MCI, pan-U.S.).

Fig 4. Results from simulationmodels comparing contrasting evenness (Simpson’s D, inset) and
resultant bias (y-axis) as the distance of the skewed class to mode ranged over 1, 2 and 3 rank
classes (x-axis) for (a) presence/absence, (b) log transformed, (c) square-root transformed.

doi:10.1371/journal.pone.0158383.g004
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Misclassification
The effect of misclassifying a single taxon by three scoring classes was relatively small and
decreased with the severity of data transformation (Fig 7a and 7b). Increasing the margin of
misclassification increased bias (Fig 7b).

For the BMWP-based indices, bias associated with misclassification of Chironomidae and
Oligochaeta increased as the modal value increased and was consistently greater for mildly
transformed and non-transformed data (Fig 8a). The net effect of all misclassified taxa (accord-
ing to [32]) was most pronounced for raw abundance data where it accounted for a positive
bias of 1.3 units (Fig 8b). In general the risk of bias decreased with increasing index scores and
became negative for transformed data between index values 6 to 9 (Fig 8b).

Composite, net bias
For BMWP-based indices the additive effect of range compression, skewed indicator distri-
bution and misclassifications described a trend of a gradually decreasing positive bias across
the low-scoring range (1–6), switching to a negative bias for high-scoring values (9–10; Fig
8c). In general the bias tended to be greater as the severity of data transformation increased
(Fig 8c).

Net bias was evident in the derived index values for the 309 Scottish rivers, broadly corre-
sponded to the predictions of the simulated analysis (Fig 8c vs Fig 9a,9b and 9c). The contrac-
tion of the range increased with the severity of data transformation: raw (8.09)> square-root
(6.87)> log (6.1)> presence/absence (5.09). Deviations were consistently lower than the
mode for low-scoring values (1–5), and increased with the severity of data transformation,
whereas deviations were negative at the highest modal value (with the difference between
respective data treatments less distinct; Fig 9).

Fig 5. Simulation results illustrating the interaction between skewed indicator richness and the statistical
treatment of abundance data (see inset) along the scoring range of the BMWP.

doi:10.1371/journal.pone.0158383.g005
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Fig 6. A perfect correlation between indicator size and indicator score causes a systematic bias in index
values that varies with the treatment of abundance data (see inset). (a) overall negative bias over the range of
indicator scores: (b) antagonistic interaction associated with the failure to collect the smallest three size-indicator
classes (indicator mode = 4); (c) synergistic interaction associated with the decimation of the three largest size-
indicator classes (indicator mode = 7).

doi:10.1371/journal.pone.0158383.g006

Improving the Accuracy of Biotic Indices

PLOS ONE | DOI:10.1371/journal.pone.0158383 July 8, 2016 12 / 22



Fig 7. The treatment of abundance data (see inset) influences the degree of bias associated with two scenarios of
misclassification, illustrated by (a) a single taxa misclassified by 3 rank values as its proportionate contribution to the mode is
increased. (b) The presence of a single mis-classified indicator representing 20% of the mode as the degree of misclassification
increases from 3 to 9 rank scores.

doi:10.1371/journal.pone.0158383.g007
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Discussion
Despite the considerable scope to compensate for bias, the interdependence of sampling equip-
ment, laboratory processing and data treatment limit the refinement of index accuracy to a
strategy of optimal compromise. Special attention should be given to the risk of positive bias
associated with low index values. For the BMWP indicator system this is primarily associated
with the depauperate richness of low-scoring indicators and the potential disproportionate effi-
cacy in the collection of small-bodied (low scoring) organisms. These issues are common to
many of the assessment methods detailed in Table 1. Context of application provides an

Fig 8. Bias (y-axis) in the derived index value associated with increasingly complex scenarios in
BMWP-based indices as the mode ranges from 1 to 10 (x-axis), reflecting. (a) the misclassification of
Chironomidae and Oligochaeta when they contribute 25% of individuals; (b) multiple misclassified taxa
defined byWalley and Hawkes [32]; (c) Net bias associated with range compression, taxonomic skew and
misclassified taxa.

doi:10.1371/journal.pone.0158383.g008
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appreciation of the risk to biodiversity management. In the UK quality classification is based
on an Observed/Expected ratio (test v reference assemblages; [38]). Given that the BMWP
index for presence-absence data can be as low as 3.08 at a reference site (or 4.31 for a reference
“type”; N = 12; 3-season samples [38]) and that low-score positive bias can exceed 100% of the
true index value, naturally low-scoring sites may need to be all but devoid of life to fail quality
standards. This specific example is contextualized by the observation that most biotic indices
present size bias and skewed indicator distributions that are generally comparable and some-
times more extreme than the BMWP (Table 1).

Taxon richness evenness
Numerous options could be exploited to develop indicator systems that are more equitable in
terms of indicator size and richness. Representing 84 indicator “families” (excluding Oligo-
chaeta) the BMWP exploits less than half the 210 families of UK macroinvertebrates [50]. Simi-
larly, the widely used FBI is limited to aquatic insects, excluding Crustaceans, Annelids and
Molluscs. Increasing the taxonomic resolution of indicator assignment provides an alternative
option. Comparing Hilsenhoff’s family-level FBI with his species level BI demonstrates how
higher taxonomic resolution can deliver greater equitability (Table 1). Ultimately the scope to
adjust indicator equitability is limited by nature. Biogeographic phenomena can give rise to a
particularly challenging evaluation of bias when the regional species assemblage represents a
skewed fraction of the designated indicator taxa [41]. Under these scenarios, reviewing indica-
tors’ traits (dispersal, life-cycle, etc.) could help distinguish between potential colonists and
taxa that are otherwise associated with a biogeographically restricted distribution.

Universal indicators
Issues of biogeography have been brought to the fore by efforts to harmonize assessment meth-
ods across political frontiers. While the elaboration of pan-continental indicator systems is an
enticing idea, the regional specificity of indicator systems is, to a large degree, grounded in the
differential sensitivity of organisms. Describing a pan-European indicator system for diatoms,
Besse-Lototskaya et al. [29] essentially averaged the indicator scores from seven different indica-
tor systems. This strategic compromise required the creation of “intermediate” ranks that merge

Fig 9. Bias in derived BMWP-based index values compared to the indicator mode for 309 rivers of
variable quality throughout Scotland considering contrasting treatments of abundance data. a) raw
abundance, b) log-transformed, c) presence-absence. Solid circles represent the indicator mode, open
circles represent the derived index value, arrows indicate the range. (N.B. no sites were characterized by a
mode of eight, nine is a null group).

doi:10.1371/journal.pone.0158383.g009
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indicators previously assigned different indicator scores [51]. As a result, the total number of
classes was increased and the subsequent indicator distribution is highly inequitable (Table 1).
Tackling the issue via empirical analysis, Carlisle et al. [30] derived macroinvertebrate indicators
for the US in relation to various water quality characteristics by applying a combination of ordi-
nation (to describe quality gradients) and weighted-averaging (to derive indicator scores),
resulting in pleasingly symmetrical indicator distributions (Table 1). However, both these
approaches represent an increased risk of error. Essentially brushing over the regional differ-
ences in sensitivities, these biogeographic compromises imply that at any given location the
probability of misclassification is increased [51].

Taxonomic skew and indicator abundance
The treatment of abundance data provides considerable scope to off-set bias. Raw abundance
data can mitigate the effects of uneven indicator richness. Conversely, transformation of abun-
dance data can be used to give more emphasis to indicator richness and otherwise dampen
unrepresentatively high abundance data. Some of the key issues of differential richness can be
identified by descriptive analysis. For example, synchrony in the life-cycles of Ephemeroptera,
Plecoptera and Trichoptera (EPT) may synergistically interact with a skew in their indicator
distribution and cause temporal instability in biotic indices, a phenomena that tends to be
more extreme where seasonal differences are more pronounced [52, 53]. Considering the ECN
data, the BMWP-based indices were significantly higher in spring at 12 sites based on pres-
ence-absence data, compared to 5 sites based on raw abundance data, highlighting the damping
effect of raw-abundance data on the springtime peak in EPT richness. The interaction between
indicator skew and abundance data are also revealed by differences in the index range. For the
ECN data, the BMWP-based index value ranged from 2.40–8.11 (presence-absence) compared
to 1.02–9.37 (raw abundance) across sites, representing an increase of 64% in the overall range.
However, the extent to which the treatment of abundance data can be used to improve accu-
racy must also consider other aspects of assessment design.

The theoretical relationship between organism size, abundance and disturbance led War-
wick [26] to propose a method of bioassessment defined in terms of the ratio of organism size
and abundance. The trend in indicator size and indicator scores in some of the indicator sys-
tems described in this study appears to provide qualified support for the premise that smaller
organism are often comparatively tolerant to environmental degradation (albeit a generaliza-
tion that is subject to many exceptions). The highly exaggerated size-bias of simulated models
illustrated a scenario that is only vaguely approximated in some cases for real indicator sys-
tems. Yet, as the absence of a correlation merely confirms that there is no systematic size bias,
this provides little room for reassurance. Any size difference can be associated with bias when-
ever two or more co-existing organisms differ in both size and indicator class. Anecdotally, it is
worth contemplating the extreme size difference between the largest macroinvertebrate of the
BMWP system, Astacidae (120 mm; BMWP = 8) and the some of the smallest, Chironomidae
and Oligochaeta (<5 mm; BMWP = 2 and 1, respectively). Evidently, an average kick-sample
is likely to capture rather more Chironomidae and Oligochaeta than crayfish. Similar size—tol-
erance score disparities are apparent in other indicator systems (e.g. IBMWP).

The pernicious effects of organism size has been more commonly addressed by researchers
working with microscopic organisms, presumably because differences in organism size can be
more extreme and often more tractable for these groups. Some Saprobic indicator systems
incorporate five orders of magnitude [20] diatoms range over three (5–2,000μm; [54]), while
macroinvertebrates typically spans less than two (2.5 mm– 80.0 mm; [46]). Several Saprobic
and diatom indices incorporate abundance data via categorical classes, using this as an
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adjustment system to compensate for differences in size whereby fewer larger-bodied individu-
als are required to achieve the equivalent classification of “high abundance” compared to
smaller individuals [20, 55]. As diatoms are encased in a siliceous cell, organism size is essen-
tially constant and facilitates size-based generalizations [46, 50]. Estimates of total biovolume
can therefore be derived by multiplying cell abundance by the species-specific biovolume.

Warwick et al. [14] explored various options to down-weight abundant indicators via statis-
tical transformation prior to the derivation of the AMBI, concluding with a recommendation
to apply the “moderate” adjustment of square-root transformation. Taylor’s Law [21] repre-
sents an empirical model that characterizes the abundance distribution of populations and oth-
erwise identifies optimum statistical transformations. Applying the theoretical imperative of
Taylor’s Law to log-transform macroinvertebrate abundance prior to index derivation demon-
strated a significant increase in the precision and accuracy of a broad range of bioassessment
metrics [56]. Similar aggregated distributions for a wide range of other organisms [21, 57] sug-
gests that similar improvement might be achieved with other indicator taxa.

The systematic avoidance of small organisms represents an extreme scenario of size bias
that can be particularly acute for low-scoring indicators. The risk of size-avoidance is indicated
by considering body-size in relation to size-selective survey methods. For protocols employing
nets and sieves, it is primarily defined by mesh size. Amongst aquatic macroinvertebrates
attention has necessarily focused on the low-scoring Diptera and Oligochaeta with body mor-
phologies that approximate narrow cylinders. In many protocols the mesh-size of a typical net
is around 500–600 μm and sometimes as large as 1mm [35, 58]. As most final instar Chirono-
midae have a head capsule width< 350μm [59] and the body-width of aquatic Oligochaeta is
often< 400 μm [49] these taxa are presumably systematically underrepresented by bioassess-
ment sampling methods. Ironically their underrepresentation in samples may represent a for-
tuitous correction for taxa whose indicator values are often grossly misclassified.

Misclassification
Taxa are misclassified for a variety of reasons including the methods used to derive indicator
scores, obliged pragmatism, and insufficient knowledge. Pragmatism is important in the
assignment of indicator values at course levels of taxonomic resolution when the indicator val-
ues of constituent taxa are known to differ [33]. It is exemplified by the frequently lamented
misclassification of Oligochaeta and Chironomidae that are generally assigned low scores (e.g.
IBMWP, FBI, SIGNAL). Distinguished as the most tolerant BMWP indicator, Oligochaeta
occur in habitats of good and bad quality [49]. Chironomids, represented by more than 10,000
species worldwide, are similarly present in almost all freshwater habitats [48]. Compromise to
their environmental ubiquity is illustrated by the course-resolution FBI, where chironomids
are assigned to two classes (distinguished as “Blood-red Chironomidae (Chironomini) 8, other
(including pink) Chironomidae 6”) compared to the high-resolution BI where their diverse
genera occupy the entire range of 11 tolerance classes [16, 60].

Historical precedent can represent an important nuance for indicators of general environ-
mental quality as management focus changes from point source, organic inputs to more holis-
tic definitions of pollution. If the definition of environmental quality changes, the relevance of
previously established quality indicators may be compromised. Identifying potential causes of
misclassification can be particularly problematic when indicators have been assigned by the
occult art of expert opinion [61], where the criteria of indicator assignment and the gradient of
ranked scores are rarely explained. Precise meaning is also obscured when indicators are
assigned via a posteriorimethods of ordination [30]; based on the statistical comparison of
multi-species assemblages, the derived indicator scores for individual taxa are implicitly
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dependent on the abundance distributions of all other taxa. The more common method of iter-
ative weighted-averaging in relation to an a priori quality gradient to derive “ecological optima”
(after [8]; e.g. [60]), provides a simpler statistical definition of tolerance scores. Although
assumption about unimodal distributions, competitive displacement and data gaps (zero
occurrences) can be problematic [42], this individualistic analytical perspective offers a more
parsimonious model for indicator assignment. However, the opportunity to reduce the spatio-
temporal “noise” of abundance data and generate more representative weighted-averages via
data transformation [56] appears to have been largely overlooked in the derivation of indicator
scores.

Recognizing that their scientific objectives were fundamentally determined by data avail-
ability, the pioneers of biotic indices counselled the revising of indicator systems as more data
became available [33, 60]. Analyzing a dataset of 1700 samples, Wally & Hawkes [32] found
that three quarters of BMWP taxa were misclassified with almost twice as many representing
inappropriately high (44%) as opposed to inappropriately low (24%) scoring ranks. Considered
in the wider context of this review, it is worth noting that their re-evaluation also resulted in a
more equitable distribution of indicators [32].

The revolution in data acquisition delivered by next generation DNA sequencing offers an
exciting opportunity to “re-boot”methods of bioassessment [62, 63]. The capacity to bulk pro-
cess homogenized benthic samples [62] and indirectly detect organisms from water samples as
“environmental DNA” (e-DNA; via faeces, urine, cell/tissue fragments, etc. [64]) enables a
rethink on sample collection and offers the possibility to address some of the problematic issues
associated with net mesh-size and morphological taxonomy. Barcoding provides a quick turn-
around on high-resolution data from benthic samples that can include immature specimens
and groups that are otherwise taxonomically challenging (e.g. Diptera, Oligocheata). As such,
it could be used to develop more comprehensive indicator systems and help reduce bias associ-
ated with body-size and the skewed richness of contrasting indicator classes. However, the
application of this new technology brings its own risks of bias to the derivation of biological
quality. In aquatic ecosystems e-DNA can persist for extended periods (days to weeks [65]),
creating potential difficulties for site specific monitoring that could be particularly acute for
rivers and coastal waters [64]. As e-DNA is ubiquitous it is present in the benthos and may
therefore represent contamination in homogenized benthic samples. Laboratory procedure is
also a critical issue for bar-code bioassessment: primers can fail to pick up the DNA of some
organisms while the DNA of others can be amplified to different extents and confound quanti-
tative comparison [62, 63, 66]. Nonetheless, the increasing investment in DNA barcoding [62,
67] suggests that the design and application of bioassessment might need to adapt to the pros
and cons of this new technology and its associated caveats for the interpretation of biotic
indices.

In the absence of an explicit reference condition, any metric of ecological quality has limited
meaning because the expected value (for the non-degraded system) is unknown. Expressing a
biotic index in the context of the reference condition summarizes the relative quality of ecologi-
cal conditions (the resultant ratio is often referred to as an “Ecological Quality Ratio”, EQR [3]).
Expressing biotic indices as an EQR also provides a precaution against the risk of systematic
bias that has been considered in this study. Assuming the reference condition is accurately
assigned, the consequent effect of bias can be inferred from knowledge of ecological similarity
between replicate samples [68]. As individual biases are additive, their net effect is expected to
result in a normal distribution of errors around the average net bias [69]. If survey protocols are
standardized, this error variance is defined by the sum of biases associated with sample variabil-
ity. As the risk of bias in the test sample and reference sample are the same, their overall respec-
tive biases will—on average—cancel. However, for any particular comparison, residual
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differences in net bias will be present and can be estimated in terms of the overall error variance
for reference comparisons. This emphasizes the importance of standardized survey protocols,
accurate reference assignment and sample replication in the derivation of the comparative ratio.

Conclusion
This study has demonstrated the risk of bias associated with a wide range of biotic indices, pro-
viding a detailed example based on the original BMWP indicator system. Assessment was facil-
itated by the comprehensive data available for review. To the pioneers of bioassessment [33,
60], access to such data was considered essential to progress.

Preceded by a long history, bioassessment has only recently begun to gain recognition from
environmental managers [1, 7]. The severity of contemporary global change presents a particu-
larly challenging agenda. Simple metrics of biodiversity provide an inadequate summary of
ecological degradation [5] and highlight the need for metrics that can provide information on
specific aspects of biological quality. Given the prominence of biotic indices in national moni-
toring they are arguably the single most influential metric defining the ecological management
of aquatic resources. This emphasizes the need to maximize the accuracy of biotic indices
and to clearly communicate the information provided by their summarized numerical value.
Reporting biotic indices as a comparative ratio with an appropriate reference enables the quan-
tification of net bias and the consequent reliability of the index-ratio to be estimated. The
effects of body-size, abundance, richness and ascribed indicator scores provide four reasons
why end-users should check the estimated accuracy whenever quality ratios have been derived
from a biotic index.
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