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Rhodiola is an ancient wild plant that grows in rock areas in high-altitude

mountains with a widespread habitat in Asia, Europe, and America. From

empirical belief to research studies, Rhodiola has undergone a long history

of discovery, and has been used as traditional medicine in many countries and

regions for treating high-altitude sickness, anoxia, resisting stress or fatigue, and

for promoting longevity. Salidroside, a phenylpropanoid glycoside, is the main

active component found in all species of Rhodiola. Salidroside could enhance

cell survival and angiogenesis while suppressing oxidative stress and

inflammation, and thereby has been considered a potential compound for

treating ischemia and ischemic injury. In this article, we highlight the recent

advances in salidroside in treating ischemic diseases, such as cerebral ischemia,

ischemic heart disease, liver ischemia, ischemic acute kidney injury and lower

limb ischemia. Furthermore, we also discuss the pharmacological functions and

underlying molecular mechanisms. To our knowledge, this review is the first

one that covers the protective effects of salidroside on different ischemia-

related disease.
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Introduction

Rhodiola is a genus of a perennial succulent plant in the Crassulaceae family that

produce flowers ranging in color from yellow to red (Galambosi et al., 2006). Having more

than two hundred species in total, Rhodiola is widespread in high-altitude places, such as

mountainous regions in Asian and European countries. Its habitat includes the

southwestern part of China, India, Pakistan and North Korea, as well as Russia,

Europe, especially in Alpen, and America (Khanum et al., 2005). Rhodiola has been

used as a traditional medicine in many countries and regions for treating high-altitude

sickness, anoxia, resisting stress or fatigue, and for promoting longevity (Nan et al., 2003;

Chen et al., 2012; Luo et al., 2019; Zheng et al., 2019).

Previous studies have identified that Rhodiola has more than 140 components, with

salidroside, tyrosol, rosavin, and triandrin as the main biologically active ones (Panossian
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et al., 2010). Among them, salidroside, categorized as

phenylpropanoid glycoside with a molecular weight of 300.30,

is the main active component found in all species of Rhodiola

(Panossian et al., 2010; Qian et al., 2012; Zheng et al., 2019; Fan

et al., 2020). Salidroside has been known to possess various

pharmacological properties, such as resisting anoxia, anti-

aging, anti-cancer, anti-inflammation, antioxidative as well as

protecting the cardiovascular system (Zhang et al., 2009; Qian

et al., 2012; Zheng et al., 2019; Fan et al., 2020). Accordingly,

salidroside has attracted attention as a potential compound for

treating ischemic diseases.

Ischemic diseases are pathological conditions caused by the

obstruction of blood vessels, leading to an insufficient supply of

oxygen and nutrients to organs and tissues. Ischemic diseases

include ischemic stroke, myocardial infarction (MI), liver

ischemia, ischemic acute kidney injury (AKI) and lower limb

ischemia (Eltzschig and Eckle, 2011). Currently, standard

therapeutic strategies for treating these diseases include

surgery-based revascularization, organ transplantation,

medication and/or application of pharmacologic agents as well

as therapeutic angiogenesis (Selzner et al., 2003; Hankey, 2017).

Several main components extracted from traditional herbs or

plants have also been investigated for their potential for treating

ischemic diseases (Han et al., 2017; Han et al., 2022). Duan et al.

(2021) explored the potential of using Baicalin, the major

component of the root of traditional Chinese herb Scutellaria

baicalensis, for treating stroke; while Wang et al. (2021)

examined the function of Danshen, the active component

extracted from the root of Salvia miltiorrhiza Bunge, for

treating myocardiac injury. In 2009 and 2012, Zhang et al.

(2009), Chen et al. (2012) found that salidroside could

ameliorate the symptoms of cardiomyopathy and hypoxia-

induced neuronal damage in cardiomyocytes and mice with

cortical impact injuries, respectively. Since then, more studies

have revealed that salidroside possesses promising

cardioprotective, anti-aging, hepatoprotective, neuroprotective

and angiogenic potentials (Mao et al., 2010; Zhu et al., 2015b;

Chang et al., 2016; Zhong et al., 2019). In this review, we

summarize recent advances regarding the molecular

mechanisms and therapeutic effects of salidroside in treating

ischemic diseases, thus deepening the understanding of its

therapeutic potential.

Rhodiola and its active
component—Salidroside

Traditional use of Rhodiola

As a member of the Crassulaceae family, Rhodiola is an all-

season succulent plant that grows flowers in various colors

ranging from yellow to red. More than 200 species of

Rhodiola have been found, with some of them, such as R.

rosea, Rhodiola quadrifida, Rhodiola kirilowii, Rhodiola

crenulate, and Rhodiola sachalinensis, have been studied

(Panossian et al., 2010). Rhodiola can be found in

mountainous regions with altitudes of 1,800 to 5,000 m above

sea level worldwide, including the Kunlun Mountains,

Himalayas, Altai Mountain and the Alps (Zhuang et al., 2019;

Cunningham et al., 2020). R. rosea, also known as rose root,

golden root, or arctic root, is the most extensively studied

Rhodiola species, and can be found in Heilongjiang, Jilin,

Tibet, Yunnan, Ningxia, Gansu, Qinghai, and Sichuan

provinces in China, as well as Northern Europe, Russia,

Mongolia, Korea, and Japan (Galambosi et al., 2006).

Because of its widespread habitat, Rhodiola has been used as a

traditional medicine in many countries and regions (Nan et al.,

2003; Chen et al., 2012; Luo et al., 2019; Zheng et al., 2019). In

traditional Chinese medicine, Rhodiola has been used for

increasing vital energy, invigorating blood circulation,

relieving asthma, and for treating cough, diarrhea, as well as

bruises (Li and Su, 2018). The Vikings used Rhodiola for

strengthening the body during intense labor; while people in

Ireland used it as a pain-healing and headache-curing plant

(Panossian et al., 2010). In France, Rhodiola has also been

used as a stimulant and astringent (Alm, 2004). Russians use

R. rosea as a stimulant against fatigue and for treating nervous-

mental diseases, neuroses and neurotic disorders; while in

Siberia, people believed that consuming Rhodiola helped to

prolong their lifespan (Panossian et al., 2010).

Use of rhodiola in the modern era

The traditional use of Rhodiola worldwide has initiated

modern scientific research regarding its pharmacological

activities and active components underlying its therapeutic

effects (Furmanowa et al., 1995). In the 1960’s, Rhodiola was

extensively studied as an adaptogen, which is defined as

biochemical compounds that possess adaptive effects towards

stressors, such as chemical, biological and physical factors,

instead of responding to them exclusively (Lan et al., 2017),

and meet the following criteria: 1) not disturbing with normal

conditions, 2) non-specific actions, and 3) providing normalizing

actions to recover the affected conditions (Kelly, 2001; Khanum

et al., 2005). Rhodiola could function as an adaptogen that

prevents high-altitude sickness by increasing adaptation

potential to high-altitude places with extreme conditions, such

as low oxygen content, low temperature and increased air

pressure, which affect physical conditions including blood

pressure, heart rate, and tissue oxygen (Basnyat and Murdoch,

2003; Nieto Estrada et al., 2017). A human study involving

15 correspondents (9 females and 6 males) revealed that

Rhodiola benefited the physical conditions of ski athletes, as it

increased their accuracy and balance, reduced tremors and

increased heart rate (Khanum et al., 2005). A preclinical study
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showed that Rhodiola could also exert a stress-resistance effect by

helping Cerevisiae cells undergo several adaptations against stress

factors in the stationary phase and increasing cell survival at the

exponential phase without activating major antioxidant enzymes

(Kelly, 2001; Bayliak and Lushchak, 2011).

Early studies of the pharmaceutical use of Rhodiola in the

modern era were conducted mostly using its root extract

(Rhodiola root extract, RRE), which is rich in secondary

metabolites. RRE is usually extracted in polar solvents, such as

alcohol (Wiedenfeld et al., 2007). Since the middle of the 19th

century, RRE has been studied further as an adaptogen for its

antioxidant properties and effects on the central nervous system

(Olsson et al., 2009; Dinel et al., 2019). Studies were then

extended further for different applications, such as cardiac

diseases, cancer and cerebrovascular disease (Cheng et al., 2012).

The discovery of various functions of RRE subsequently

drove the exploration of its active components. Since then,

several secondary metabolites from RRE have been isolated,

including phenylpropanoids, phenylethanol, flavonoids,

monoterpenes and phenolic acids, with salidroside, tyrosol,

rosavin, and triandrin as the main active components (Ming

et al., 2005). Salidroside, which could be found in all Rhodiola

species with concentrations ranging from 1.3 mg/g to 11.1 mg/g,

has been known to possess various pharmacological properties

(Figure 1). These include resisting anoxia, anti-aging, anti-

cancer, anti-inflammation, and antioxidative as well as for

protecting cardiovascular system (Zhang et al., 2009; Qian

et al., 2012; Zheng et al., 2019; Fan et al., 2020). Moreover, as

will be discussed below, salidroside has attracted interest as a

potential drug for treating ischemic disease due to its ability to

reduce oxidative stress and inflammation, while promoting cell

survival and improving angiogenic potentials (Figure 2) (Mao

et al., 2010; Shi et al., 2012; Xu et al., 2013; Zhu et al., 2015b;

Chang et al., 2016; Cai et al., 2017; Feng et al., 2017; Zhang et al.,

2018; Zhong et al., 2019).

Ischemic diseases

Ischemic diseases

Normal blood perfusion provides nutrition, oxygen, and

metabolic compounds systematically to the whole organs,

allowing them to produce and store energy. In contrast,

interruptions in the blood vessels reduce blood flow and

subsequently lead to an insufficient supply of nutrition and

oxygen (Eltzschig and Eckle, 2011). These conditions cause

severe organ and tissue damage. Furthermore, it could be

lethal for cells with a high metabolism demand, such as

neuron cells, cardiac cells, liver cells and renal cells, as well as

cells in the hindlimbs, the most distal organ from the heart

(Eltzschig and Eckle, 2011; Tymianski, 2011).

Some ischemia-manifested diseases, including stroke, lower

limb ischemia and MI, can cause cell death and even mortality.

Ischemic condition typically induces cell death through

apoptotic, necrotic, and autophagic pathways. The

insufficiency of oxygen caused by ischemia induces oxidative

stress within the cells. Continuous stress leads to more reactive

oxygen species (ROS) production and assemblage in

mitochondria (Fu et al., 2020). ROS then affects the

mitochondrial membrane permeability transition pore, causing

the secretion of cytochrome c (cyt-c) which leads to cell apoptosis

(Arslan et al., 2011). Ischemic condition also induces cell

necrosis, as calcium ion influx, which, together with

mitochondrial membrane leakage, allow extracellular fluid to

enter cells, causing cell swelling and rupture (Kristian and Siesjo,

FIGURE 1
Chemical structure of salidroside.

FIGURE 2
Therapeutic potential of salidroside in ischemic diseases.
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1998; Szydlowska and Tymianski, 2010). Another cellular death

pathway, autophagy, is commonly due to the massive

vacuolization of cytoplasm within cells (Hotchkiss et al., 2009).

On the other hand, ischemia and reperfusion also contribute

to vascular dysfunction. The most common cause is through

increasing vascular cells permeability and endothelial

inflammation. The hypoxic state caused by less oxygen

availability stimulates reduced intracellular activities of

adenylate cyclase activity and the level of AMP, interrupting

vascular balance permeability and leading to vascular leakage

(Perrot et al., 2018). Meanwhile, dead cells that have undergone

apoptosis or necrosis release ATP, which can trigger endothelial

inflammation by direct binding to the NOD-like receptor family

pyrin domain containing 3 (NLRP3) inflammasome and/or to

endothelial inflammation receptors such as pyrimidinergic

receptors (Figure 3) (Riegel et al., 2011).

Current therapeutic strategies for
ischemic diseases

Current therapeutic strategies for ischemic diseases include

therapeutic angiogenesis, surgery-based revascularization,

organ transplantation, medication and/or application of

pharmacologic agents (Selzner et al., 2003; Hankey, 2017;

Deng et al., 2020; Han et al., 2022; Tarantul and Gavrilenko,

2022). Revascularization surgery usually builds blood vessel

bypasses to promote blood flow, or applies special balloons and

bionic stents to expand blocked blood vessels. Another surgery-

based approach is organ transplantation to replace damaged

organs (Thorgersen et al., 2019). For medication treatment,

drugs such as rivaroxaban and statins have been recently shown

as potential drugs for treating ischemic diseases owing to their

function as anti-platelet aggregation and anti-platelet

thrombosis as well as for relaxing peripheral blood vessels

and vasodilator (Investigators et al., 2010; Oesterle et al.,

2017). Therapeutic angiogenesis, which aims to induce

intrinsic angiogenic potential, promote the sprouting of new

vasculature, and subsequently recover blood perfusion in the

ischemic site, has emerged as one of the most promising

strategies for treating ischemic diseases in the past two

decades (Annex, 2013; Ko and Bandyk, 2014).

Pharmacological studies of
salidroside in ischemic diseases

Cerebral ischemia

Cerebral ischemia is a condition where blood flow to the

brain is insufficient to meet the metabolic demand, thus causing

energy metabolism disorder in brain tissues. Furthermore, it

might also cause oxidative stress due to excessive inflammatory

cytokines production (Siesjo, 1988; Liu et al., 2011). The most

well-known manifestation of cerebral ischemia is ischemic

stroke, which could be caused by hypertension,

atherosclerosis, smoking and complication of diabetes (Szeto

et al., 2018; Ajoolabady et al., 2021; Paul and Candelario-Jalil,

2021). Ischemic stroke could lead to harmful outcomes, such as

death, dementia, and disability (Ghosh et al., 2019). Decreased

oxygen and glucose supply, in turn, causes insufficient

metabolism and ATP production, which subsequently triggers

cell death in the area of extreme ischemia. In areas with less acute

ischemia, the secretion of toxic substances, such as extracellular

glutamate and other excitatory neurotransmitters, leads to

excitotoxicity (Iadecola and Anrather, 2011). This then drives

the activation of the inflammatory response, mitochondrial

dysfunction, and oxidative stress-activated programmed cell

death. Therefore, therapeutic strategies for cerebral ischemia

mainly aim to protect neuron functions by suppressing

excitotoxicity, inflammation, apoptosis, and oxidative stress

(Iadecola and Anrather, 2011).

FIGURE 3
Molecular mechanisms underlying the therapeutic effect of salidroside.
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Zhang et al. (2018) revealed that salidroside could upregulate

the expressions of brain-derived neurotrophic factor (BDNF)

and tyrosine kinase receptor B (TrκB), whose binding activates

phosphoinositide 3-kinase (PI3K), which in turn phosphorylates

phosphatidylinositol-4,5-bisphosphate (PIP2) to

phosphatidylinositol-4,5,-triphosphate (PIP3). Then,

PIP3 activates the mammalian target of rapamycin complex 2

(mTORC2), which, in turn, phosphorylates and activates protein

kinase B (Akt) protein (Sarbassov et al., 2005). Activation of the

BDNF/PI3K/Akt pathway is crucial to inhibit excitotoxicity (Dar

et al., 2018). Excitotoxicity inhibition then triggers the activation

of the mammalian target of rapamycin complex 1 (mTORC1),

which promotes cell survival and proliferation by stimulating

lipid and protein synthesis (Valvezan et al., 2017). Furthermore,

animal studies with the middle cerebral artery occlusion

(MCAO) mice model showed that salidroside treatment

lowered ischemia/reperfusion (I/R) injury-induced neuron cell

apoptosis by promoting PI3K and Akt expression levels, resulting

in the recovery of mice brain post-stroke injury (Chen et al., 2012;

Zhang et al., 2018; Yin et al., 2021). Moreover, salidroside could

also suppress ischemia-induced apoptosis by inhibiting apoptotic

proteins, such as B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated

protein (Bax) (Shi et al., 2012).

Microglia are the major macrophages that reside in the brain

to react during brain damage (Figure 3). There are two

phenotypes of microglia, M1 and M2. M1 microglia are

responsible for secreting inflammatory cytokines, such as

tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and

interleukin-1β (IL-1β), while M2 microglia release anti-

inflammatory cytokines, such as interleukin-10 (IL-10) and

transforming growth factor-β (TGF-β) (Tan et al., 2021).

Upon exposure to ischemic condition, these two microglia

regulate the inflammatory response in opposite ways:

M1 microglia induce inflammation and impair neurogenesis,

while M2 microglia protect the brain damage by restoring the

neurogenesis (Tan et al., 2021). Salidroside was found to

stimulate the polarization of M1 and M2 microglia cells in the

MCAO mouse model, resulting in decreased pro-inflammatory

cytokines secretion from M1 cells and increased phagocytosis

function of M1 cells. Moreover, salidroside also indulged in the

phenotypic change of M1 cells to M2 cells, eventually increasing

the number of M2 cells in the ischemic area of the brain (Liu

et al., 2018). Salidroside has also been proven to reduce

lipopolysaccharide (LPS)-induced microglia apoptosis by

suppressing the nuclear factor kappa-light-chain-enhancer of

activated B (NF-κB) and mitogen-activated protein kinase

(MAPK) pathways (Hu et al., 2014).

Recruitment of T-cells and B-cells as immunosuppressor is

another mechanism involved in inflammatory response triggered

by cerebral ischemia. Salidroside could restore the balance of

Th17/Treg cells, which is disrupted upon exposure to ischemia,

thereby maintaining the peripheral neurons stability after

ischemia (Yin et al., 2021).

Another mechanism of neuroprotection by salidroside is by

maintaining monoamine neurotransmitters in the dopaminergic

system. Monoamine oxidase (MAO) is an enzyme rich in the

striatum and hypothalamus that could catalyze the oxidation of

monoamines, such as dopamine, serotonin, adrenaline, non-

adrenaline and histamine (Youdim et al., 2006). Dopamine

plays a crucial role in preventing the delayed calcium

deregulation caused by excitotoxicity (Vaarmann et al., 2013;

Dar et al., 2018). Zhong et al. reported that salidroside

administered intraperitoneally could increase the levels of

MAO, dopamine, 3,4-dihydroxyphenylacetic acid, and

homovanillic acid in the striatum of a focal brain ischemic

injury rat model. Salidroside could also induce the expression

of tyrosine hydroxylase (TH), an important enzyme in dopamine

synthesis (Zhong et al., 2019).

Increased oxidative stress is a crucial factor that induces

ischemic cell death. Salidroside could also ameliorate post-

ischemic neuronal injury by promoting the expression of

nuclear erythroid 2-related factor 2 (Nrf2), a transcription

factor that binds to the antioxidant response element (ARE)

and induces the expression of several antioxidant enzymes

involved in ROS scavenging, such as catalase (CAT),

superoxide dismutase (SOD), glutathione (GSH), and

glutathione peroxidase (GSH-px). Salidroside elevated the

expression of Nrf2 and protein deglycase DJ-1 (Li et al.,

2019). From these downstream and upstream mechanisms,

ischemic injury is ameliorated through ROS scavenging (Han

et al., 2015).

Ischemic heart disease

Blood flow in the human body is rhythmical blood

distribution within the capillary beds throughout each tissue

(Xu, 2020). In addition to being responsible for pumping blood,

the heart itself could also suffer severe damage when the blood

flow rhythm is disturbed. Ischemic heart disease (IHD) is a type

of cardiovascular disease characterized by stenosis or arterial

obstruction, which leads to insufficiency of blood flowing

through the heart (Wong, 2014). The acute or chronic

manifestations of this condition are MI, heart failure and

cardiac death (Guo et al., 2018).

Salidroside could prevent the progress of myocardial

ischemia from the early stage, as it could reduce exacerbation

of atherosclerosis in blood vessels by inhibiting plaque formation

and reducing the expression of vascular cell adhesion molecule

(VCAM), intercellular adhesion molecule (ICAM), and

monocyte chemoattractant protein-1 (MCP-1), which are

inflammatory mediators involved in inflammatory cascade and

in the pathogenesis of atherosclerosis and plaque destabilization

(Figure 3) (Zhang et al., 2012).

Ischemia can lead to cardiomyocyte cell death. Two types of

apoptosis are involved in post-ischemic heart failure progression:
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intrinsic apoptosis, which occurs in the infarct zone within 24 h

of ischemia; and extrinsic apoptosis, which occurs in the

myocardium under persistent ischemic conditions (Olivetti

et al., 1997; Crow et al., 2004; Ben-Shahar et al., 2021). The

intrinsic apoptotic pathway, also known as the mitochondrial

pathway, is also engaged in myocardium apoptosis around the

infarction area. This type of apoptosis involved both pro- and

anti-apoptotic proteins of the Bcl-2 family, for example, Bax and

Bcl-2, respectively. Upon the occurrence of MI, Bax is highly

accumulated around the infarction area, while Bcl-2 is absent in

this area. In contrast, an increase in Bcl-2 could be detected in

non-infarcted cardiomyocytes surrounding the infarcted cells

(Misao et al., 1996; Krijnen et al., 2002). Meanwhile, in the

persistent-ischemic myocardium, the death receptor, which

induces an extrinsic apoptotic signaling cascade, is activated

(Fan et al., 2013). For example, the death receptor Fas can

bind to Fas-associated protein with the death domain

(FADD), which in turn directly binds to caspase 8, one of the

initial caspases, and activates it by triggering its cleavage.

Activated caspase 8 then cleaves and activates caspase 3, an

executor caspase, which subsequently stimulates apoptosis

(Figure 4) (Hotchkiss et al., 2009). Lai et al. (2014), Li et al.

(2016). reported that salidroside demonstrated a cardioprotective

effect by preventing cardiomyocyte apoptosis in cardiac disease

mouse and rat models, respectively. Orally-administered

salidroside significantly affected the expression levels of both

extrinsic and intrinsic apoptotic-related factors, as it suppressed

pro-apoptotic factors FasL, Fas, FADD, and Bax, respectively,

while increasing the level of anti-apoptotic factors, such as Bcl-2

and Bcl-xl (Lai et al., 2014; Li et al., 2016). Furthermore,

intragastric salidroside treatment in rats with I/R injury

suppressed myocardial apoptosis after 30 min of left anterior

descending occlusion due to an increased Bcl-2/Bax ratio and

decreased caspase 3 and caspase 9 (Zhu et al., 2015b).

Myocardial ischemia could also trigger inflammation, as

energy crisis and oxidative stress due to persistent I/R injury

elevate the expression levels of pro-inflammatory cytokines and

inflammatory transcription factors, such as NF-ĸB, IL-6, IL-1β,
and TNF-α (Xie et al., 2011; Ma et al., 2015; Subramani et al.,

2021). Zhu et al. found that subcutaneously injected salidroside

could prevent autophagy in an isoproterenol (IOS)-induced

myocardial injury rat model by suppressing the levels of NF-

ĸB, IL-6, IL-1β, and TNF-α proteins (Zhu et al., 2015a).

Moreover, activator protein 1 (AP1), a transcription factor

that regulates inflammation similar to NF-ĸB, was also

reduced in the salidroside-treated ISO-induced myocardial

injury rat model. Meanwhile, Chen et al. (2017) demonstrated

that oral administration of salidroside could also attenuate

myocardial inflammation and promote angiogenesis in LPS-

induced myocardial ischemia rat model.

The antioxidant potential of salidroside also plays a critical

role in its cardioprotective effect. Besides suppressing ROS levels,

FIGURE 4
Molecular mechanisms underlying the role of salidroside in enhancing cell survival.
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intragastrically or subcutaneously administered salidroside could

suppress the expression of non-mitochondrial ROS sources, such

as NADPH oxidase 2 and NADPH oxidase 4, which are members

of the NADPH oxidases (Noxs) protein family, while increasing

the levels of antioxidant enzymes that could act as free radicals

scavenger, such as CAT, SOD, GSH, and GSH-px in LPS-induced

myocardial ischemic rat models and ISO-induced myocardial

injury rat model (Zhu et al., 2015a; Chen et al., 2017).

Endoplasmic reticulum (ER) stress is also one of the

complications of stress and extreme factors, such as ischemia.

Unfolded protein response mediates ER stress and serves a role in

the activation of three primary signaling pathways, including

protein kinase RNA-like ER kinase (PERK), inositol-requiring

enzyme-1α (IRE1α) and activating transcription factor 6.

Salidroside mitigated hypoxia/reoxygenation injury by

alleviating ER stress-induced apoptosis through declining the

phosphorylation of PERK and IRE1α pathways in

H9c2 cardiomyocytes (Sun M. Y. et al., 2018). Furthermore,

Tian et al. (2022) found that salidroside protected against

myocardial I/R by inhibiting ER stress in myocardial I/R rat

model.

Not only protecting cardiomyocytes but salidroside could

also benefit myocardial treatment by promoting angiogenesis via

PI3K/Akt/mTOR pathway. Intragastrical, oral, or intracoronary

administration of salidroside restored the expression of PI3K,

Akt, and mTOR in myocardial ischemia in both rat and rabbit

models (Xu et al., 2013; Chen et al., 2017; Chen et al., 2019). It

could also promote angiogenesis by increasing HIF-1α
expression and vascular endothelial growth factor (VEGF)

secretion in H9c2 cells (Zhang et al., 2009), as VEGF is a

growth factor transcriptionally regulated by HIF-1α and could

promote the formation of the tube-like structure by endothelial

cells. Furthermore, it could stimulate pericytes to express matrix

metalloproteinases, leading to vasodilatation and increased

permeability of the wall as well as macrophage and neutrophil

chemotaxis, thereby restoring the blood vessel function and

integrity (Ferrara, 2004). Oral salidroside treatment improved

the hypoperfusion state in the early stages of myocardial

ischemia, controlled the decline in myocardial hypertrophy

and contractile force, and effectively prevented heart failure by

elevating VEGF and CD34 expression levels in myocardial tissues

(Chen et al., 2019).

Liver ischemia

Unlike other organs, liver ischemia is mostly affected by

external causes during surgical procedures, such as liver

resection, liver transplantation and trauma (Peralta et al.,

2013). However, liver ischemia can lead to fatal outcomes,

such as liver dysfunction or even mortality in patients. After

the injury, Kupffer cells or resident macrophages in the liver are

recruited to activate the inflammatory response. These cells also

release ROS and induce oxidative stress at the injured site.

Furthermore, I/R injury in the liver triggers both apoptosis

and necrosis in hepatocytes (Gujral et al., 2001; Guicciardi

et al., 2013). Hence, targeting these types of cellular damage

or death is a promising approach for treating liver ischemia

injury (Konishi and Lentsch, 2017).

Several factors, such as oxidative stress, heat shock, mitogens,

osmotic stress and pro-inflammatory cytokines, are activated in

liver ischemia. Feng et al. (2017) found that salidroside treatment

prior to liver ischemia in a rat model could attenuate liver

damage. Expression levels of apoptotic factor Bax and pro-

inflammatory cytokines, such as TNF-α and IL-6, were also

downregulated in salidroside-pretreated rats, while that of

Bcl2 was elevated. Another study conducted by the same

group using concanavalin A-induced acute liver injury mice

showed that intraperitoneal injection of salidroside activated

PI3K/Akt signaling pathway, thus suppressing the level of

pro-inflammatory cytokines as well as apoptosis- and

autophagy-associated marker proteins in serum and liver

tissues (Feng et al., 2018).

Non-alcoholic fatty liver disease (NAFLD) could induce liver

steatosis, a major risk factor for liver ischemia. NAFLD usually

implies fatty acid infiltration, inflammation, cell death and

collagen deposition in liver tissues (Cotter and Rinella, 2020).

Zheng et al. (2018) found that oral administration of salidroside

reduced oxidative stress and alleviated NAFLD in the livers of

mice with NAFLD. In addition, salidroside also downregulated

the inflammatory pathway by decreasing the expression of Toll-

like receptor 4 (TLR4) and NLRP3 as well as pro-inflammatory

cytokines.

Ischemic acute kidney injury

Renal I/R injury causes structural and functional damage to

the renal tubules by directly inducing tubular cell death. These

dying cells, in turn, trigger renal mucosal injury, tubulointerstitial

nephritis and cortical fibrosis (Li et al., 2017). Thus, renal I/R

injury is a major cause of AKI, which often arises from

hypovolemic conditions, septic shock, surgery and

transplantation. AKI can lead to chronic kidney disease and,

subsequently, end-stage renal disease (Wang et al., 2014).

Insufficient oxygen and nutrition supply might induce ATP

depletion in kidney epithelial and endothelial cells, resulting

in their cytoskeletal changes and eventually leading to their

apoptosis or even necrosis (Sharfuddin and Molitoris, 2011).

Furthermore, damage to endothelial cells could also worsen

ischemic injury, as it contributes to hypoperfusion and

eventually results in more cell death (Sharfuddin and

Molitoris, 2011). In addition to cell death, similar to ischemic

injury in other organs, oxidative stress and inflammation are also

critical factors that could induce AKI (Ghasemzadeh et al., 2016;

Nazir et al., 2017).
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Sun et al. (2018b) discovered that salidroside decreased ROS

levels and promoted SOD activity in human renal tubular

epithelial cells (HK-2) under I/R conditions, thus promoting

their viability. Salidroside also inhibited inflammation by

reducing the levels of TNF-α, IL-1β and IL-6. It could also

inhibit apoptosis in HK-2 cells by increasing Bcl-2 expression

while decreasing Bax expression. Fan et al. (2022) established

AKI septic rat models and found that salidroside injected via the

tail vein of rats significantly reduced the plasma TNF-α, IL-1β,
and IL-17A levels. Furthermore, salidroside reduced the mRNA

level of Bax while increasing that of Bcl-2.

I/R injury leads to hypoxic conditions in the kidneys. The

HIF protein family is a transcription factor regulated according

to oxygen concentration (Semenza, 2001; Pugh and Ratcliffe,

2003). In normoxic conditions, HIF-1α protein is hydroxylated

and degraded (Maxwell and Eckardt, 2016; Voit and Sankaran,

2020); however, under hypoxia, HIF-1α is stabilized and

penetrates to the nucleus, where it binds to the promoters of

hypoxia-activated genes, such as VEGF-A, platelet-derived

growth factor B (PDGF-B), stromal cell-derived factor-1

(SDF-1), endothelial nitric oxide synthase (eNOS),

erythropoietin (EPO), and heme oxygenase-1 (HO-1), and

activates their transcription (Cao et al., 2003; Rajagopalan

et al., 2007; Semenza, 2009; Zheng et al., 2012; Jain et al.,

2018; Kuan et al., 2021; Nakashima et al., 2021). Zheng et al.

(2012) found that salidroside treatment stimulated the

accumulation of hypoxia-inducible factor-1α (HIF-1 α)
protein by reducing HIF-1α protein degradation, thus

promoting EPO expression in human embryonic kidney

fibroblast (HEK293T).

Nephropathy is a microvascular disease in the kidney caused

by endothelial cell injury and dysfunction, and is one of the major

complications of diabetes (Tervaert et al., 2010; Navarro-

Gonzalez et al., 2011; Flyvbjerg, 2017). Pathological conditions

in diabetes contribute to ischemia, and inflammation induced by

ischemia worsens diabetic nephropathy. Xie et al. (2019) showed

that salidroside alleviated glomerular endothelial cell injury in

diabetic nephropathy by upregulating the expression level of HIF

protein. Guo et al. (2018a) found that salidroside administered

via gavage inhibited proximal renal tubule cell apoptosis by

suppressing Bax expression in diabetic rats undergoing

uninephrectomy.

Lower limb ischemia

Peripheral artery disease (PAD) is a pathological condition

that affects a wide range of the world’s population (Fowkes et al.,

2013). PAD is caused by an obstruction in blood flow, mainly by

the formation of plague and/or damage to blood vessels (Creager

et al., 2008). Lower limb ischemia, which is caused mainly by

damage, stenosis, or blockage of the lower extremity blood

vessels, is a common form of PAD. This results in insufficient

blood supply to the lower extremities, which are the most

distanced tissues from the heart, leaving the lower extremity

in an environment of ischemia, hypoxia and nutritional

deficiency (Norgren et al., 2007a; Farber and Eberhardt, 2016;

Fowkes et al., 2017). Critical limb ischemia (CLI) is the most

severe clinical manifestation of PAD (Criqui et al., 2021).

Percutaneous revascularization or vascular surgery is the

standard of immediate aid for PAD (Weinberg et al., 2011).

However, revascularization approach is largely inappropriate for

patients with CLI, the most severe clinical manifestation of PAD,

due to severe damages in their vessels (Norgren et al., 2007b,

Gerhard-Herman et al., 2017). Therapeutic angiogenesis, which

aims to induce the formation of new functional blood vessels, is

one of the most studied and potential therapeutic strategies to

treat lower limb ischemia, including CLI patients, who are

inappropriate for surgical-based therapies and are recognized

as “no-option” patients (Annex, 2013).

Neoangiogenesis requires a myriad of angiogenic factors and

involves different types of cells and cellular mechanisms to

stimulate and promote neovascularization. PI3K can

phosphorylate phosphatidylinositol (PI) to activate Akt, which

in turn activates mTORC1. Activation of mTORC1 induces HIF-

1α expression, which subsequently promotes angiogenesis by

inducing the expression and secretion of various angiogenic

factors, including VEGF and PDGF-BB (Karar and Maity, 2011).

As mentioned previously, vascular dysfunction is an outcome

of an ischemic condition. However, the human body also has a

homeostatic system that counteracts persistent ischemic

conditions. Under ischemia, the enzymatic activity of prolyl

hydroxylase domain (PHD) family to hydroxylate prolines in

HIF-1α is suppressed due to the lack of oxygen as the substrate of
this enzymatic reaction, thus promoting HIF-1α accumulation

and allowing the body to adapt to hypoxia (Eltzschig and

Carmeliet, 2011). Salidroside could be applied in therapeutic

angiogenesis strategies, as Zhang et al. (2017) and Ariyanti et al.,

2017 found that salidroside could act as a PHD3-specific

inhibitor, thus stabilizes HIF-1α and promotes the secretory

functions of skeletal muscle cells (Figure 4). This in turn

elevates neovascularization through cell-cell communications

between skeletal muscle cells and endothelial and/or smooth

muscle cells, which are mediated by muscle-secreted multiple

angiogenic factors. The skeletal muscle cell-mediated therapeutic

angiogenic effect of salidroside was further confirmed in

hindlimb ischemia (HLI) model mice, as intramuscular

injection of salidroside enhanced neoangiogenesis and

recovered blood perfusion in the HLI mice model by

inhibiting PHD3, thus stabilizing HIF-1α and promoting the

expression of various angiogenic factors (Ariyanti et al., 2017).

Diabetes mellitus is one of the main causes and risk factors of

lower extremity ischemic disease (Cryer, 2009). Diabetes-

induced systemic damage leads to lesions of blood vessels,

which in turn induces the development of diabetic

complications, such as diabetic lower limb ischemia and
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diabetic foot ulcers (Frier, 2014). Meanwhile, accumulated

advanced glycation end-products (AGEs) and excessive ROS

levels caused by the pathological environment of diabetes

could lead to defective angiogenic potential, activation of pro-

inflammatory, apoptotic and/or autophagic pathways, thus

further worsening the condition of diabetic lower limb

ischemia patient (Bentzon et al., 2014; Steven et al., 2017;

Allahverdian et al., 2018; Grootaert et al., 2018). AGE is a

covalent compound that binds to its receptor, RAGE, and is

highly provoked in diabetes. Their interplays can stimulate

oxidative stress by increasing NOS, causing endothelial

inflammation and cell death (Figure 4). Hu et al. (2020)

showed that salidroside could protect endothelial cells by

suppressing the level of NF-κB, thus preventing the AGE/

RAGE-stimulated NF-ĸB pathway. Furthermore, salidroside

also exerts its endothelial cell protective effect by suppressing

the level of NLRP3, leading to the reduction of the levels of

inflammatory factors released from NLRP3 inflammasome, such

as IL-6, IL-1β and TNF-β. Upregulation of AMP-activated

protein kinase (AMPK) upon AGE induction is another

mechanism by which salidroside protects endothelial cells (Hu

et al., 2020). AMPK is crucial for endothelial cell survival, as it

could exert anti-inflammatory and anti-oxidant properties by

enhancing eNOS expression level through activating PI3K/Akt

pathway (Zheng et al., 2019). Furthermore, it could suppress the

activation of the NLRP3 inflammasome by blocking the

thioredoxin-interacting protein (TXNIP).

Salidroside not only plays a direct role against ischemia but

also provides synergistic effects along with stem cell

treatment. Mesenchymal stem cells (MSCs) are widely used

in regenerative medicine, as they are relatively easy to isolate

and ideal for allogeneic transplantation without the need for

immunosuppression (Hedhli et al., 2017). Moreover, MSCs

can also be genetically modified to deliver specific genes

required for neovascularization (Luo et al., 2019). MSCs

have been used to treat ischemic diseases, such as MI and

CLI, due to their wound healing and anti-inflammation

properties (Gupta et al., 2017). However, poor MSCs

survival in transplanted cells due to the lack of proper stem

cell niches has become a hurdle for the clinical application of

this strategy (Huang et al., 2019; Mohamed et al., 2020).

Therefore, improving the post-transplantation survival rate

is the key to MSCs’ clinical application. HO-1 is an

antioxidant and a cell survival factor whose expression

could be induced by several factors, including inflammatory

cytokines and oxidative stress. HO-1 expression is

downregulated under ischemic conditions, leading to a

decrease in cell survival (Di Filippo et al., 2005). Ariyanti

et al. (2019) demonstrated that salidroside pre-treatment

could enhance MSC wound healing potential in diabetic

mice by elevating the expression of crucial wound healing

factors, such as HO-1, fibroblast growth factor-2 (FGF2), and

hepatocyte growth factor (HGF). Although further

investigation is needed to confirm the therapeutic effect of

this combinatorial strategy in therapeutic angiogenesis, this

finding indicates the potential of combining salidroside with

stem cell therapy for therapeutic angiogenesis in both lower

limb ischemia and CLI.

Discussion

The utilization of Rhodiola has emerged from its part or

whole plants in the ancient era to RRE and, further, to the use of

its active component, salidroside, in the modern era (Kelly, 2001;

Ming et al., 2005; Panossian et al., 2010; Bayliak and Lushchak,

TABLE 1 Therapeutic potential and molecular mechanisms of salidroside in animal models with ischemic diseases.

Ischemic disease Model Pathway References

Cerebral ischemia MCAO mice PI3K/Akt/mTOR Chen et al. (2012b), Zhang et al. (2018)

MCAO rats TH/MAO; Nrf2 Han et al. (2015), Zhong et al. (2019)

Ischemic heart disease MI/RI rats TLR4/NF-κB; Apoptosis Zhu et al. (2015b)

MI rabbits PI3K/Akt Xu et al. (2013)

Severe sleep apnea mice Apoptosis Lai et al. (2014)

AMI rats Apoptosis Li et al. (2016)

MI rats PI3K/Akt/mTOR; Nox/NF-κB/AP1 Zhu et al. (2015a), Chen et al. (2017)

MI mice Fas/mitochondria-dependent apoptosis; PI3K/Akt/mTOR Chen et al. (2019)

Liver ischemia Hepatic I/R mice MAPK; PI3K/Akt Feng et al. (2017), Feng et al. (2018)

NAFLD mice TXNIP/NLRP3 Zheng et al. (2018)

Ischemic AKI AKI septic rats NF-κB; apoptosis Fan et al. (2022)

DN rats PHD2/HIF-1 Xie et al. (2019)

DKD rats Apoptosis Guo et al. (2018a)

Lower limb ischemia HLI mice PHD3/HIF-1α Ariyanti et al. (2017), Zhang et al. (2017)
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2011; Wang et al., 2013; Chen et al., 2017; Zheng et al., 2019;

Zhuang et al., 2019). Pharmacological research has led to the

discovery of new functions of salidroside, as well as the molecular

mechanisms underlying these functions. In recent years, studies

have revealed the anti-aging, anti-oxidative, anti-stress, and

anoxia-resisting properties of salidroside, indicating that it has

a wide-range potential use both as a supplement and as a drug

(Nan et al., 2003; Chen et al., 2012; Luo et al., 2019; Zheng et al.,

2019). Owing to its anti-oxidative, anti-apoptotic, anti-

inflammatory, angiogenic, and cell-protective properties,

salidroside has been identified as a potential compound for

ischemic diseases (Table 1).

However, studies regarding the use of salidroside for

treating PAD were still limited at the cellular and animal

models at current, and have not progressed into clinical trials

yet. One of the most important obstacles might be the

concentration of salidroside needed for effective treatment

of ischemic disease was high, most plausibly due to the active

hydrogen atoms in its phenolic hydroxyl group. Furthermore,

a high dosage of salidroside increases the risk of side effects,

thus impeding its clinical application. To optimize its drug-

likeness, further intensive studies regarding the structure of

salidroside, as well as its possible direct target in cells, which

has not yet been identified, are necessary. Recently, Liu et al.

(2022) synthesized more than 30 salidroside analogues and

performed a structure-activity relationship study. The most

optimized compound in this study could induce better

neovascularization and blood perfusion recovery than

salidroside in both non-diabetic and diabetic HLI mice at

a significantly lower dose, suggesting the potential of

applying structure-modified analogues of salidroside for

clinical applications.

Several concerns need to be overcome before applying

salidroside and/or its analogues for clinical use. For example,

the optimal administration method, dosage, and form of the

drugs might be different between patients with different types of

PAD, and between patients with or without comorbid.

Furthermore, preclinical and clinical systematic examinations

of their side-effects as well as efficacies involving larger sample

sizes are absolutely needed. Moreover, besides structural

optimization as described above, combining salidroside with

nanomaterials or controlled-release drug administration

system could also be considered for improving its stability

and efficacy.

Taken together, while further structural optimization,

preclinical, and clinical studies are necessary, salidroside

might become a potential drug for treating ischemic diseases.
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