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Abstract

On January 2014 approximately 10,000 gallons of crude 4-Methylcyclohexanemethanol

(MCHM) and propylene glycol phenol ether (PPH) were accidentally released into the Elk

River, West Virginia, contaminating the tap water of around 300,000 residents. Crude

MCHM is an industrial chemical used as flotation reagent to clean coal. At the time of the

spill, MCHM’s toxicological data were limited, an issue that has been addressed by different

studies focused on understanding the immediate and long-term effects of MCHM on human

health and the environment. Using S. cerevisiae as a model organism we study the effect of

acute exposure to crude MCHM on metabolism. Yeasts were treated with MCHM 550 ppm

in YPD for 30 minutes. Polar and lipid metabolites were extracted from cells by a chloro-

form-methanol-water mixture. The extracts were then analyzed by direct injection ESI-MS

and by GC-MS. The metabolomics analysis was complemented with flux balance analysis

simulations done with genome-scale metabolic network models (GSMNM) of MCHM treated

vs non-treated control. We integrated the effect of MCHM on yeast gene expression from

RNA-Seq data within these GSMNM. A total of 215 and 73 metabolites were identified by

the ESI-MS and GC-MS procedures, respectively. From these 26 and 23 relevant metabo-

lites were selected from ESI-MS and GC-MS respectively, for 49 unique compounds.

MCHM induced amino acid accumulation, via its effects on amino acid metabolism, as well

as a potential impairment of ribosome biogenesis. MCHM affects phospholipid biosynthesis,

with a potential impact on the biophysical properties of yeast cellular membranes. The FBA

simulations were able to reproduce the deleterious effect of MCHM on cellular growth and

suggest that the effect of MCHM on ubiquinol:ferricytochrome c reductase reaction, caused

by the under-expression of CYT1 gene, could be the driven force behind the observed effect

on yeast metabolism and growth.

Introduction

On January 2014 approximately 10,000 gallons of crude 4-Methylcyclohexanemethanol

(MCHM) and propylene glycol phenol ether were accidentally released into the Elk River,

West Virginia, contaminating the tap water of around 300,000 residents [1]. Crude MCHM is

an industrial chemical used as flotation reagent to clean coal [2]. More than 300 people in the
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affected area visited emergency departments with reports of symptoms potentially related to

the spill, including mild skin, gastrointestinal and respiratory symptoms that resolved with no

or minimal treatment [3]. At the time of the spill, MCHM’s toxicological data were limited, an

issue that have been addressed by different studies focused on understanding the immediate

and long-term effects of MCHM on human health and the environment [4].

MCHM is considered a moderate-to-strong dermal irritant, causes fetal malformations in

rats when orally exposed to 400 mg/kg/day [5]. The highest concentration of MCHM detected

at the water treatment facility was 3.772 ppm and in treated household tap water was 0.42 ppm

[6]. Crude MCHM is not a dermal irritant to humans at the concentrations in the water

reported after the spill [7]. In the evaluation of different cell lines, HEK-293, HepG2, H9c2,

and GT1-7 only the highest dose of MCHM (128 ppm or 1 mM) elicited a statistically signifi-

cant decrease in cell viability, when compared to the control (1% DMSO) [8]. MCHM induced

DNA damage-related biomarkers in human A549 cells, indicating that it is related to genotoxi-

city [9]. MCHM affected the larval visual-motor response in an acute developmental toxicity

assay with zebrafish embryos [10]. In a limited screen, MCHM induces chemical stress related

to transmembrane transport activity and oxidative stress in yeast [9].

The budding yeast Saccharomyces cerevisiae is one of the most intensively investigated,

well-consolidated and widely used eukaryotic model organism. Its use has allowed the gain of

insights in basic cellular mechanisms such as cell cycle progression, DNA replication, vesicular

trafficking, protein turnover, longevity and cell death [11] or even more complex processes

like neurodegenerative disorders [12]. Being among the first components of the biota to be

exposed to environmental pollutants, bacteria and fungi are common model organisms for

eco-toxicological assessments [13]. A number of features make S. cerevisiae an ideal model for

functional toxicological studies, such as: being unicellular, the ease of genetic manipulation,

availability of a huge repertoire of dedicated experimental tools, protocols, software and data-

bases, a high degree of functional conservation with more complex eukaryotes, among others

[13]. The effect of tens of pesticides has been studied in S. cerevisiae by a battery of omics

approaches, including transcriptomics, chemogenomics, proteomics and metabolomics

(reviewed in [13]).

Focused on the analysis of the whole repertoires of endogenous or exogenous metabolites

that are present in a biological system at a given time point metabolomics serves as a link

between genotype and phenotype [14,15]. Metabolomics is an extremely useful tool in the

analysis of the metabolic modifications induced by potentially toxic compounds [16]. These

studies include the effect different fungicides [17], Cu2+ exposure [18], tolerance to representa-

tive inhibitors [19], ethanol tolerance [20,21], among others.

Flux balance analysis (FBA) [22–25] with genome-scale metabolic network models

(GSMNM) allows the simulation of the metabolism at a systemic level, for the understanding

of diverse phenomena and making predictions [26]. There are more than twenty genome-scale

metabolic network models reconstructed for S. cerevisiae to date [27]. The consensus yeast

metabolic network stands out with 14 compartments, more than 3700 reactions, >2500

metabolites and >1100 genes [28].

The accuracy of FBA predictions can be improved by the integration of experimental data

[26]. Several methods have been developed to this end, allowing the integration of transcrip-

tomics data: such as E-Flux [29], omFBA [30] and transcriptional regulated flux balance analy-

sis (TRFBA) [31]; proteomics data: GECKO (a method that enhances a genome-scale

metabolic models to account for enzymes as part of reactions) [32]; and metabolomics data:

unsteady-state flux balance analysis (uFBA) [33].

In the present work, we study the effect of MCHM on metabolism using yeast as a model

organism, combining metabolomics tools with FBA simulations on genome-scale metabolic
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network models of yeast constrained by RNA-Seq data. We found that MCHM treatment

altered metabolites and gene expression across metabolic pathways. Amino acid levels as well

as, many amino acid precursors increased while phospholipids decreased. The increase in

amino acid levels could be explained at the transcriptomic level as amino acid biosynthetic

genes were upregulated. Ribosome biosynthesis genes were downregulated, which is often

seen in response to stress. Several genes involved in mitochondrial function were upregulated.

The role of the mitochondria in MCHM was further supported by merging the metabolomics

and transcriptomics data in a flux balance analysis. This predicted that the growth inhibition

of MCHM would be minimized as the concentration of D-Glucose decreased. FBA simula-

tions suggest Ubiquinol:ferricytochrome c as the limiting reaction, which would be caused by

the MCHM induced under-expression of CYT1 gene.

Materials and methods

MCHM treatment

Wildtype yeast from the S288c background (BY4741 strain his3, ura3, leu2, met15) [34] were

grown in YPD to exponential phase (OD 0.4–0.6) then treated with crude 4-Methylcyclohexa-

nemethanol (crude MCHM provided directly from Eastman Chemical) 550 ppm (3.9 mM) for

30 minutes or left untreated. Six independent biological replicates were done per treated and

untreated group. After 30 minutes 5 optical units of cells were collected, washed with deion-

ized water, flash-frozen in liquid nitrogen and stored at -80˚C for extraction within the next 24

hours.

Metabolites extraction

Lipid and polar metabolites were extracted with a 1:2:0.8 mixture of chloroform: MeOH: H2O,

following a modified version of a published protocol [35]. HPLC grade chloroform and metha-

nol were from Sigma-Aldrich. All the steps were done using glassware, to avoid polymers con-

tamination. The extractions were performed in 15 mL Kimble™ Kontes™ KIMAX™ Reusable

High Strength Centrifuge Tubes from Fisher Scientific. Half of the original protocol volume

values were used. For extractions headed to GC-MS analysis, 50 μL of ribitol internal standard

(10 mg/mL) were added. 3 mL of the polar and 3 mL of the lipid phase were collected per sam-

ple. The polar phase was dried in SpeedVac (ThermoFisher Scientific). The lipid phase was

dried overnight in a fume hood. For ESI-MS experiments, but not for GC-MS, the dried polar

phases were re-suspended in 500 μL of MeOH and the lipid phases were re-suspended in

500 μL 1:1 chloroform: MeOH. All extracts were stored at -20 oC for analysis within 48 hours.

ESI-MS

Samples were analyzed by direct injection of the resuspended extracts in a Thermo Fisher Sci-

entific Q-Exactive, with an ESI (electrospray ion source), using positive and negative modes.

For polar compounds in positive mode the injection speed was 10 μL/min, the scan range was

50–750 m/z, no fragmentation, 140,000 resolution, 1 microscan, AGC target 5x, maximum

injection time of 100, sheath gas flow rate of 10, aux gas flow rate of 2, no sweep gas flow, spray

voltage 3.60 kV, capillary temperature of 320˚C, S-lens RF level 30.0. For polar compounds in

the negative mode most parameters remain the same, except for spray voltage: 3.20 kV, capil-

lary temperature: 300 oC, S-lens RF level: 25.0. For lipid compounds in positive mode the fol-

lowing parameters were modified; scan range: 150.0–2,000.0 m/z, sheath gas flow rate: 15, aux

gas flow rate: 11, spray voltage: 3.50, capillary temperature: 300˚C, S-lens RF level: 25.0. For
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lipid compounds in negative mode the previous parameters were kept, except for the spray

voltage, which was set to 3.20 kV.

50 scans were obtained per sample and later averaged with Thermo Scientific Xcalibur 2.1

SP1. Averaged spectra in the positive and negative mode were processed for polar and lipid

fractions, separately with xcms 3.2.0 [36]. Peaks were identified within each spectrum using

the mass spec wavelet method from the MassSpecWavelet 1.46.0 R package [37]. Peaks were

grouped with the Mzclust method, followed by groupChromPeaks. All features were plotted

visually inspected. The intensity values of each feature in each sample were obtained with the

featureValue method as the integrated signal area for each representative peak per sample. The

feature intensity and feature definition tables were saved as CSV files. Feature intensities were

normalized by the total sum of the intensities of all the features detected in the corresponding

spectrum (being identified or not). The normalization was done spectrum wise, so the normal-

ized feature intensity values were a percentage of the total intensity of the spectrum of origin.

Features were identified via MetaboSearch 1.2 [38], with the list comprising the average mz

values for each feature as a query, with 5 ppm of error, positive or negative mode and using the

four online databases available as options in the program: HMDB, Metlin, MMCD, and

LipidMaps.

After the feature identification, normalized feature intensity tables (keeping only identified

features) coming from the same biological replicate (both positive and negative modes from

polar and lipid fractions) were merged as a single intensity table.

Features ids were confirmed by targeted MS/MS experiments, with selected features m/z

values included in a target list. The isolation width in the quadrupole was 1.0 m/z and nitrogen

was used as the collision gas. The fragment ions were measured in the Orbitrap with a resolu-

tion of 17,500 FWHM at 200 m/z, accumulation target 1E5, maximum fill time 60 ms and nor-

malized collision energy of 29. The resulting fragmentation spectra were queried against

Metlin and HMDB, with a mass error of 5 ppm.

Six biological replicates per group for MCHM treated and untreated controls were used.

The experiment was repeated twice with consistent results. These biological replicates were

not the same used in GC-MS experiments.

GC-MS

50 μL of Methyl heptadecanoate 2 mg/mL was added as the internal standard to each lipid

sample before derivatization. Lipid and polar fractions were derivatized with BSTFA [39] and

MSTFA [40], respectively. For BSTFA derivatization dried extracts were treated with 200 μLL

N,O-bis(trimethylsilyl)trifluoroacetamide with 1% of trimethylchlorosilane at 75˚C for 30

min. For MSTFA derivatization dried extracts were treated with 50 μL methoxyamine hydro-

chloride (40 mg/ml in pyridine) for 90 min at 37˚C, then with 100 μL MSTFA + 1% TMCS at

50˚C for 20 min. Derivatized samples were analyzed using a GC-MS (Trace 1310 GC, Thermo

Fisher Scientific, Waltham, MA, USA) coupled to an MS detector system (ISQ QD, Thermo

Fisher Scientific, Waltham, MA, USA) and an autosampler (Triplus RSH, Thermo Fisher Sci-

entific, Waltham, MA). A capillary column (Rxi-5Sil MS, Restek, Bellefonte, PA, USA; 30

m × 0.25 mm × 0.25 μm capillary column w/10 m Integra-Guard Column) was used to detect

polar metabolites. For water-soluble metabolite analysis, after an initial temperature hold at

80˚C for 2 min, the oven temperature was increased to 330˚C at 15˚C min-1 and held for 5

min. For lipid-soluble metabolite analysis, after an initial temperature hold at 150˚C for 1 min,

the oven temperature was increased to 320˚C at 12˚C min-1 and held for 7 min. Injector and

detector temperatures were set at 250˚C and 250˚C, respectively. An aliquot of 1 μL was

injected with the split ratio of 70:1. The helium carrier gas was kept at a constant flow rate of
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1.2 mL min-1. The mass spectrometer was operated in positive electron impact mode (EI) at

70.0 eV ionization energy at m/z 40–500 scan range.

Peak identification and grouping, and feature intensities calculation were performed with

Thermo Scientific™ Chromeleon™ (Version 7.2, Thermo Fisher Scientific, Waltham, MA,

USA). Features were identified against a locally characterized set of central metabolites (tar-

geted metabolomics), when possible. Other features were identified querying NIST database

(untargeted metabolomics). Feature intensity tables were saved as CSV files, keeping only the

identified features.

Features intensities from lipid and polar fractions were normalized against its correspond-

ing internal standards (methyl heptadecanoate for lipid and ribitol for polar fractions) and

then the ones coming from the same biological replicate (both lipid and polar fractions) were

merged as a single intensity table.

Six biological replicates per group for MCHM treatment and untreated controls were used.

The experiment was repeated three times with consistent results. These biological replicates

were not the same used in ESI-MS experiments.

Metabolomics data analysis

Feature intensity tables from ESI-MS and GC-MS were processed with MetaboAnalyst 4.0 [41]

and R 3.6.1. Missing intensity values were replaced by half of the minimum positive value in

the original data, before normalization. Up to 5% of the features with near-constant intensity

values among the samples were filtered out. Samples were scaled by Pareto scaling. Samples

were compared by univariate analysis (t-test and fold change, using R) and multivariate analy-

sis: Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis

(PLS-DA), Sparse Partial Least Squares—Discriminant Analysis (sPLS-DA), Orthogonal-

Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA), Empirical

Bayesian Analysis of Microarray (EBAM), Random Forest classification, Support Vector

Machine (SVM) and Significance Analysis of Microarray (SAM), as implemented in MetaboA-

nalyst 4.0. For the selection of relevant metabolites, a majority vote model was built (for

ESI-MS and GC-MS independently). Metabolites were selected as relevant if they were signifi-

cant in at least five of the nine previously mentioned analysis. The following criteria were fol-

lowed by analysis type to select the metabolites: t-test (p adjusted < 0.05), PCA (abs(PC1

loadings) > 0.1 for ESI-MS, and abs(PC1 loadings) > 0.1 OR abs(PC2 loadings) > 0.1 for

GC-MS), PLS-DA (VIP component 1> 1 for ESI-MS, and VIP component 1> 1 OR VIP

component 2> 1 for GC-MS), sPLS-DA (abs(loadings component 1) > 0), OPLS-DA (abs

(loadings component 1)> 1), EBAM, SAM, Random Forest and SVM (compounds labeled as

significant within the analysis).

PLS-DA and OPLS-DA models were validated by permutations as implemented in Meta-

boAnalyst 4.0 [41]. Briefly, 1000 permutations were performed. In each permutation, a model

was built between the data (X) and the permuted class labels (Y) using the optimal number of

components determined by cross-validation for the model based on the original class assign-

ment. For PLS-DA the separation distance based on the ratio of the between group sum of the

squares and the within group sum of squares (B/W-ratio) was used for measuring class dis-

crimination. For OPLS-DA the cross-validated R2Y and Q2 coefficients were used.

The performance of the sPLS-DA models was evaluated using leave-one-out cross-

validations.

The heatmaps of the relevant compounds were done with the R package pheatmap 1.0.12.

The Pathway Analysis was performed with MetaboAnalyst 4.0 using the name of the rele-

vant compounds from the ESI-MS and GC-MS combined. The Saccharomyces cerevisiae
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pathway library was used, as well as the hypergeometric test for the over-representation analy-

sis and relative-betweenness centrality for the pathway topology analysis.

Some pathways were represented as Escher maps [42] with the thick and color of the edges

as a function of the respective MCHM treated vs untreated control flux ratio values.

Transcriptomics

A fraction of previously reported data was used, including only the samples with wildtype

S288c (S96 lys5) cells in YPD treated or not with MCHM [43]. The RNA-seq of S96 was carried

out on hot acid phenol extracted RNA [44]. The raw data is accessible at ttps://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE108873, containing count data generated via Rsubread

and the differential expression data generated via DESeq2. MA plot and KEGG Pathway

Enrichment Analysis were done with R packages ggpubr and clusterProfiler [45], respectively.

Flux balance analysis

For our FBA simulations, we used the consensus genome-scale metabolic model of Saccharo-
myces cerevisiae, yeastGEM, version 8.3.0 [46]. The simulations were performed with the

COBRApy python package [47], using yeastGEM definition of growth as the objective func-

tion to be maximized.

The upper bounds of reactions from yeastGEM were modified in correspondence with

gene expression of related genes from our RNA-Seq data. For this integration of RNA-Seq and

FBA we adapted the E-Flux method developed by Colijn et al. [29]. Briefly, every reaction is

associated with a set of genes which products (enzymes or transporters) make the reaction pos-

sible. In the simplest case, only one gene or none at all are associated, meaning that the enzyme

catalyzing the reaction is a single poly-peptide entity or that the reaction is spontaneous,

respectively. When the enzymes are heteromeric the gene coding for the different subunits are

associated by an “AND” keyword, and the maximum reaction flux was driven by the gene with

the lowest expression of the set. When the reaction can be driven by more than one protein the

corresponding gene (gene sets) are associated by the “OR” keyword, and the maximum reac-

tion flux is a function of the sum of the corresponding gene (gene sets) expressions. If there

was no expression value for a given gene the average expression of the corresponding experi-

mental group was used instead.

The resulting upper reaction bounds were normalized between zero and 1000 (the default

upper bound in the yeastGEM model). Two models came out as the result of this procedure,

one for MCHM treated yeast and one for the untreated control.

Default solutions were determined for each model using the optimize method from COBR-

Apy and with the default yeastGEM media. Phenotype phase plane of Growth vs D-Glucose

exchange was calculated with the production_envelope method and the corresponding graphics

generated with ggpubr.
Upper bounds of selected reactions were manually modified to test for the importance of

such reactions in growth.

All fluxes are in mmol/(gDW�hour).

Results

MCHM affects yeast metabolism

To assess how MCHM treatment affects metabolism, 215 and 73 metabolites were identified

by the ESI-MS and GC-MS procedures, respectively (S1 Table). The compounds from ESI-MS

were dominated by phospholipids and sphingolipids, with 80 compounds belonging to those

Effects of MCHM on yeast metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0223909 October 17, 2019 6 / 24

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108873
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108873
https://doi.org/10.1371/journal.pone.0223909


classes. In the GC-MS set, amino acids stand out, with 15 out of the 20 standard amino acids.

There was almost no overlap between both sets of compounds, as only eight metabolites were

detected by both procedures: adenosine, citric acid, L-lysine, L-proline, myristic, palmitic, and

stearic acids and uridine. A total of 280 metabolites were consistently detected by our com-

bined analysis (S1 Table), comprising a variety of lipid and polar compounds (S1 Table).

Features from the MS spectra were detected, grouped, identified and their intensities calcu-

lated as described in Materials and Methods. Intensities were normalized to facilitate multivar-

iate analysis (see Materials and Methods). Proper differentiation of the MCHM treated vs

untreated control groups can be seen in the Principal Component Analysis (PCA, unsuper-

vised, Fig 1 top) and the supervised methods Partial Least Squares Discriminant Analysis

(PLS-DA, Fig 1 bottom), Orthogonal-Orthogonal Projections to Latent Structures Discrimi-

nant Analysis (OPLS-DA, S1 Fig, top) and Sparse Partial Least Squares—Discriminant Analy-

sis (sPLS-DA, S1 Fig, bottom). The group separation (control vs treated) is consistent among

the PCA and PCA-like analysis, which indicates that it reflects the effect of MCHM treatment

and is independent of the supervision nature or the specificities of these PCA-like methodolo-

gies. The supervised methods validation can be seen in S2 Fig.

Relevant compounds were selected by a majority voting model, which takes into account

the result of the t-test and eight multivariate analysis (PCA, PLS-DA, sPLS-DA, OPLS-DA,

EBAM, Random Forest classification, SVM and SAM, see Materials and Methods, S2 and S3

Tables). For ESI-MS the number of significant compounds per analysis was: t-test (34, see S1

Table), PCA (30), PLS-DA (30), OPLS-DA (42), sPLS-DA (10), Random Forest (11, S3 Fig

left), EBAM (33, S4 Fig left), SAM (39, S5 Fig left) and SVM (86). From these 26 metabolites

were selected as relevant in the majority voting model (S2 Table). For GC-MS the numbers

are: t-test (22, see S1 Table), PCA (23), PLS-DA (16), OPLS-DA (34), sPLS-DA (10), Random

Forest (9, S3 Fig right), EBAM (23, S4 Fig right), SAM (29, S5 Fig right) and SVM (65). From

these 23 metabolites were selected as relevant in the majority voting model (S3 Table).

From the ESI-MS (left) and GC-MS (right) (Fig 2), 49 unique compounds were found rele-

vant, with no common ones between ESI-MS and GC-MS. Samples were nicely clustered by

groups in the heatmaps, in correspondence with what was previously observed in PCA-like

analysis (Fig 1 and S1 Fig). The relevant compounds set from ESI-MS were dominated by gly-

cerophospholipids (20 out of 26 compounds). The level of all these phospholipids was reduced

due to MCHM treatment (Fig 2 left). Amino acids stood out in the GC-MS relevant set of

metabolites, with 10 standards (A, D, T, V, N, G, Q, S, T and K) and two non-standard (5-Oxo-

proline or pyroglutamic acid and 2-aminobutyric acid, an alpha-amino acid derivative of ala-

nine) which levels were increased due to the MCHM treatment (Fig 2 right). L-histidine, the

only amino acid in the relevant set from ESI-MS and not detected by GC-MS, also has its levels

increased due to MCHM treatment (Fig 2 left). Among the other metabolites which levels

were also increased due to MCHM treatment are: homoserine (intermediate in the biosynthe-

sis of methionine, threonine and isoleucine), cystathionine (an intermediate in the synthesis of

cysteine), lanosterol (tetracyclic triterpenoid from which animal and fungal steroids are

derived), squalene, adenine, inosine and malic acid (Fig 2 right and S3 Table). Besides the

phospholipids, the nucleoside orotidine was among the metabolites with decreased level due

to MCHM (Fig 2 left, S2 Table).

These relevant metabolites were used as input for pathway analysis (Fig 3), which combine

pathway enrichment with pathway topology analysis. Seven metabolic pathways were both sta-

tistically significant and with impact (Fig 3). The relevant amino acids that dominated this

analysis were from three pathways involved in the metabolism of amino acids: the aminoacyl

t-RNA biosynthesis reactions have amino acids as reactants, the nitrogen metabolism has L-

glutamine and 2-oxoglutarate as intermediaries, and L-serine, L-alanine, and glycine are
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involved in methane metabolism. The other relevant pathway was the glycerophospholipid

metabolism, as expected due to number of glycerophospholipids affected by MCHM (Fig 2

left, S2 Table).

Fig 1. Score plots from the Principal Component Analysis (PCA) (top) and the Partial Least Squares Discriminant Analysis (PLS-DA) (bottom), for ESI-MS

(left) and GC-MS (right) data. The 95% confidence areas are shown as well as the explained variance, shown in brackets in the corresponding axis labels.

https://doi.org/10.1371/journal.pone.0223909.g001
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Effect of MCHM on gene expression

We used a data set generated previously by our laboratory and available from https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108873 [43]. For this analysis, we kept only the

data regarding wild type S288c strain in YPD, treated or not with MCHM by 90 minutes.

From gene expression measurements for 3946 genes, 87 were upregulated and 30 downre-

gulated due to MCHM treatment (Fig 4A, S4 Table) potentially affecting 18 metabolic path-

ways (Fig 4B), which include the three amino acid metabolism pathways in Fig 3. No pathway

enrichment was found from the downregulated genes.

Seven downregulated genes were involved in ribosome biogenesis: SDA1 and RRP1,

involved in 60S ribosome biogenesis [48,49]. ESF1, its depletion causes severely decreased 18S

rRNA levels [50]. BFR2, involved in pre-18S rRNA processing and component of SSU proces-

some [51]. MRD1, required for the production of 18S rRNA and small ribosomal subunit [52].

NOP4, constituent of 66S pre-ribosomal particles and critical for large ribosomal subunit bio-

genesis and processing and maturation of 27S pre-rRNA [53]. NOP7, component of several

pre-ribosomal particles [54]. Loss of SDA1 function causes cells to arrest in G1 before Start

and to remain uniformly as unbudded cells that do not increase significantly in size [55,56].

Among the rest of downregulated genes, there are two that encodes for cell wall mannopro-

teins (CWP1 and TIR1) and three involved in iron and zinc transport and homeostasis (FTR1,

ZRT1, and IZH1). MCHM affects the intracellular levels of iron and zinc [43].

The upregulated gene set was enriched in genes coding for enzymes of the amino acid bio-

synthesis pathways (28 out of 87) (Fig 4 B, S4 Table): ARG1, ARG5,6, ARG7, CPA1, CPA2,

ASN1, GDH1, HIS4, HIS5, HOM2, HOM3, LEU1, LEU2, LEU4, LYS1, LYS2, LYS12, MET5,

MET6, MET17, MET22, TRP2, TRP5, TMT1, ARO1, ARO3, ADE3 and THR4. These gene

Fig 2. Heatmap with the relevant compounds for ESI-MS (left) and GC-MS (right). The cells are colored by the normalized intensities. Both the compounds (rows)

and the samples (columns) are clustered and reordered by the similarity of the intensity patterns.

https://doi.org/10.1371/journal.pone.0223909.g002
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products participate in the biosynthesis of the amino acids: D, R, N, E, H, M, T, L, K, C, W, Y,

and F. Three other genes: CAR1, MET3 and MET14 are involved in R and M metabolism.

ARO8, encoding for the aromatic aminotransferase I, was also upregulated and its expression

is regulated by general control of amino acid biosynthesis [57].

Nine stress response-related genes are up-regulated due to MCHM treatment: AHA1,

GRE2, PDR3, PDR16, ICT1, TPO1, ENB1, SNQ2, and QDR3.

It is of note that genes encoding for six mitochondrial enzymes (MAE1, BAT1, ILV6, IDP1,

GCV2, and LYS12) and three mitochondrial transporters (GGC1, OAC1, and ODC2) were

upregulated. From these, MAE1 codes for the mitochondrial malic enzyme which catalyzes the

Fig 3. Pathway analysis using relevant metabolites from ESI-MS and GC-MS combined. The seven pathways with the impact greater than zero and

p< 0.05 are labeled.

https://doi.org/10.1371/journal.pone.0223909.g003
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decarboxylation of malate to pyruvate (in addition to its key role in sugar metabolism, pyru-

vate is a precursor for synthesis of several amino acids); BAT1 and ILV6 products are involved

in branched-chain amino acid biosynthesis and ODC2 codes the 2-oxodicarboxylate trans-

porter, which exports 2-oxoglutarate and 2-oxoadipate from the mitochondrial matrix to the

cytosol for use in glutamate biosynthesis and in lysine metabolism.

Modeling MCHM effect on yeast metabolism by flux balance analysis

Using the expression data and the gene rules from the yeastGEM model (version 8.3.0) upper

bounds were calculated for 2504 reactions of the model. Two new metabolic models were

Fig 4. RNA-Seq gene expression data. MA plot (A). KEGG Pathway Enrichment Analysis for differentially expressed genes (B). No enrichment

was found for downregulated genes.

https://doi.org/10.1371/journal.pone.0223909.g004
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created from the original yeastGEM model, named control and treated, with the upper bounds

of their reaction fluxes calculated from the corresponding gene expression data (as explained

in Materials and Methods), and using as the objective function the maximization of growth. A

summary of the result of FBA simulations with these models is shown in Tables 1 and 2. All

the input and output fluxes are shown, with the involved metabolites, the calculated flux rates,

and their ranges. Flux ranges were calculated by Flux Variability Analysis with a fraction to the

optimum of 1. The objective function flux is shown. The growth was predicted to decrease due

to the MCHM treatment, from a flux of 0.0704 to 0.0591 mmol/(gDW�hour) (Tables 1 and 2).

The flux ratio of growth between treated and control was ~0.839. So, MCHM treatment

decreased yeast growth, consistent with the experimental results [43].

Our FBA simulations predict that the effect of MCHM on growth was diminished when the

concentration of D-Glucose in the medium was decreased (Fig 5). There was a level of D-Glu-

cose in the medium (~0.5 mmol/(gDW�hour)) from which the growth of the MCHM treated

and control models were the same.

We then focused on the seven significant pathways from the pathway analysis (Fig 3), to

analyze the flux ratios between the FBA solutions of the treated vs the control models. The

Escher maps representations [42] of alanine, aspartate and glutamate metabolism, aminoacyl

t-RNA biosynthesis, cysteine and methionine metabolism, glycerophospholipid metabolism,

glycine, serine and threonine metabolism, methane metabolism and nitrogen metabolism are

shown in S5–S12 Figs. As in any metabolic map, the nodes were the metabolites and the edges

connecting them were the reactions, with arrowheads indicating the reaction direction and

labeled by the corresponding enzyme or transporter. The ratios of the fluxes passing through-

out the respective reactions in the MCHM treated vs untreated control models were shown

next to the enzyme names, and the color and width of the edges were scaled in function of

Table 1. FAB solution for the control model.

IN FLUXES OUT FLUXES OBJECTIVES

Name Flux Range Name Flux Range Name Flux

oxygen [e] 1.91 [1.91, 1.91] H2O [e] 2.82 [2.23, 2.82] growth 0.0704

phosphate [e] 1.2 [0.0178, 1.2] formate [e] 1.74 [1.74, 1.74]

D-glucose [e] 1 [1, 1] carbon dioxide [e] 1.35 [1.35, 1.35]

ammonium [e] 0.388 [0.388, 0.388] diphosphate [e] 0.59 [0, 0.59]

sulphate [e] 0.00538 0.00538, 0.00538] H+ [e] 0.302 [0.302, 1.06]

ethanol [e] 0.17 [0.17, 0.17]

[e] indicates extracellular compartment. All fluxes are in mmol/(gDW�hour).

https://doi.org/10.1371/journal.pone.0223909.t001

Table 2. FAB solution for the treated model.

IN FLUXES OUT FLUXES OBJECTIVES

Name Flux Range Name Flux Range Name Flux

oxygen [e] 1.4 [1.4, 1.4] H2O [e] 1.93 [1.77, 1.93] growth 0.0591

D-glucose [e] 1 [1, 1] carbon dioxide [e] 1.45 [1.45, 1.45]

phosphate [e] 0.345 [0.015, 0.345] formate [e] 1.25 [1.25, 1.25]

ammonium[e] 0.325 [0.325, 0.325] ethanol [e] 0.57 [0.57, 0.57]

sulphate [e] 0.00451 [0.00451, 0.00451] H+ [e] 0.212 [0.212, 1.38]

diphosphate [e] 0.165 [0, 0.165]

[e] indicates extracellular compartment. All fluxes are in mmol/(gDW�hour).

https://doi.org/10.1371/journal.pone.0223909.t002
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such ratio values. All the relevant pathways have fluxes affected due to the treatment, fluxes

that involved some relevant metabolites from the metabolomics studies. Only two reactions in

nitrogen metabolism pathway were relevant in the solutions of these FBA simulations: gluta-

mine synthetase and bicarbonate formation reactions (S12 Fig). In the rest of the analyzed

pathways most of the reactions were active (with non-zero net fluxes) (S6–S10 Figs). The fluxes

of most reactions decreased in the MCHM treated model vs the control (flux ratios< 1).

There were many reactions which flux ratio (treatment/control) was the same ratio of the

Fig 5. The effect of MCHM on yeast growth was predicted to depend on the concentration of D-Glucose in the medium. Phenotype phase plane of

Growth vs D-Glucose exchange, from the FBA simulations with the control and treated models.

https://doi.org/10.1371/journal.pone.0223909.g005
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growth, the value 0.839. The extreme case was aminoacyl t-RNA biosynthesis (S7 Fig), where

all the reactions have this flux ratio. These reactions having the same treated/control flux ratio

as the treated/control growth ratio indicated that they were linked to the growth but does not

ensure that any of these reactions were actually limiting it.

Limiting reaction in FBA models. The reaction or reactions limiting the growth (limiting

reactions) must be operating at the maximum allowed flux (upper bound value, calculated in

function of the related gene expression levels) in the treated model. Two reactions operated at

max flux in the model of the treatment (Table 3, last two rows). One of these, the ubiquinol:fer-

ricytochrome c reductase, was also operating almost at maximum flux in the control model

(Table 3, data row 3), and it was then the primary candidate to be the limiting reaction in our

FBA simulations. Ubiquinol:ferricytochrome c reductase is part of the oxidative phosphoryla-

tion pathway and contributes to the proton gradient formation through the mitochondrial

membrane.

To test if ubiquinol:ferricytochrome c reductase was the limiting reaction we modified its

upper bound in the control model to the one it has in the treated (Table 4, third data row vs

first and second data row). The growth rate decreased from 0.0704 to 0.0597, which was practi-

cally the same growth of the treated model, 0.0591. As can be seen, modifying the maximum

allowed flux of this reaction alone was enough to mimic the effect of the treatment in the

growth, confirming that ubiquinol:ferricytochrome c reductase was the limiting reaction

in our FBA simulations. We tried to recover the control phenotype (growth of 0.0704, Table 4,

Table 3. Reactions operating within 0.1 units of the maximum allowed flux.

Id Name Flux Upper bound Compartment Model

r_0226 ATP synthase 4.375 4.375 m, c Control

r_0438 ferrocytochrome-c:oxygen oxidoreductase 6.930 6.930 m, c Control

r_0439 ubiquinol:ferricytochrome c reductase 3.465 3.536 m, c Control

r_0501 glycine cleavage system 0.449 0.449 m Control

r_0506 glycine-cleavage complex (lipoylprotein) 0.423 0.449 m Control

r_0507 glycine-cleavage complex (lipoylprotein) 0.423 0.449 m Control

r_0508 glycine-cleavage complex (lipoylprotein) 0.423 0.449 m Control

r_0773 NADH:ubiquinone oxidoreductase 0.730 0.730 m Control

r_1250 putrescine excretion 0.539 0.539 e, c Control

r_0439 ubiquinol:ferricytochrome c reductase 2.582 2.582 m, c Treated

r_0569 inorganic diphosphatase 0.330 0.330 m Treated

Compartments legend: c, cytoplasm; e, extracellular; m, mitochondria. All fluxes are in mmol/(gDW�hour).

https://doi.org/10.1371/journal.pone.0223909.t003

Table 4. Effect of ubiquinol:ferricytochrome c reductase reaction on growth.

Id Name Model Upper bound Actual flux Growth

r_0439 ubiquinol:ferricytochrome c reductase Control 3.536 3.465 0.0704
Treated 2.582 2.582 0.0591
Control 2.582 2.582 0.0597

Treated 3.536 3.536 0.0672

Treated 10.000 4.534 0.0688

The first two data rows show the upper bounds set for the reaction from the RNA-Seq data for the control and treated models, respectively, as well as the resulting actual

fluxes and growth rates. The other three rows show the effect in the actual flux and on growth of modifying the upper bound values. All fluxes are in mmol/

(gDW�hour).

https://doi.org/10.1371/journal.pone.0223909.t004
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first data row) by setting the ubiquinol:ferricytochrome c reductase upper bound in the treated

model to the one it had in the control one (Table 4, fourth data row vs first data row). The

growth increased (up to 0.0672), but not at the level of the control model (not even after setting

the upper bound to a higher value of 10, when the actual flux was lower than the set upper

bound) (Table 4, data rows four and five). This means that in the treated model there were

other reactions that become limiting when the maximum allowed flux through the ubiquinol:

ferricytochrome c reductase was set higher. These reactions were the ATP synthase and the

NADH:ubiquinone oxidoreductase, which were both operating at their maximum allowed

flux in this condition (Table 5).

Then, we kept the upper bound of ubiquinol:ferricytochrome c reductase reaction in the

treated model set to 3.536 (the value from the control model, Table 4 data row one) and set the

upper bounds of the other two reactions from Table 5 to an arbitrary large value (10), one at a

time, to see if the control growth phenotype can be recovered (Table 6). Increasing the upper

bounds of ubiquinol:ferricytochrome c reductase together with NADH:ubiquinone oxidore-

ductase increased to growth to 0.0672, which was still lower than the control growth rate

(0.0704). But, increasing the upper bound of ubiquinol:ferricytochrome c reductase reaction

together with the ATP synthase did recover the control growth phenotype, actually slightly

improving the growth (0.0756 vs 0.0704) (Table 6).

These results confirm than in our models the ubiquinol:ferricytochrome c reductase was

the limiting reaction.

Limiting gene. The gene reaction rule for ubiquinol:ferricytochrome c reductase in the

yeastGEM model is:

• (Q0105 and YBL045C and YDR529C and YEL024W and YEL039C and YFR033C and

YGR183C and YHR001W-A and YJL166W and YOR065W and YPR191W) or (Q0105 and

YBL045C and YDR529C and YEL024W and YFR033C and YGR183C and YHR001W-A

and YJL166W and YJR048W and YOR065W and YPR191W)

This means that the protein responsible for carrying out the ubiquinol:ferricytochrome c

reductase reaction is a multisubunit complex, with two possible quaternary structures, both

conformed by polypeptides encoded by a set of 11 genes. The genes encoding for the

Table 5. Potential limiting reactions in the treated model when the upper bound for the ubiquinol:ferricytochrome c reductase reaction was set to the one it has in

the control model.

Id Name Flux Upper bound Compartment Model

r_0226 ATP synthase 4.034 4.034 m, c Treated

r_0439 ubiquinol:ferricytochrome c reductase 3.536 3.536 m, c Treated

r_0773 NADH:ubiquinone oxidoreductase 0.918 0.918 m Treated

All fluxes are in mmol/(gDW�hour).

https://doi.org/10.1371/journal.pone.0223909.t005

Table 6. Recovering the growth phenotype in the treated model.

Id Name Model Upper bound Actual flux Growth

r_0439 ubiquinol:ferricytochrome c reductase Treated 3.536 3.536 0.0672

r_0773 NADH:ubiquinone oxidoreductase 10.000 1.445

r_0439 ubiquinol:ferricytochrome c reductase Treated 3.536 3.536 0.0756

r_0226 ATP synthase 10.000 4.863

All fluxes are in mmol/(gDW�hour).

https://doi.org/10.1371/journal.pone.0223909.t006
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components of the first quaternary structure were COB (Q0105), COR1 (YBL045C), QCR7
(YDR529C), RIP1 (YEL024W), CYC7 (YEL039C), QCR6 (YFR033C), QCR9 (YGR183C),

QCR10 (YHR001W-A), QCR8 (YJL166W), CYT1 (YOR065W) and QCR2 (YPR191W). The

genes encoding for the second were COB (Q0105), COR1 (YBL045C), QCR7 (YDR529C),

RIP1 (YEL024W), QCR6 (YFR033C), QCR9 (YGR183C), QCR10 (YHR001W-A), QCR8
(YJL166W), CYC1 (YJR048W), CYT1 (YOR065W) and QCR2 (YPR191W). The maximum

flux of a multisubunit complex will depend on the gene with the lowest average expression,

which will be the limiting factor of the complex assembling. For both possible complex config-

urations, in both control and treatment conditions, CYT1 (YOR065W) had the lowest average

expression (Table 7). The expression level of CYT1 was limiting the maximum flux allowed

through the ubiquinol:ferricytochrome c reductase reaction in our FBA simulations. We were

able to reproduce the results shown in Tables 4–6, by modifying CYT1 expression values used

to build the control and treated models, instead of the derived reaction upper bound.

Discussion

MCHM significantly affected amino acid metabolism, increasing the total intracellular con-

centration of 11 out of 20 standard amino acids. As 28 genes coding for enzymes of the amino

acid biosynthesis pathways were upregulated due to MCHM treatment, the higher levels of

such amino acids can be partially explained by their probable increased biosynthesis. The

other contributing factor could be a reduced protein production, due to the deleterious effect

of MCHM on ribosome biogenesis (downregulating seven critical genes of the process), lead-

ing to amino acid accumulation. The downregulation of ribosome biogenesis is the first step in

stress response such as starvation, heat, or chemical. To respond to stress, energy-intensive

functions are down-regulated and inhibition of rRNA occurs in less than ten minutes of dex-

trose depletion [58].

There is evidence of other cellular stressors which also variate the levels of some amino

acids. Cu2+ increased the levels of L-glutamate, L-phenylalanine, and L-leucine and decreased

the level of L-aspartate in S. cerevisiae [18]. From these only L-aspartate varied in our analysis

increased its levels due to MCHM.

MCHM treatment provokes the upregulation of nine genes related to the stress response.

From these genes, AHA1 encodes a co-chaperone that binds Hsp82 and its expression is regu-

lated by stresses such as heat shock [59]. GRE2 encodes the 3-methylbutanal reductase and its

expression is induced by oxidative, ionic, osmotic, heat shock and heavy metals stress [60].

Table 7. Gene average expression for components of the ubiquinol:Ferricytochrome c reductase complex.

Gene id Gene Expression control Expression treated Complex configuration

YBL045C COR1 134.50 122.91 1 and 2

YOR065W CYT1 122.69 89.59 1 and 2
YPR191W QCR2 133.78 138.20 1 and 2

YFR033C QCR6 125.40 107.32 1 and 2

YJL166W QCR8 317.91 552.80 1 and 2

YEL024W RIP1 160.27 188.18 1

YJR048W CYC1 309.61 179.50 2

YDR529C QCR7 407.45 555.42 2

Average All genes without expression data 472.26 448.02 1 and 2

The enzyme has two possible quaternary structures, labeled as complex configuration 1 and 2 in this table. The presence of the genes in a given configuration is stated in

the last column.

https://doi.org/10.1371/journal.pone.0223909.t007
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PDR3 is a transcriptional activator of the pleiotropic drug resistance network [61]. PDR16
encodes the phosphatidylinositol transfer protein and it is controlled by the multiple drug

resistance regulator Pdr1p. It affects lipid biosynthesis and resistance to multiple drugs [61].

SNQ2 and QDR3 encode multidrug transporters involved in multidrug resistance [62,63];

ENB1 encodes for an endosomal ferric enterobactin transporter, which is expressed under

conditions of iron deprivation [64]; TPO1 codes for a polyamine transporter which exports

spermine and spermidine from the cell during oxidative stress, controlling the timing of

expression of stress-responsive genes [65]; ICT1 codes the lysophosphatidic acid acyltransfer-

ase responsible for enhanced phospholipid synthesis during organic solvent stress [66].

We did not detect enhanced phospholipid biosynthesis in our metabolomics analysis, by

the contrary, the levels of all glycerophospholipids included in the relevant metabolites were

decreased due to MCHM, while the levels of the remaining phospholipids did not change. The

reduced levels of these molecules of phosphatidylethanolamine, phosphatidylinositol, and

phosphatidylserine in MCHM treated cells point toward a significant effect of MCHM in yeast

cellular membranes, with potential effects on their biophysical properties, which could impact

several cellular processes involving membranes. In vitro MCHM acts as a hydrotrope, a com-

pound that increases the solubility of proteins by inducing liquid-liquid phase transitions [43].

At high protein concentrations proteins can aggregate which is generally thought to inactive

enzymatic activities (reviewed in [67]). The wide range of pathways affected by MCHM could

be contributed to its nonspecific ability to alter protein structure.

The FBA simulations done with genome-scale metabolic network models (GSMNM) of

MCHM treated vs non-treated control yeast were able to reproduce the deleterious effect of

MCHM on cell’s growth. These GSMNM integrated the gene expressions from the RNA-Seq

data, as explained in Materials and Methods. The flux ratio through several reactions in the six

significant pathways from the metabolomics analysis was linked to the simulated growth ratio

in MCHM-treated vs untreated control models, but this does not indicate causality. The FBA

simulations suggest a critical role to the ubiquinol:ferricytochrome c reductase as the enzyme

catalyzing the limiting reaction which determined the reduced growth in MCHM. From this

multisubunit complex CYT1 product was the component limiting the overall reaction flow,

and the lower expression of CYT1 due to MCHM can explain the lower growth, at least in the

FBA simulations. It is of note that the fold change of the expression levels of CYT1 was not

large enough (logFC < 2) for the gene to reach the cutoff as relevant from the RNA-Seq data,

but the GSMNM created were very sensitive to its levels. This highlight the extra value of

RNA-Seq data integration in FBA simulations, allowing to assess the impact of gene levels in

whole-cell functional environment, where apparently irrelevant genes can prove to be the

driven force behind observed phenotypes. Transcription of CYT1 is positively controlled by

oxygen in the presence of glucose, through the haem signal and mediated by the transcription

factor, Hap1 [68]. It is additionally regulated by the HAP2/3/4 complex which mediates gene

activation mainly under glucose-free conditions. CYT1 basal transcription is partially affected

by Cpf1, transcription factor required for regulation of methionine biosynthetic genes [68].

The other significant reaction that came from the FBA analysis was the ATP synthase,

which maximum allowed flux or upper bound was required to be increased together with the

one of ubiquinol:ferricytochrome c reductase to rescue the control growth phenotype in the

MCHM treated model. Combining flux balance analysis with in vitro measured enzyme spe-

cific activities it was determined that fermentation was more catalytically efficient than respira-

tion [69], producing more ATP per mass of required enzymes. In that study the enzyme

F1F0-ATP synthase was found to have flux control over respiration in the model, causing the

Crabtree Effect [69].
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Conclusions

MCHM produced amino acid accumulation in S. cerevisiae, affecting several amino acid-

related metabolic pathways and probably slowing down protein biosynthesis due to the down-

regulation of genes related to ribosome biogenesis. MCHM affects phospholipid biosynthesis,

reducing the levels of different molecules of phosphatidylethanolamine, phosphatidylinositol,

and phosphatidylserine, which should affect cellular membranes composition and their bio-

physical properties. The FBA simulations suggest that the lower flow through ubiquinol:ferri-

cytochrome c reductase reaction, caused by the MCHM-provoked under-expression of CYT1
gene, could be the driven force behind the observed effect on yeast metabolism and growth.

Supporting information

S1 Fig. Score plots from the Orthogonal-Orthogonal Projections to Latent Structures Dis-

criminant Analysis (OPLS-DA) (top) and the Sparse Partial Least Squares—Discriminant

Analysis (sPLS-DA) (bottom), for ESI-MS (left) and GC-MS (right) data. The 95% confi-

dence areas are shown as well as the explained variance, shown in brackets in the correspond-

ing axis labels.

(TIF)

S2 Fig. Supervised models validation. PLS-DA models validation by permutation tests based

on separation distance for ESI-MS (A) and GC-MS (B). OPLS-DA models validation by per-

mutation tests, showing the observed and cross-validated R2Y and Q2 coefficients, for ESI-MS

(C) and GC-MS (E). Plot of the performance of the sPLS-DA models evaluated using leave-

one-out cross-validations with increasing numbers of components, for ESI-MS (E) and

GC-MS (F).

(TIF)

S3 Fig. Significant features identified by Random Forest for A) ESI-MS and B) GC-MS

data. The features are ranked by the mean decrease in classification accuracy when they are

permuted.

(TIF)

S4 Fig. Empirical Bayesian Analysis of Microarray (EBAM) for A) ESI-MS and B) GC-MS

data. 33 and 23 significant compounds are identified with this method for ESI-MS and

GC-MS, respectively.

(TIF)

S5 Fig. Significance Analysis of Microarray (SAM) for A) ESI-MS and B) GC-MS data. The

green circles represent features that exceed the specified threshold. 39 and 29 significant fea-

tures are identified by SAM from ESI-MS and GC-MS respectively.

(TIF)

S6 Fig. Escher map of the alanine, aspartate, and glutamate metabolism. The flux ratios

between treated and control model FBA solutions are represented. Edges’ thickness and color

are a function of the respective ratio values. The ratio value of 0.839 is common among the

map.

(TIF)

S7 Fig. Escher map of the aminoacyl t-RNA biosynthesis. The flux ratios between treated

and control model FBA solutions are represented. Edges’ thickness and color are a function of

the respective ratio values. All the reactions have a ratio value of 0.839.

(TIF)
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S8 Fig. Escher map of the cysteine and methionine metabolism. The flux ratios between

treated and control model FBA solutions are represented. Edges’ thickness and color are a

function of the respective ratio values. The ratio value of 0.839 is common among the map.

(TIF)

S9 Fig. Escher map of the glycerophospholipid metabolism. The flux ratios between treated

and control model FBA solutions are represented. Edges’ thickness and color are a function of

the respective ratio values. The glycerol-3-phosphate dehydrogenase reactions has a ratio value

of 0.839.

(TIF)

S10 Fig. Escher map of the glycine, serine and threonine metabolism. The flux ratios

between treated and control model FBA solutions are represented. Edges’ thickness and color

are a function of the respective ratio values. The ratio value of 0.839 is common among the

map.

(TIF)

S11 Fig. Escher map of the methane metabolism. The flux ratios between treated and control

model FBA solutions are represented. Edges’ thickness and color are a function of the respec-

tive ratio values. Only a fraction of KEGG’s reference pathway is present in yeast.

(TIF)

S12 Fig. Escher map of the nitrogen metabolism. The flux ratios between treated and control

model FBA solutions are represented. Edges’ thickness and color are a function of the respec-

tive ratio values.

(TIF)

S1 Table. List of all metabolites detected by ESI-MS and GC-MS. The experiment of origin

is indicated as well as the following values from the comparison of their levels in the MCHM

treated vs control samples: p-value (t-test), adjusted p values (“BH”), q-values, log2 of the fold

change, and the coefficient of variation of the controls.

(XLSX)

S2 Table. Majority voting model for relevant compounds selection from ESI-MS data. The

128 compounds being labeled as significant for at least one of the nine analyses used are

shown. For each analysis is indicated if the respective compound is significant (1) or not (0).

These values are added for the final votes. Compound with a majority of votes (5 or more) are

selected as relevant (highlighted in yellow, “Selected” column value equals TRUE), for a total

of 26 compounds.

(XLSX)

S3 Table. Majority voting model for relevant compounds selection from GC-MS data. The

66 compounds being labeled as significant for at least one of the nine analyses used are shown.

For each analysis is indicated if the respective compound is significant (1) or not (0). These val-

ues are added for the final votes. Compound with the majority of votes (5 or more) are selected

as relevant (highlighted in yellow, “Selected” column value equals TRUE), for a total of 23

compounds.

(XLSX)

S4 Table. Genes up and down-regulated due to MCHM treatment. The fold change and

adjusted p values are provided, as well as a functional annotation, when available.

(XLSX)
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