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Abstract
Global change is shifting the timing of biological events, leading to temporal mis-
matches between biological events and resource availability. These temporal mis-
matches can threaten species’ populations. Importantly, temporal mismatches 
not only exert strong pressures on the population dynamics of the focal species, 
but can also lead to substantial changes in pairwise species interactions such as 
host–pathogen systems. We adapted an established individual-based model of 
host–pathogen dynamics. The model describes a viral agent in a social host, while 
accounting for the host's explicit movement decisions. We aimed to investigate how 
temporal mismatches between seasonal resource availability and host life-history 
events affect host–pathogen coexistence, that is, disease persistence. Seasonal re-
source fluctuations only increased coexistence probability when in synchrony with 
the hosts’ biological events. However, a temporal mismatch reduced host–pathogen 
coexistence, but only marginally. In tandem with an increasing temporal mismatch, 
our model showed a shift in the spatial distribution of infected hosts. It shifted from 
an even distribution under synchronous conditions toward the formation of disease 
hotspots, when host life history and resource availability mismatched completely. 
The spatial restriction of infected hosts to small hotspots in the landscape initially 
suggested a lower coexistence probability due to the critical loss of susceptible host 
individuals within those hotspots. However, the surrounding landscape facilitated 
demographic rescue through habitat-dependent movement. Our work demonstrates 
that the negative effects of temporal mismatches between host resource availability 
and host life history on host–pathogen coexistence can be reduced through the for-
mation of temporary disease hotspots and host movement decisions, with implica-
tions for disease management under disturbances and global change.
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1  | INTRODUC TION

Environmental fluctuations over time, like diurnal differences in 
temperature, seasonal changes of climate, or land-cover modifica-
tions due to agricultural practices, can affect species communities 
in many ways. Many species have adapted to these conditions, so 
that their biological events match the environmental fluctuations. 
For example, the onset of mating or breeding (Conaway, 1971), the 
timing of migration (La Sorte et al., 2015; Mayor et al., 2017), or the 
timing of prey occurrence (Christian et al., 2007; Sigler et al., 2009) 
is fundamentally linked to regularly occurring seasonal fluctuations 
in resource availability such as food or shelter. In many cases, such 
biological events of species match the regularly occurring changes in 
the environment, like the onset of spring, because they are triggered 
by a reliable environmental cue, for example, day length. Mismatches 
occur when the cue used no longer predicts the timing of the biologi-
cal event. This mismatch leads to a steady temporal shift of the opti-
mal environmental conditions away from the biological event and can 
exert strong pressures on population dynamics (Altizer et al., 2006). 
In marine ecology, mismatches have been found to affect stock re-
cruitment (e.g., for Antarctic krill, Groeneveld et  al.,  2015). In ter-
restrial systems, mismatches were demonstrated to increase fitness 
costs as a result of hatching times (Thomas et al., 2001) and laying 
dates (Winkler et al., 2002), lagging behind the peak of food avail-
ability in seasonally breeding birds (Durant et al., 2007; Schweiger 
et al., 2008, 2012).

These mismatches affect not only individual species’ perfor-
mance but also pairwise or multispecies interactions such as the 
coexistence of a predator and its prey, or a host and its pathogen 
(Hossack et  al.,  2013; Kharouba et  al.,  2018; Mayor et  al.,  2017; 
Tonkin et  al.,  2017). With many species being unable to adapt 
quickly enough—if at all— to a shift of environmental conditions 
(Bellard et al., 2012; Radchuk et al., 2019; Visser, 2008), it becomes 
increasingly important to understand the long-term community con-
sequences for interacting species under global change.

Within-year seasonality is one of the strongest and most-studied 
forms of periodically occurring environmental fluctuation affecting 
communities. Seasonality can be defined as an annually reoccurring 
change of one or more abiotic variables, such as temperature or 
precipitation (Kharin et al., 2013). These naturally occurring fluctu-
ations are characterized by a positive autocorrelation, meaning that 
the closer measurements are in time, the more similar will they be 
on average compared to temporally distant measurements (Dornelas 
et  al.,  2013; Koenig,  1999; Legendre,  1993). Temporal within-year 
seasonality is similar in its effects to spatial heterogeneity within 
landscapes as it creates temporary niches of varying levels of re-
source availability (Tonkin et al., 2017; Williams et al., 2017). While 
both temporal and spatial fluctuations can have stronger or weaker 
effects by themselves, they generally work in concert (Durant, 1998), 
leading to spatiotemporal autocorrelation in resources availability 
within years.

This spatiotemporal autocorrelation in the environment leads re-
source levels to vary across the year, and may increase population 

density when resource availability is highly coincident with a biolog-
ical event, for example, the timing of birth peaks (Altizer et al., 2006; 
van Moorter et  al., 2013). In this case, environmental and biologi-
cal events are synchronized. Drivers like global change (e.g., climate 
or land-use change) can increase the mismatch between resource 
availability and timing of the biological event (Durant et al., 2007). 
A subsequent decline in population size could lead to a decreased 
coexistence of directly affected and any dependent species. In con-
trast, such an asynchronous temporal resource availability, if occur-
ring on landscapes with heterogeneous resource availability, could 
offset the negative effect of the temporal mismatch on coexistence 
by creating local patches with suitable conditions. This could further 
lead to a metacommunity-like structure with increased metacommu-
nity persistence (Duncan et al., 2013).

We here use host–pathogen interactions as a model system to 
explore the consequences of temporal mismatch on disease dy-
namics under global change. Global change increasingly affects the 
phenology of resources, with ensuing consequences for the host's 
life history and its large-scale movements and effects of pathogens 
on host survival and reproduction on the other hand (Semenza & 
Menne, 2009; Semenza & Suk, 2018).

Climactic fluctuations have triggered outbreaks and facilitated 
range shifts in pathogens such as West Nile virus, Zika virus, Borrelia 
bacteria, or other tick-borne pathogens (Marcantonio et  al.,  2015; 
Ostfeld & Brunner, 2015; Semenza & Suk, 2018, see also review in 
Altizeret al., 2013).

This highlights the importance of environmental conditions in 
understanding disease dynamics. In this context, resource variation 
is an essential driver of the distribution of individuals within a host 
population over space and time. The transmission of many infectious 
agents depends on direct contact between infected and susceptible 
hosts, mediated by their movement decisions (Tracey et al., 2014). 
Hence, understanding how host–pathogen interactions are affected 
by mismatches on a local spatial and temporal scale is important to 
implement preventive strategies and develop predictive models.

While there have been studies tackling the effect of landscape 
heterogeneity on pathogen transmission where limited high-resource 
areas can lead to transmission hotspots (Benavides et  al.,  2012; 
Nunn et al., 2014) as well as studies considering individual movement 
(Lane-deGraaf et al., 2013; Scherer et al., 2020; Tracey et al., 2014), 
very few studies take asynchronous effects between resource levels 
and host life-history events into consideration. Additionally, these 
few exceptions mainly focus on the effects on vector lifecycles, for 
example, for ticks and mosquitoes (Estrada-Peña et al., 2014; Wang 
et  al.,  2016). Hence, there is a lack of theoretical studies linking 
the direct and indirect effects of global change-induced temporal 
mismatches on host–pathogen coexistence and dynamics through 
multiple scales, for example, spatial and temporal heterogeneity in 
resource availability and individual host movement (Meentemeyer 
et al., 2012; Rees et al., 2013; White et al., 2018a).

Mechanisms underlying such a mismatch could lead to an in-
crease, but also to a decrease in host–pathogen coexistence: On 
the one hand, when applying autocorrelated temporal resource 
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dynamics to a spatially heterogeneous landscape, transmission 
hotspots could form in areas that have higher resource availability 
than the surrounding landscape. This would facilitate pathogen per-
sistence in those hotspots and subsequently enable the pathogen 
to be transferred back to other host subpopulations after they have 
recuperated from low resource conditions (Duncan et  al.,  2013). 
On the other hand, if the resource availability changes randomly, 
meaning there is neither spatial nor temporal correlation in resource 
availability, the reduction of resources can lead to an immediate and 
severe drop in host density. Subsequently, such a drop in host den-
sity could lead to pathogen extinction. (Altizer et al., 2006; Tonkin 
et al., 2017).

We investigated the effect of a temporal lag in resource avail-
ability leading to a temporal mismatch between resource availabil-
ity and the host reproduction probability on pathogen persistence. 
Asynchrony between the resource availability and the host repro-
duction probability effectively creates a cascading effect from the 
resource landscape through host survival, host movement decisions, 
and resulting host density to pathogen transmission and survival 
(Figure 1). We study this propagating effect of a temporal mismatch 
in a bottom-up driven, interdependent system where the patho-
gen is dependent on the host, which in turn is dependent on the 
resource. In detail, we investigate how a constantly shifting temporal 
lag in peak resource availability away from the timing of host birth 
events affects host–pathogen coexistence. To this end, we used a 
modified version of an existing spatially explicit individual-based 
host–pathogen model of a group-living social herbivore, that is, clas-
sical swine fever (CSF) virus in wild boar (Sus scrofa) (Kramer-Schadt 
et al., 2009; Scherer et al., 2020).

We hypothesized that a temporal mismatch alters disease dy-
namics depending on the intensity of the mismatch between en-
vironmental resource availability and host life-history events and 
that movement can mediate or reverse the effects of asynchrony. 
In accordance with theory, we expect that unpredictable random 
changes in host resource availability over time, for example, induced 
by agricultural land-use practices like harvesting (Ullmann et  al., 
2018, 2020) or hunting, result in low coexistence probability due 
to increasing chance events, leading to higher disease extinction 
(Melbourne & Hastings,  2008). In contrast, seasonality increases 
coexistence probability (Altizer et  al.,  2006). However, increasing 
asynchrony between seasonal resource availability and host life-
history events will lead to a decrease in host–pathogen coexistence. 
Movement can reverse these processes by bridging spatiotemporal 
troughs in local host density, thereby increasing disease persistence. 
We discuss our results in terms of consequences for disease per-
sistence under climate and land-use change conditions that may be 
provoked by increasing asynchrony of relevant time scales.

2  | METHODS

2.1 | Model overview

We used a spatially explicit individual-based eco-epidemiological 
model developed by Scherer et al., (2020). It is based on earlier mod-
els only considering neighborhood infections developed by Kramer-
Schadt et  al.,  (2009) and Lange et  al.,  (2012a, b). The model by 
Scherer et al., (2020) relies on individual movement decisions of host 

F I G U R E  1   Cascading effect from the resource landscape (a) through the dynamic resource level of each single habitat cell (b) and the 
host population dynamics (c) that can be synchronous, asynchronous (shifted by tlag) (d), or random (e) in time, respectively, to each other. 
The resource level at specific points in time may influence host survival (f) and movement decisions (g) that may alter host population density 
distribution (h) and subsequently host–pathogen interactions through contact rates and transmission (i) before ultimately accentuating 
scenarios that allow for coexistence (j)
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individuals, that is, long-distance roaming movement of males (here-
after termed “movement”), a process important for disease trans-
mission. We further modified the model by adding spatiotemporal 
landscape dynamics representing changing resource availability, a 
response of movement decisions to that landscape and a resource-
based mortality. A complete and detailed model description follow-
ing the modified ODD (Overview, Design concepts, Detail) protocol 
(Grimm et al., 2006, 2020) is provided in the supplementary material, 
and the model implementation is available in the Zenodo Database 
(Kürschner et al., 2021).

Overall, the model comprises two main components, a host life-
history model and an epidemiological pathogen model. Host indi-
viduals are characterized by sex, age, location, demographic status 
(residential, group split of subadults and resource-based displace-
ment to the neighboring cells, and male long-distance roaming move-
ment), and an epidemiological status. The latter is defined by an SIR 
epidemiological classification (susceptible, infected, and recovered; 
Kermack & McKendrick, 1927). Recovered individuals gain lifelong 
immunity and can pass on temporary immunity via maternal anti-
bodies to their offspring. The pathogen model alters host survival 
rates, reproductive success, and infection length given its virulence.

2.2 | Landscape structure

The landscape structure is comprised of a spatial grid of 1,250 
2 km × 2 km cells each representing the average home range of a wild 
boar group (Kramer-Schadt et al., 2009), totaling a 100 km × 50 km 
landscape. The landscape is a self-contained system without any out-
side interaction or movement beyond the landscape border. Each cell 
is characterized by a variable resource availability (habitat quality) that 
is expressed as female host breeding capacity and that translates di-
rectly into possible group size, with the minimum being one breeding 
female per group to a maximum of nine. The initial resource availabil-
ity was calibrated to achieve the reported average wild boar density of 
five breeding females per km2 (Howells & Edwards-Jones, 1997; Melis 
et al., 2006; Sodeikat & Pohlmeyer, 2003). We investigated several 
landscape scenarios of varying spatial complexity, ranging from a fully 
random landscape structure to different degrees of random land-
scape clusters generated in R (R Core team, 2019) using the NLMR 
package (Sciaini et al., 2018) while keeping the mean female breed-
ing capacity constant at 4.5 females across the different landscapes, 
where all landscape cells, including the ones that are not suitable as 
habitat, are considered (Supplementary material Appendix Figure S4).

The spatiotemporal landscape dynamics are superimposed on 
the different types of landscapes, and the dynamics are designed 
to mimic seasonal changes by gradually increasing and decreasing 
resource availability. Resource availability in each cell increases in 
5-week intervals for approximately 25  weeks from the beginning 
of the year and then declines in 5-week intervals for the following 
25 weeks. Resource availability translates directly into the breeding 
capacity for each cell and cannot, during the increase, exceed the 
maximum breeding capacity of nine females and cannot decrease 

below one female during the decrease period. A breeding capac-
ity < 1 could lead to inflated extinction scenarios, depending on the 
clustering of the landscape, through the creation of artificial barriers 
that would isolate host groups and prevent the pathogen from being 
spread. In case of wild boar, the increase or decrease of resource 
availability that occurs periodically throughout the year results in a 
variation of breeding females with an average over time being 4.5 
females supported by one cell. Throughout each simulated year, re-
source availability changes in parallel to the host reproduction prob-
ability (Figure 1d). The resource availability is then temporally shifted 
(tlag) away from the host reproduction probability by 25% increments 
up to a full mismatch at 100%. A higher level of mismatch reflects an 
increase of severity in global change. Additionally, we implemented a 
nonseasonal, unpredictable landscape dynamic, where the resource 
availability changes randomly (a random integer between one and 
nine) every five weeks while maintaining a mean of 4.5 throughout 
the landscape (so-called “white noise,” Figure 1e).

2.3 | Process overview and scheduling

The temporal resolution equals the approximate CSF incubation 
time of one week (Artois et  al.,  2002). The following procedures 
were scheduled each step in the following order: pathogen transmis-
sion, male host roaming movement, natal host group split of subadult 
males and females and subsequent resource-based displacement to 
the neighborhood, host reproduction, host mortality (disease-based 
and resource-based), host aging, and landscape dynamics. Group 
split of subadult males and females under no mismatch conditions 
was limited to week 17 and week 29 of the year, respectively, rep-
resenting the typical dispersal time for each sex. The order of these 
procedures was established in previous versions of the models, and 
changes of the order were not shown to have significant implications 
to the model outcome.

2.4 | Main processes

Pathogen transmission—All transmission processes remain un-
changed from the model implementation by Scherer et al.,  (2020). 
The course of the disease is determined by an age-specific case 
fatality rate and an exponentially distributed infectious period for 
lethally infected individuals. Transient infected hosts have an in-
fectious period of one week and gain lifelong immunity (Dahle & 
Liess,  1992). Infection dynamics emerge from multiple processes: 
within group transmission, movement-based transmission, and in-
dividual age-dependent courses of infection. Within groups, the 
density-dependent infection pressure is determined by transmission 
chance and the number of infectious group members. For roaming 
males, under movement-based scenarios, individual per-step trans-
mission probability is calculated as the transmission rate divided by 
the movement distance the individual has travelled to account for 
the time an individual spends in each cell (Scherer et al., 2020).
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Male host roaming movement—Our model uses two of the ex-
plicit intercell movement rules for males implemented in Scherer 
et  al.,  (2020) (habitat-dependent movement: HDM; correlated 
random walk: CRW) as well as a setup without explicit movement 
(neighborhood infection). Individuals performing a CRW display a 
general tendency to continue in the same direction as the previous 
movement without taking landscape structure or resource availabil-
ity into consideration (Codling, Plank & Benhamou, 2008; Kareiva & 
Shigesada, 1983). The decision process of individuals following the 
HDM rule is related to the underlying landscape directly by tending 
to move toward landscape cells with higher resource availability. In 
general, individuals were moving up to an individual weekly maxi-
mum movement distance or supplementary rules led to the decision 
to stay in the current cell. Furthermore, individuals move from cell to 
cell without within-cell movement.

Group split of subadults—We implemented two distinct re-
sponses to changing resource availability. First, if the theoretical 
maximum number of individuals in a group is higher than the number 
of individuals currently present in the group, then the group does 
not split. However, if low resource availability reduces the theoreti-
cal maximum group size below the number of individuals currently in 
the group, individuals above the current capacity will try to leave the 
group and establish in an empty neighboring cell based on resource 
availability. The selection of individuals to leave the group is depen-
dent on the age of the individual, where young individuals will leave 
the group first.

Host reproduction—Female hosts reproduce once a year, de-
pending on their age class. The number of breeding females is 
determined by each habitat cell's resource-dependent breeding 
capacity. Individual female hosts are checked for their breeding 
status on a weekly basis to then reproduce depending on the 
season with a peak in March and no reproduction in winter from 
October to December.

Host mortality—Another functional response to resource 
availability is increasing age-dependent mortality over time. 
Groups that exceed the theoretical maximum group size have 
increased mortality depending on the difference between ac-
tual group size (number of individuals) and theoretical maximum 
group size. Furthermore, the maximum survival time for adults in 
groups above their respective maximum group size was capped at 
assumed levels between 5 and 20 weeks (for details, see ODD in 
the supplementary material).

Landscape dynamics with temporal lag—We modeled several 
levels of temporal lags (tlag; Figure 1d). We gradually increased the 
level from 0% (no change) to 100% (full mismatch between host pop-
ulation dynamics and resource availability) in 25% increments. Each 
25% increment represents 5 weeks in the simulation. Therefore, the 
peak in resource availability is shifted 5 weeks away from the host 
species reproductive peak in each consecutive increment up to the 
maximum of approximately 25 weeks. The 25-week (or 100%) sce-
nario represents the full mismatch of host population dynamics and 
resource availability. The scenario with 0% tlag was used as control 
for temporal shift scenarios.

2.5 | Model analysis

Each simulation was run for 50  years (2,600  weeks) in total, with 
the virus being randomly released in the second year (weeks 53–
104). The virus was introduced to one out of a set of predefined 
cells in the center of the upper row with a resource availability above 
the mean of 4.5 during time of release. We ran 25 repetitions per 
combination of movement rule (3 levels: CRW, HDM, and no roam-
ing movement as a control scenario for movement rules), landscape 
scenario (4 levels: small clusters, medium clusters, large clusters, and 
random as a control scenario for the landscape structure), and de-
gree of mismatch (5 levels: tlag 25%, tlag 50%, tlag 75%, tlag 100%, and 
tlag 0% as a control for mismatch). We analyzed proportional coexist-
ence probability (Pcoex) estimated over each block of 25 repetitions 
by counting the times both host and pathogen survived during the 
simulations. Furthermore, for simulations where coexistence was 
not achieved, we measured the time to pathogen extinction (text). 
Due to the spatial variability of clusters throughout the landscape, 
the overall densities of hosts and pathogens varied too little across 
the different landscapes and scenarios to provide more detailed in-
sight, while measuring local per-cell densities was beyond the scope 
of the study. Therefore, we also analyzed the spatiotemporal distri-
bution of infected hosts in the landscape by recording the number 
of timesteps an infected host was present in each landscape cell. 
Next, we applied the autocorrelation function (acf) at lag 2 to the 
frequency distribution of the cumulative time the pathogen was pre-
sent in each landscape cell, so as to characterize the amount of time 
and proportion of the landscape with pathogen presence in the dif-
ferent scenarios. The higher the value of acf, the more similar is the 
cumulative time with pathogen presence across all the cells in the 
landscape. On the contrary, a low acf at the following timestep (lag 
2) indicates that the cumulative time of pathogen presence differs 
among the cells across the landscape, more precisely, that very few 
cells have the pathogen present, whereas the majority of cells never 
has an infected host present.

3  | RESULTS

3.1 | Host–pathogen coexistence and disease 
persistence

The coexistence probability (Pcoex) was lower in the two scenarios with 
roaming movement compared to the movement control (scenarios 
without roaming movement, Figure 2). Importantly, in both scenarios 
with movement the coexistence also decreased with increasing tem-
poral mismatch (tlag) and increasing landscape homogeneity (large clus-
ters). That means, in contrast to our predictions, movement decreased 
coexistence or pathogen persistence. The decrease in Pcoex was, 
however, more severe in scenarios with random movement (CRW) 
where Pcoex at tlag 100% decreased to 24% from 96% in the control 
(tlag 0%; i.e., no mismatch) in large-cluster landscapes compared to a 
Pcoex decrease to 48% from 92% in the control in similar scenarios with 
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habitat-dependent movement (HDM). On average, over all landscape 
configurations, Pcoex at tlag 100% decreased to 45% with CRW, 73% 
with HDM and 91% in the movement control. In general, the control 
for temporal mismatch showed a Pcoex between 100% and 92% for 
CRW, between 100% and 96% for HDM, and 100% in movement con-
trol scenarios (no roaming movement). Random landscape dynamics 
yielded a Pcoex of 0% in all landscape and movement scenarios.

3.2 | Pathogen extinction time

We assessed the mean pathogen extinction time for simulations with 
Pcoex below 100% (Figure 3). For most scenarios, the pathogen went 
extinct around the time of pathogen release. As an exception to that, 
the tlag 75% scenarios with CRW movement had a higher text than 
the other scenarios. Notably, for both types of movement (CRW and 
HDM) text was shorter at tlag 100% when compared with the other 
tlag scenarios. That means, very restricted or directed movement as 
in the HDM does considerably delay pathogen extinction to high tlag 
scenarios. Early onset of many disease clusters, as with CRW, again 
synchronized the outbreak temporally across the landscape, leaving 
no high-density host cluster behind for bridging infections especially 
when the host peak density is completely mismatching peaks in re-
source availability (i.e., tlag = 100%).

3.3 | Spatial patterns in coexistence

To assess the effects of resource availability on host survival, 
host movement, and pathogen survival, we explored the spatial 

distribution of infected hosts over the course of the simulations 
where coexistence was achieved. We found highly similar spatial 
patterns across all landscape scenarios, and thus, we here use the 
medium-cluster landscape as an example case in the following. For 
scenarios using the CRW movement rule, we saw a decrease in acf 
(autocorrelation function) at lag 2 with increasing tlag from 0.55 at 
tlag 0% to 0.45 at tlag 50% (Table 1). This decrease in acf means that 
with an increasing tlag, there were fewer cells with similar cumulative 
time of pathogen presence, that is, the cumulative time with patho-
gen presence differed increasingly among the cells. Such a differ-
ence among the cells in the cumulative time with pathogen presence 
increased further for the scenarios with tlag 100% as indicated by 
acf 0.02, meaning that only a small fraction of the landscape carried 
the infected hosts, but a large number of the grid cells were either 
never infected or only for short periods of time. Figure 4 shows an 
example for the spatial clustering for the CRW movement scenario; 
more detailed figures for all movement and landscape scenarios can 
be found in supplementary material Appendix Figures  S5–S7. The 
frequency distribution of the cumulative time the pathogen was pre-
sent in each landscape cell (Figure  5a) indicates that, in scenarios 
with tlag 75 and 100% compared to the scenarios with low tlag, the 
infected hosts were present in only a small fraction of the landscape 
for an extended period. In most of the other parts of the landscape, 
infected hosts were only present for a short duration or were not 
present at all.

Within HDM scenarios (Table 1), while there was a lower acf at tlag 
100% (0.01) compared to tlag 0% (0.19), there was no steady decrease 
in acf with increasing tlag as found for CRW scenarios. Interestingly, 
however, the acf for HDM scenarios was on average lower than for 
CRW scenarios, indicating that under the HDM scenario, the number 

F I G U R E  2   Coexistence probability 
(Pcoex) estimated as the proportion of 
simulation runs in which both host and 
pathogen survived (color gradient). Pcoex 
is grouped by three types of applied 
movement rules (correlated random walk—
CRW, habitat-dependent movement—
HDM, and no roaming movement 
(control)) and four different landscape 
configurations (large, medium, and small 
clusters and random configuration) 
along an increasing temporal mismatch 
(0%–100%) including a random dynamic 
(control)
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of cells with a similar cumulative time of pathogen presence was lower 
than under the CRW. The frequency distributions of the cumulative 
time the pathogen was present in each landscape cell for HDM scenar-
ios (Figure 5b) showed similar patterns to those found for CRW: In sce-
narios with high tlag, the pathogen was either absent from the majority 
of the cells or present in a small fraction of the landscape.

Scenarios without roaming movement (control, Figure  5c) also 
showed the lowest acf at tlag 100% with −0.02 when compared to all 
other tlag scenarios (Table 1). The acf at tlag 50% (0.34) was, however, 
higher than the acf at tlag 75% (0.24), indicating that at this intermedi-
ate time lag, we find the highest number of cells (i.e., larger proportion 
of the landscape) with similar cumulative time of pathogen presence. 
The tlag 100% scenario showed 940 out of 1,250 cells without infected 
hosts throughout the entire simulation and thus had no infected hosts 
in a large portion of the landscape while still having an 88% Pcoex.

4  | DISCUSSION

While previous modeling approaches have theoretically dem-
onstrated the importance of interactions between landscape 

structure, individual movement behavior, and pathogen transmis-
sion for predicting and understanding disease dynamics (Scherer 
et al., 2020; White et al., 2018b), few studies have addressed how 
an increasing asynchrony between resource availability and de-
pendent host biological processes influences host–pathogen co-
existence. Given the current climate warming crisis with increased 
mismatch between resource availability and host phenological 
events (Plard et  al.,  2014; Post & Forchhammer,  2008; Visser & 
Gienapp,  2019), the knowledge on how disease dynamics might 
toss and turn in the future is of utmost importance for managing 
emerging and zoonotic diseases (White et  al.,  2018b). Also, tree 
mast years (Doublet et al., 2019) or land-use practices like harvest-
ing, crop rotation, or asynchronous anthropogenic pressures such 
as hunting might lead to mismatches. While climate warming might 
induce mismatch effects negatively affecting host life history, cli-
mate warming might have direct effects on the pathogen, too, 
amplifying either positive or negative consequences on the host. 
Indeed, it is reasonable to expect that some diseases will adapt 
to changing environmental conditions and potentially increase in 
prevalence (Rohr & Cohen, 2020; Thomas, 2020). However, here 
we focus on mismatch effects on host life history.

F I G U R E  3   Mean log pathogen extinction times for all simulation scenarios where the pathogen went extinct separated for movement 
scenarios (CRW—correlated random walk, HDM—habitat-dependent movement, and no roaming movement (control)), landscape 
configuration, and temporal shift (tlag). The number of extinct runs (gradient and size) is relative to the 25 total runs that were conducted per 
combination of movement, landscape, and tlag. The number above the points is the standard deviation of the log mean pathogen extinction 
time, where applicable
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In accordance with theory, we found that random fluctuations of 
resources decreased coexistence, whereas occurrence of biological 
events in synchrony with resource seasonality increased coexistence 
(Altizer et al., 2006; Heino et al., 2000; Roy et al., 2005; Wichmann 
et al., 2003). This is underpinned by studies demonstrating that sea-
sonality, for example, in transmission rates, can alter the dynamics 
of host–pathogen interaction and feed back to effects on the hosts 
density as demonstrated by Bolzoni et al., (2008) for rabies in several 
species. Other studies found similarly complex dynamics arising by 
applying seasonal dynamics to the host birth rate as done by Ireland 
et al.,  (2007) for rabies in foxes. However, for full mismatch condi-
tions, our model yielded still rather high host–pathogen coexistence 
probabilities, contrary to our initial expectations.

Disease hotspots resulting from spatiotemporal asynchrony—One 
apparent factor for coexistence despite completely decoupled en-
vironmental and biological events, throughout all simulations, was 
the spatiotemporal clustering of infection hotspots with increas-
ing mismatch, forming disease islands in the landscape. The emer-
gence of disease islands due to asynchronous resource dynamics 
has also been shown experimentally by Duncan et al., (2013) and 
theoretically by Becker and Hall (2016). The spatial restrictions 
to relatively small infection hotspots suggest a lower coexis-
tence probability, with small host populations not being able to 
sustain a prolonged disease outbreak. Usually, a disease out-
break within an island can lead to critical loss of host individu-
als up to the point where the population cannot recuperate on 
its own (Clifford et  al.,  2006; Walker et  al.,  2008). However, in 
our case those hotspots were not constantly isolated from each 
other or the surrounding landscape. In this case, theory predicts 
that asynchrony in resource availability throughout the landscape 
facilitates demographic rescue by movement or migration (Roy 
et al., 2005). Our model demonstrated this effect that subsidizes 
pathogen persistence and thus coexistence even when the tim-
ing of resource scarcity coincided with the seasonal reproduction 
peak at a tlag of 100%. Simulations of this “worst-case scenario” 
of resource mismatch showed that high-resource cells within the 
landscape that can support a higher population density were con-
stantly recolonized if the pathogen depleted the host population 
in some of those cells during low resource conditions. On the 
other hand, during “high-resource periods,” the entire remaining 
population could spread more evenly throughout the landscape. 
High-resource habitat clusters where the pathogen went tempo-
rarily extinct and thus harbored largely undisturbed host popu-
lations can function as partial refuges for many host individuals. 
Once the resource availability in the surrounding habitat becomes 
more favorable, these individuals can spread out and recolonize 
potentially depleted habitat cells and could subsequently come 
into contact with infected hosts. Respectively, high-resource 
habitat clusters where the pathogen was constantly present 

TA B L E  1   Acf (autocorrelation function) values at lag 2 for all 
movement scenarios (CRW—correlated random walk, HDM—
habitat-dependent movement, and no roaming movement (control)), 
and temporal shift (tlag) combinations including the 95% confidence 
interval (ci)

Movement tlag ci± acf lag 2

CRW 0 0.51 0.55

25 0.46 0.49

50 0.54 0.45

75 0.51 0.32

100 0.60 0.02

HDM 0 0.60 0.19

25 0.49 0.25

50 0.60 0.09

75 0.60 0.13

100 0.52 0.01

No roaming 0 0.60 0.12

25 0.50 0.24

50 0.54 0.34

75 0.54 0.24

100 0.52 −0.02

F I G U R E  4   Spatial distribution of 
infected hosts in the correlated random 
walk movement scenario (CRW) applied 
to a landscape with medium clusters. 
The color gradient shows the cumulative 
pathogen presence time in weeks, that 
is, how long the pathogen was present 
in a landscape cell including the acf 
(autocorrelation function) values at 
lag 2 for those scenarios. Each frame 
represents a single representative 
example run with increasing temporal 
shift (tlag) from left to right
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function as partial sources for the pathogen allowing it to be re-
introduced into now susceptible or naïve subpopulations (Elkin & 
Possingham, 2008).

While metapopulation dynamics and source–sink dynamics have 
been well studied and documented (Bansaye & Lambert, 2013; Foppen 
et al., 2000; Nagatani et al., 2018), including the effect of temporal 
autocorrelation (Gonzalez & Holt, 2002; Roy et al., 2005), our model 
showed a metacommunity structure only under temporal mismatch 
scenarios. This reduces any negative effect a mismatch could have on 
coexistence, such as pathogen extinction through critically low host 
density. Only when the mismatch increased above 50%, did the dis-
tribution of infected hosts start to aggregate in certain parts of the 
landscape, forming a metacommunity structure with the pathogen.

Host density and connectivity are the two most important fac-
tors that determine contact rates and subsequent disease transmis-
sion in directly transmitted diseases (Parratt et al., 2016). The timing 

of the initial outbreak was variable between a burn-in phase of one 
year and the third year. This temporal variability of starting the ini-
tial outbreak might have led to the fact that in some simulations, 
the pathogen could never establish and invade the host population, 
leading to many extinction times shortly after pathogen introduc-
tion. This was especially prominent in mismatch scenarios. However, 
when the pathogen was able to establish in the host population 
beyond the initial outbreak and subsequently spread through the 
landscape, extinction became increasingly unlikely. The increase in 
early extinctions with increasing mismatch further emphasizes an 
increasing importance of the timing of biological events. Pathogens 
are less likely to cause a widespread disease outbreak when being 
introduced into a susceptible population during a period of unfavor-
able environmental conditions.

Movement and decision-making in animals as key mechanism of 
coexistence—Spatially explicit host movement effectively mitigates 

F I G U R E  5   Frequency of cells with 
infected hosts throughout simulation runs 
with CRW movement (a), HDM movement 
(b), and no roaming movement (c) for 
all five tlag scenarios. The cumulative 
pathogen presence time per landscape 
cell represents the total amount of time 
that a landscape cell had infected hosts 
occupying it, while frequency is the 
overall number of cells with the same 
pathogen presence time values at the end 
of the simulation0
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some of the spatiotemporal restrictions a dynamic resource land-
scape can put on host and/or pathogen. As Scherer et  al.,  (2020) 
have shown for static landscapes, explicit host movement can in-
crease coexistence, and this also holds true for many instances 
within a spatiotemporally dynamic landscape. However, movement 
is also subject to a larger variability, for example, in distance moved 
or in timing of movement and can, in fact, become detrimental to 
coexistence under certain circumstances. There is, for example, the 
possibility that an infected host individual transports the pathogen 
to susceptible populations that have not fully recuperated from 
unfavorable habitat conditions and lack the population density to 
sustain the pathogen. This is especially prominent for nondirected 
movement such as correlated random walks, neglecting important 
species–landscape interactions (White et al., 2018b).

Particularly under random movement, there is a lower chance, 
compared to directed habitat-dependent movement, for infected 
host individuals to transmit the disease to susceptible hosts in high 
resource, high host density habitat clusters fast enough to allow for 
pathogen persistence. This is not apparent under habitat-dependent 
movement, due to directed movement toward high-resource areas. In 
consequence, under the directed habitat-dependent movement, the 
chance of coming into contact and infecting other hosts increases, 
while moving toward or through high-resource habitats. Hence, 
movement-induced species interactions could be a key mechanism 
promoting disease persistence, which is underpinned by studies on 
waterfowl (Figuerola & Green, 2000) or white-fronted geese (Kleijn 
et  al.,  2010). Also, White et  al.,  (2018b) have demonstrated theo-
retically that decision-making of animals, here the decision to move 
toward high-quality habitat, might increase disease persistence.

The effect of landscape structure on coexistence—An increasing ho-
mogenization of the landscape particularly through anthropogenic 
land-use change, for example, deforestation or the increase in agri-
cultural areas (Patz et al., 2004), can, however, offset the pronounced 
effect of habitat-dependent movement on coexistence. Individuals 
within large clusters, comprised of the same level of resources, might 
not be able to find higher resource areas in time. In addition, a large 
proportion of the host population is situated in similar habitats and 
subjected to the same level of resource decrease simultaneously. 
Consequently, the loss of susceptible hosts due to death or immu-
nization cannot be compensated with the influx of new susceptible 
hosts, for example, though birth or immigration, to sustain the patho-
gen (McCallum, 2012), causing it to go extinct in large parts of the 
landscape. Accordingly, our results demonstrate lower coexistence in 
landscapes with larger homogeneous habitat clusters.

Interestingly, while increasing spatial homogeneity of the land-
scape had a negative effect on pathogen persistence, we still found 
the formation of infection hotspots in scenarios with full temporal 
mismatch between host reproduction and resource peaks. Infection 
hotspots were, with varying degree, present across all tested land-
scape configurations in scenarios with full mismatch and across all 
tested movement scenarios. While the initial spatial resource struc-
ture might not be important when it comes to the emergence of in-
fection hotspots, larger low-resource areas in more homogeneous 

landscape configurations can form temporary barriers, similar to 
seasonal landscape barriers (Mui et al., 2017). These temporary land-
scape barriers can restrict the pathogen to certain areas in scenar-
ios where host individuals have no explicit long-distance movement 
(Supplementary material Appendix Figure S7). While there was no 
strong effect of these temporary barriers on coexistence, this fur-
ther highlights the role of explicit long-distance host movement in 
terms of disease transmission (see review in Altizer et al., 2011).

A reality check of our model assumptions—Our individual-based 
model here best described a group-living social animal conducting 
long-range movements acting autonomously, that is, deciding on 
movement directions, while demographic processes are also resource-
dependent. On the other hand, it also considers viral traits like acute 
to chronic infections in a directly transmitted disease. Thus, our model 
is quite complex in terms of realistic processes and hence a template 
for many disease dynamics under temporal mismatch, induced, for 
example, by climate and land-use change. The spillover of Hendra 
virus from flying foxes to other animals (Martin et al., 2015; Plowright 
et al., 2015) or the impact of the canine distemper virus on spotted 
hyenas (Benhaiem et al., 2018) or lions (Craft et al., 2011) could be am-
plified by climate and land-use change-induced temporal mismatches.

Climate change is altering environmental fluctuations that lead 
to increasing mismatches between resources and biological events 
(Durant et al., 2007). And, although some animal species may adapt 
to such temporal shifts in resource availability, they might respond 
too slowly to be able to persist (Radchuk et al., 2019). Yet, our re-
sults demonstrate that we could expect the emergence of disease 
hotspots under a full temporal mismatch of resource availability and 
the timing of host birth peaks, counteracting possible adverse ef-
fects of reduced host densities. Temporal shifts of the magnitude 
that were used in this work, that is, large shifts of multiple weeks 
up to a full mismatch, might not be as important for climate change 
in the near future, where temporal mismatches are expected to 
be smaller (Thackeray et al., 2016). However, climate change does 
not occur separately from other anthropogenically caused threats. 
Indeed, large-scale land-use changes can alter the resource distri-
bution throughout a landscape in more drastic ways resulting in the 
possibility for stronger mismatches between available resources and 
host life history (Ullmann et al., ,2018, 2020). For example, changing 
natural habitats into agricultural areas could still provide resources, 
that is, food, but the peak availability might occur at drastically dif-
ferent times when compared to the natural environment.

The wild boar as our model host species is a long-lived mam-
mal with seasonal breeding that has an annual peak and is currently 
profiting from climate warming-induced changes of the environment 
(Vetter et  al.,  2020). Pathogens will most probably profit most in 
species with multiple annual peaks of reproduction. Multiple repro-
ductive events per year, like in hyenas (Kruuk, 1972), might mitigate 
effects of a mismatch on host–pathogen coexistence. While during 
one peak the resources might be scarce and the population size would 
be temporally reduced, the time between several birth peaks could 
be short enough to compensate the drop in host density and bene-
fit host–pathogen coexistence. Subsequently, the more birth peaks a 
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species has, the less it should be affected by temporal mismatches. In 
case of wild boar, if the species continues to benefit from the effects 
of climate and land-use change, the single birth peak dynamic might 
continue to change toward multiple reproductive peaks per year, fur-
ther offsetting adverse effects on host–pathogen coexistence. This 
could lead to an upsurge in persistent viral outbreaks throughout wild 
boar populations, which might exacerbate currently discussed pro-
cesses like individual infection risk in piglets and movement (Scherer 
et al., ,2019, 2020). A prominent example is the persistence of African 
Swine Fever (ASF) in wild boar in Europe, which affects animal health 
more severely and can cause profound economic damages (Halasa 
et al., 2016) when coming into contact with domestic pigs.

Additionally, due to high mutation rates and short generation 
times, pathogens are likely to evolve, which can influence host as 
well as pathogen survival (Galvani, 2003) and might compensate for 
the response of the host species to changes in resource availability. 
Seasonal resource dynamics might strongly affect pathogen evolu-
tion if, during periods of high host densities, a particular strain of the 
pathogen has adapted to capitalize on the increased possibility for 
transmission or during periods of low host density if the pathogen 
has adapted to persist through those conditions (Altizer et al., 2006; 
Hite & Cressler, 2018; Koelle et al., 2005). A strong temporal mis-
match that creates disease hotspots in combination with an even 
stronger system of alternating high and low host population densi-
ties than basic seasonality could further facilitate pathogen evolu-
tion. Furthermore, our model does not account for the host immune 
system, which can be impacted by a dynamic resource landscape. 
Long periods of resource scarcity and an expected poorer nutrition, 
as well as increased investment in movement to move toward higher 
resource areas, have been shown to negatively affect a host individ-
ual's ability to defend against infectious diseases (Altizer et al., 2006; 
Sheldon & Verhulst, 1996; White et al., 2018b). Subsequently, this 
could lead to further alterations of host–pathogen dynamics and 
coexistence.

In conclusion, our work has shown that temporary spatial 
hotspots of infectious hosts can emerge from a limited number of 
high-resource sites that are formed due to temporal mismatches 
between resource availability and host reproduction. Considering 
the increasing effect of climate and land-use change on resource 
availability and distribution, this will promote the understanding of 
how temporal resource variability and host movement affect host–
pathogen systems.
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