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The sensing of Pathogen Associated Molecular Patterns (PAMPs) by innate immune receptors, such as Toll-like receptors (TLRs),
is the first step in the inflammatory response to pathogens. Entamoeba histolytica, the etiological agent of amebiasis, has a surface
molecule with the characteristics of a PAMP. This molecule, which was termed lipopeptidophosphoglycan (LPPG), is recognized
through TLR2 and TLR4 and leads to the release of cytokines from human monocytes, macrophages, and dendritic cells; LPPG-
activated dendritic cells have increased expression of costimulatory molecules. LPPG activates NKT cells in a CD1d-dependent
manner, and this interaction limits amebic liver abscess development. LPPG also induces antibody production, and anti-LPPG
antibodies prevent disease development in animal models of amebiasis. Because LPPG is recognized by both the innate and the
adaptive immune system (it is a “Pamptigen”), it may be a good candidate to develop a vaccine against E. histolytica infection and
an effective adjuvant.

1. Introduction

Amebiasis is a disease caused by Entamoeba histolytica, a
parasite protozoan that infects humans and is responsible
for 40,000 to 110,000 deaths per year [1]. Ten percent of
infected persons exhibit clinical symptoms; 80% to 98% of
these are intestinal, and 2% to 20% are extraintestinal. The
clinical symptoms can range from a mild and nonspecific
presentation (constipation alternated with diarrhea, pain in
the lower abdomen, mild nausea during or after meals, and
mild abdominal distension with pain in the right iliac fossa)
to dysentery, fulminating colitis, and toxic megacolon. Less
frequently, amebiasis can cause appendicitis and ameboma.

Amebic liver abscess is the most frequent presentation of
invasive extraintestinal amebiasis, but the lungs, heart, brain,
skin, and genitals can also be affected [2].

Approximately 500 million people in the world are
currently infected with E. histolytica [1]. The incidence of
amebiasis has decreased significantly in recent years because
of increased sanitation in many countries and the use of
effective therapeutic agents. The World Health Organization
and the Pan-American Health Organization recommend
the treatment of all patients with confirmed E. histolytica
infection, regardless of the presence of symptoms. The treat-
ments of choice for asymptomatic intestinal amebiasis are
the luminal amebicides paromomycin sulfate and diloxanide
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furoate. Symptomatic intestinal or extraintestinal infection
is treated with metronidazole in combination with a luminal
amebicide. Nitazoxanide is an effective luminal amebicide,
and it is also effective for invasive amebiasis. Gastrointestinal
complications, such as perforation, intestinal obstruction,
and toxic megacolon, are treated with surgery. Most hepatic
abscesses respond to metronidazole, but if they do not, they
can be aspirated by puncture or treated with open surgery
[3–5].

In spite of the effective therapeutic agents that are
available for the treatment of amebiasis, it still constitutes a
global health problem [6]. The prevalence of amebiasis varies
from 1% in industrialized countries to 50%–80% in tropical
countries [7–10].

2. Identification of Lipopeptidophosphoglycan

In the 1970s, amebiasis was the fourth most frequent
infectious disease in Mexico, with an incidence of 118.9
per 10,000 inhabitants (almost 1500 times higher than the
incidence in the United States in the same year) [11]. This
situation prompted many researchers to study several aspects
of this parasitic disease, including comparative studies of
drugs for the treatment of acute amebic liver abscess [12] and
various studies of seroepidemiology of amebiasis in adults
[13–17].

Several genes from E. histolytica were cloned, sequenced
and expressed in an effort to identify new drug targets
for this parasite, including the alcohol dehydrogenase gene
(Ehadh3) [18], the ferredoxin oxidoreductase gene [19],
the EhDEAD1 RNA helicase gene [20], and the Ehvma2
gene (which encodes the B subunit of the vacuolar ATPase)
[21]. Mechanisms of drug resistance in E. histolytica were
also studied, and it was determined that the multidrug-
resistant phenotype is regulated at the transcriptional level
by the P-glycoprotein-like genes (EhPgp) 1 and 5 [22]. A
protein complex (EhCPADH) was identified on the surface
of E. histolytica. This complex is formed by a cysteine
proteinase that digests gelatin, collagen type I, fibronectin
and hemoglobin (EhCP112), and an adhesin (EhADH112),
and is involved in adherence, phagocytosis, and cytolysis [23,
24]. Polypeptides derived from this complex were assessed as
vaccine candidates, and it was demonstrated that they confer
partial protection from amebic liver abscess in hamsters
(Mesocricetus auratus) [25].

The role of the immune response in the pathogen-
esis of amebiasis was also studied; the early approaches
demonstrated that serum from infected patients could
neutralize the virulence of E. histolytica cultures [26] and
that this serum could confer antiameba passive immunity
in hamsters [27]. The importance of cellular immunity in
the control of amebiasis was addressed in several studies,
which demonstrated the ability of activated eosinophils to
kill the parasite in vitro [28] and to protect from amebic
liver abscess in vivo [29], and the killing of trophozoites by
peritoneal macrophages in hamsters [30] and by activated
T lymphocytes and macrophages in humans [31]. It was
shown that patients cured from amebic liver abscess had
specific T lymphocytes that killed trophozoites in vitro [31].

It was also demonstrated that molecules from E. histolytica
were able modulate the host immune response. The super-
natant fluid of axenically grown E. histolytica could inhibit
chemotaxis and random mobility of human monocytes,
without affecting the locomotion of neutrophils [32]. The
effect was attributed to a monocyte locomotion inhibitory
factor (MLIF), and physicochemical analysis revealed that
MLIF is a heat-stable pentapeptide (Met-Gln-Cys-Asn-Ser)
that inhibits locomotion of monocytes, respiratory burst
of monocytes and neutrophils, and delayed hypersensitiv-
ity skin reactions to dinitrochlorobenzene in guinea pigs
(Cavia porcellus) [33]. MLIF decreased the expression of
macrophage inflammatory protein- (MIP-) 1alpha, MIP-
1beta, and chemokine receptor CCR1 in a phorbol myristate
acetate- (PMA-) stimulated human monocyte cell line,
which suggests that the inhibition of monocyte locomotion
could be attributed to downregulation of chemokines and
chemokine receptors [34]. MLIF also decreased interleukin-
(IL-) 1beta and increased IL-10 production by PMA-
stimulated human CD4 T lymphocytes [35]. Immunization
with a tetramer of MLIF around a lysine core completely
protected gerbils (Meriones unguiculatus) against amebic
liver abscess [36].

In 1969, Galanos et al. developed a new method
for the extraction of bacterial lipopolysaccharide (LPS,
Figure 1(a)) [37] and, in the following years, many of
the chemical, biological, and immunological properties of
the so-called endotoxin were determined [38–44]. LPS is
a major structural component of the outer membrane of
Gram-negative bacteria; it activates many cell types, induces
inflammation, and produces fever and shock. We decided
to determine if E. histolytica had a surface molecule with
chemical and immunological properties similar to those of
bacterial LPS. The use of a modified phenol-water extraction
procedure on E. histolytica trophozoites yielded a molecule
with 85% carbohydrate, 8% peptide, 2.5% lipid, and 1%
phosphate, which was termed lipopeptidophosphoglycan
(LPPG, Figure 1(c)) [45, 46]. The isolation and structural
characterization of microbial molecules can lead to the
identification of new drug targets and new antigens that are
recognized by the immune system; some antigens are good
candidates for vaccine development. LPPG was first identi-
fied as an antigen; antiameba IgG antibodies were detected
in rats after intracecal inoculation of trophozoites [47], anti-
LPPG IgA antibodies were found in colostrum of healthy
volunteers [48], and antiameba plasma cells were found
in peripheral blood of patients with amebic liver abscess
[49]. Monoclonal antiproteophosphoglycan antibodies were
described by several groups [50–53]. However, as research
in immunology progressed, LPPG was studied as a molecule
that could be sensed not only by the adaptive immune system
but also by the innate immune system.

3. Sensing of Parasites by the Immune System

The relevance of adaptive immunity (whose main effectors
are T and B lymphocytes) in protection against infections
was well recognized in the last decades of the past century,
while the role of neutrophils, monocytes, macrophages, and
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Figure 1: (a) Lipopolysaccharide (LPS) from the Gram-negative bacterium Escherichia coli is the most potent activator of TLR4 [54]. (b)
Alpha-galactosyl ceramide from the marine sponge Agelas mauritanius is presented via CD1d and activates NKT cells [55]. (c) Partial
structure of lipopeptidophosphoglycan (LPPG) from Entamoeba histolytica of the HM1 : IMSS strain, which was originally isolated from
a patient with liver abscess [56, 57]. The structure of the active phosphoinositol moiety of LPPG was characterized in [58].
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other cells of the innate immune system was seen as a that
of a “first line of defense” that contained infections until
adaptive immunity was fully activated. It was known that
LPS, a component of the outer membrane of Gram-negative
bacteria, caused fever and shock in animal models and that
it induced the secretion of proinflammatory cytokines by
monocytes, macrophages, and epithelial cells. However, the
receptor that sensed LPS remained elusive. Many phagocytic
receptors on macrophages had been described, but none of
these was responsible for the biological properties of LPS
[59].

Two strains of mice, C3H/HeJ and C57BL/10ScCr, which
were resistant to endotoxic shock, were identified [60, 61].
In 1998, the positional cloning of the affected locus in
C3H/HeJ mice showed a point mutation in Toll-like receptor
(TLR) 4, a previously orphan receptor, and C57BL/10ScCr
mouse were found to lack TLR4 [62]. TLR4 is a member
of a family of proteins that share a signaling domain (TIR)
with IL-1 receptor and are related to the Toll proteins
of the fruit fly, Drosophila. Toll was described in 1988 as
a transmembrane protein that is required for establishing
the embryonic dorsal-ventral pattern in flies [63]. In 1996,
Toll was shown to be critical for the antifungal response
in Drosophila [64], and it was suspected that the human
homologues of Toll, which were described in 1998 [65],
would be relevant for the immune response in humans.
Indeed, it was found that a constitutively active mutant of
human TLR4, transfected into a monocytic cell line, could
induce the activation of NF-kappaB and the expression of
the proinflammatory cytokines IL-1, IL-6, and IL-8 as well as
the expression of the costimulatory molecule CD80 (B7.1),
which is required for the activation of naı̈ve T lymphocytes
[66]. After the establishment of TLR4 as the main sensor
for LPS in mice, it was immediately suggested that other
members of the Toll family in mammals could also serve as
sensors for microbial molecules. Many molecules of bacteria,
viruses, and fungi, and others that are found during viral
replication, have been identified as agonists of mammalian
TLRs (Table 1) [67, 68]. The study of TLRs and other innate
receptors has established innate immunity not only as a
first line of defense against infections but also as a critical
component of the immune system that induces and regulates
the adaptive response [69].

The molecules that are sensed by TLRs are widely
distributed among groups of microorganisms, and they are
essential for the metabolism or the structural integrity of
the microbe, so they are highly conserved in evolution.
These molecules were termed pathogen-associated molecular
patterns (PAMPs) [70], although their expression is not
restricted to pathogens, and this term is used widely to
this day. Several molecules from protozoan and helminth
parasites were also identified as PAMPs [71] (Table 2). In
protozoan parasites, many surface molecules are linked
to glycosylphosphatidylinositol (GPI), which is inserted in
the plasma membrane. GPI-anchored molecules include
lipophosphoglycan (LPG) and LPPG; they are essential for
survival and virulence of the parasite, and they are likely
the major macromolecules on the trophozoite surface [72].
In Leishmania, LPG is involved in intestinal adhesion and

Table 1: Some TLR agonists from bacteria, viruses, and fungi
(modified from [67, 68]).

TLR Microbial ligand Source

TLR1/TLR2 Triacyl lipopeptides Bacteria

Lipoarabinomannan Mycobacteria

TLR2

Peptidoglycan Bacteria

Porins Gram-negative bacteria

Lipoteichoic acid Gram-positive bacteria

Zymosan Fungi

TLR2/TLR6 Diacyl lipopeptides Mycoplasma

TLR3 dsRNA Virus

TLR4
LPS Gram-negative bacteria

Porins Gram-negative bacteria

Respiratory syncytial
virus fusion protein

Respiratory syncytial virus

TLR5 Flagellin Bacteria

TLR7 ssRNA Virus

TLR8 ssRNA Virus

TLR9 CpG DNA Bacteria, virus

TLR11 — Uropathogenic bacteria

resistance to insect hydrolases; LPG-deficient strains are
unable to survive in their vector. Leishmania LPG gains
phosphosaccharide domains as procyclic promastigotes in
the vector midgut differentiate to infectious metacyclic pro-
mastigotes; this structural change in LPG mediates detach-
ment from vector midgut and acquisition of complement
resistance [73]. LPG also induces the production of nitric
oxide and proinflammatory cytokines by macrophages in
the host [74]. LPG from metacyclic promastigotes is a more
effective activator of TLR2 in NK cells than LPG from
procyclic promastigotes [75].

Plasmodium GPI-anchored molecules are required for
the induction of proinflammatory responses, which pro-
mote pathogenesis [76]. However, activation of innate and
adaptive immune responses is necessary to control parasite
growth and frequent tlr4 polymorphisms predispose African
children to severe malaria [77]. Therefore, it is proposed that
overactivation or deregulation of the inflammatory response
is the cause of the pathological condition [78, 79]. Several
mucin-like GPI-anchored glycoproteins have been isolated
from the Trypanosoma cruzi surface. A T. cruzi trans-sialidase
adds sialic acid residues to these molecules, which are
required for survival and infectivity [72, 80]. GPI-anchored
molecules purified from T. cruzi trypomastigotes signal
through TLR2 and induce the production of IL-12, tumor
necrosis factor (TNF)-alpha and nitric oxide by murine
macrophages [81]; signaling through TLR2 synergizes with
TLR9 and is crucial to control the infection [82]. Tc52
is a soluble molecule that is released by T. cruzi during
parasitemia, and it activates macrophages and dendritic
cells via TLR2 [83]. GPI-anchored molecules isolated from
Toxoplasma activate TLR4, while glycan cores and phospho-
lipid moieties from these molecules activate both TLR2 and
TLR4 [84]. Lysophosphatidylserine-containing lipids from
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Table 2: TLR agonists from protozoan and helminth parasites.

TLR Parasite ligand Source Reference

TLR2

Lipopeptidophosphoglycan Entamoeba histolytica (trophozoite) [85]

Glycosylphosphatidylinositol Plasmodium falciparum (merozoite) [76]

Toxoplasma gondii (tachyzoite) [84]

Glycoinositol phospholipid Plasmodium falciparum (merozoite) [76]

Toxoplasma gondii (tachyzoite) [86]

Lysophosphatidylserine Schistosoma mansoni (egg and adult worm) [87]

Lipophosphoglycan Leishmania major (promastigote) [74]

Glycosylphosphatidylinositol with
unsaturated alkyl-glycerol

Trypanosoma cruzi (trypomastigote) [81]

Tc52 Trypanosoma cruzi (epimastigote) [83]

TLR2/TLR6 Glycosylphosphatidylinositol Plasmodium falciparum (schizont) [78]

TLR4

Lipopeptidophosphoglycan Entamoeba histolytica (trophozoite) [85]

Glycoinositol phospholipid with ceramides Trypanosoma cruzi (epimastigote) [88]

Glycosylphosphatidylinositol Plasmodium falciparum (merozoite) [76]

Toxoplasma gondii (tachyzoite) [84]

Glycoinositol phospholipid Plasmodium falciparum (merozoite) [76]

Toxoplasma gondii (tachyzoite) [86]

Phosphorylcholine Filarial nematode [89]

Lacto-N-fucopentaose III Schistosoma mansoni [90]

TLR9

Hemozoin Plasmodium falciparum [91]

DNA Trypanosoma brucei [92]

Trypanosoma cruzi [92]

Leishmania major [93]

Entamoeba histolytica [94]

TLR11 Profilin-like molecule Toxoplasma gondii [95]

Schistosoma mansoni induce the maturation of dendritic
cells that prime Th2 and regulatory T cell responses, which
favor the establishment of chronic infections with little tissue
damage [87].

4. Function of LPPG as a PAMP and Role
of Inflammation in the Pathogenesis
of Amebiasis

The similarities in chemical structure between LPS and LPPG
(Figures 1(a) and 1(c)), and the presence of a GPI anchor in
LPPG, suggested that LPPG might be a PAMP. This would
explain how the innate immune system senses the presence of
E. histolytica, an event that is necessary for the orchestration
of the inflammatory response in amebiasis. Studies from our
laboratory demonstrated that LPPG is recognized through
TLR2 and TLR4. Human embryonic kidney- (HEK-) 293
cells were rendered LPPG responsive through overexpression
of TLR2 or TLR4/MD2. Coexpression of CD14 enhanced
LPPG signal transmission through TLR2 and TLR4. The
interaction of LPPG with TLR2 and TLR4 resulted in
activation of NF-kappaB and release of IL-8, IL-10, IL-12p40,
and TNF-alpha from human monocytes [85, 96]. Human
macrophages and dendritic cells internalize LPPG. As shown
by colocalization of LPPG with late endosomes marked

with fluorescein isothiocyanate–dextran and LAMP-1, the
internalization process involves intracellular traffic from the
cell membrane to late endosomes. LPPG-activated dendritic
cells have increased expression of costimulatory molecules
CD80, CD86, and CD40 and produce TNF-alpha, IL-8, and
IL-12 [97]. These results show that LPPG activates antigen-
presenting cells and reaches intracellular compartments that
are involved in antigen presentation. Responsiveness of
mouse macrophages lacking TLR2 expression (TLR2−/−)
or functional TLR4 (C3H/HeJ) to LPPG challenge was
impaired, while macrophages from C3H/HeJ/TLR2−/−mice
were unresponsive. In contrast to wild-type and TLR2−/−
mice, which succumbed to LPPG-induced shock, C3H/HeJ
mice were resistant [85]. All these results clearly establish
that LPPG is a PAMP from E. histolytica that induces the
activation of innate immunity.

In humans, the pathogenesis of E. histolytica requires
adhesion of trophozoites to the host cells, phagocytosis of
host cells and bacteria by trophozoites, and tissue destruction
by amebic enzymes and by enzymes released from lysed
neutrophils. The adhesion of trophozoites to host cells is
required for tissue invasion; this adhesion is mediated, in
part, by a galactose/N-acetylgalactosamine- (Gal/GalNAc-)
binding lectin, which is also cytotoxic and confers protection
from complement. Other important adhesins are a 220 kDa
cell surface protein, a 112 kDa adhesin (EhADH112), and
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a surface LPG [23, 98–100]. Phagocytosis is regulated by
adhesins and by signaling pathways that control cytoskeleton
structure and vesicular traffic. A phagosome-associated
transmembrane kinase (PATMK) binds to phosphatidylser-
ine on host cells and initiates their phagocytosis by tropho-
zoites [101]. Trophozoites cause damage of host cells and
extracellular matrix through the action of amebapore,
amebic phospholipases, and proteolytic enzymes (cysteine
endopeptidases, cysteine proteinase, acid and neutral pro-
teinases, collagenases, histolysin, amebapain, cathepsin B)
[102–108]. Neutrophils are the first cells that infiltrate the
necrotic lesions caused by E. histolytica in the intestine and
liver [109–113], where they are killed by trophozoites. The
enzymes and reactive oxygen species released from these
neutrophils increase tissue damage, and in this context,
LPPG could be seen as a virulence factor that promotes
tissue invasion by causing inflammatory damage to host
cells. However, the role of inflammation in amebiasis is
still controversial [114]: in susceptible animals (hamsters
and gerbils) inflammation is related to host cell lysis and
facilitates the spreading of trophozoites [115], while in
resistant animals (mice, guinea pigs), inflammatory cells
protect the host by killing trophozoites [116, 117].

E. histolytica genomic DNA is recognized by TLR9 and
induces the production of TNF-alpha by a macrophage
cell line [94], and Gal/GalNAc-binding lectin activates
NF-kappaB and mitogen-activated protein (MAP) kinases
in macrophages. These transcription factors increase the
expression of several genes, including TLR2 [118]. It is likely
that genomic DNA and Gal/GalNAc-binding lectin, along
with LPPG, contribute to the initiation of inflammation in
response to E. histolytica.

Silencing of the expression of E. histolytica GPI-anchored
molecules by antisense RNA-mediated inhibition of their
biosynthetic pathways suppresses endocytosis, adhesion, and
proliferation of the trophozoites [119]. Specific blockade
of LPG and LPPG by monoclonal antibody EH5 reduces
intestinal inflammation and tissue damage in a severe com-
bined immunodeficient (SCID) mouse model of intestinal
amebiasis with human intestine xenograft [120]. EH5 also
prevents liver abscess development in an SCID mouse model
[52] and E. histolytica adhesion and cytotoxicity to a hamster
cell line [101]. These results suggest that LPPG is a virulence
factor of E. histolytica. Mirelman and colleagues found that
a nonvirulent E. histolytica strain had reduced expression of
LPG and LPPG; they also found no LPG and a modified
LPPG (with a higher negative charge and different lengths of
oligosaccharide chains) in the low-virulence strain Rahman
and in the nonpathogenic Entamoeba dispar [121].

Recently, a role for LPPG in protection against invasive
amebiasis was shown. The chemical structure of LPPG has
some similarities with alpha-galactosyl ceramide, a known
activator of NKT cells [55] (Figures 1(b) and 1(c)). NKT cells
share many surface receptors with natural killer (NK) cells
and, like conventional T cells, express T cell receptors that are
generated by somatic DNA rearrangement. However, most
NKT cells express semi-invariant T cell receptors, consisting
of Vα14-Jα18/Vβ8.2 chains in mouse and Vα24-Jα18/Vβ11
chains in humans [122]. This limited repertoire, conserved

between individuals and presumably selected by evolution,
is more closely related to the pattern-recognition receptors
of innate immunity than to the highly diverse receptors of
adaptive immunity. NKT cells recognize glycolipid antigens
presented by nonpolymorphic CD1d molecules; these glycol-
ipids can be endogenous, like lysosomal isoglobotrihexosyl
ceramide [123], and exogenous, like glycosyl ceramides from
Gram-negative, LPS-negative Sphingomonas capsulata [124].
In a mouse model, it was demonstrated that NKT cells
play a central role in the control of amebic liver abscess
caused by E. histolytica. Specific activation of NKT cells
by alpha-galactosyl ceramide or LPPG induced significant
protection, while CD1d−/− mice suffered from severe
abscess development [58]. The phosphoinositol moiety of
LPPG was shown to induce interferon- (IFN-) gamma but
not IL-4 secretion in NKT cells. NKT cell activation was
dependent on the presence of CD1d and simultaneous TLR
receptor signaling, as indicated by the absence of IFN-gamma
secretion in antigen-presenting cells from TLR2- or TLR6-
deficient mice [58]. These results suggest that NKT cell
activation by LPPG is important to limit amebic liver abscess
development and may help to explain why the vast majority
of E. histolytica-infected individuals do not develop invasive
amebiasis.

5. LPPG as a Molecule That Is Sensed by Both
the Innate and the Adaptive Immune Systems

Molecules that are recognized by receptors of both innate and
adaptive immune systems are, in general, highly immuno-
genic; we have referred to these molecules as “Pamptigens”
[125, 126]. Some examples of molecules that present this
dual recognition include porins, profilin, polysaccharide
A, yellow fever vaccine, and respiratory syncytial virus
vaccine. Salmonella typhi porins are recognized by TLR2
and TLR4 [126], and they induce high antibody titers that
persist during the whole lifetime of mice [127]. Toxoplasma
gondii profilin, a TLR11 agonist, is an immunodominant
antigen in the CD4+ T cell response to the pathogen [128].
Bacteroides fragilis polysaccharide A activates CD4+ T cells by
a mechanism that depends on TLR2 signaling and antigen
presentation by the MHCII pathway [129]. Live attenuated
yellow fever vaccine 17D, one of the most effective vaccines
available, activates TLR2, 7, 8, and 9 and induces antigen-
specific CD8+ T cells [130]. Poor TLR signaling by a
formalin-inactivated respiratory syncytial virus vaccine led
to the induction of low-affinity antibodies and to the failure
of the vaccine to protect immunized children [131].

Molecules that are recognized by innate and adaptive
receptors of the immune system are also effective adjuvants.
Innate immunity participates in the induction and regulation
of adaptive responses; without adjuvants, molecules that are
recognized by adaptive receptors but not by innate receptors
fail to elicit antibody or T cell responses. Antigen recognition
alone is not sufficient to activate adaptive immune responses,
and innate signals are required to indicate the microbial
origin of the antigen; adjuvants provide this signal by
activating innate immune receptors [132, 133].
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Figure 2: The role of lipopeptidophosphoglycan (LPPG) in the immune response to Entamoeba histolytica. During E. histolytica infection,
amebic enzymes and enzymes and reactive oxygen species from neutrophils cause tissue damage. LPPG released from lysed trophozoites is
recognized through TLR2 and TLR4/CD14 and induces the production of IL-8, IL-10, IL-12p40, and TNF-alpha by monocytes [85, 96].
Macrophages and dendritic cells internalize LPPG into LAMP-1+ endosomes, and LPPG-activated dendritic cells have increased expression
of costimulatory molecules CD80, CD86, and CD40 and produce TNF-alpha, IL-8, and IL-12 [97]. NKT cells are also activated by LPPG,
and this depends on the presence of CD1d on dendritic cells and simultaneous TLR2 and TLR6 signaling [58]. Anti-LPPG antibodies have
been described in humans and in animal models [47–53]. The mechanism that leads to the production of these antibodies has not been
determined, but it is probably influenced by the innate signaling of LPPG on dendritic cells and B cells.

LPPG signals through TLR2 and TLR4, and it induces
the production of IFN-gamma (a cytokine that activates
macrophages and increases cytotoxic T cell responses) by
NKT cells. LPPG is also an antigen, because anti-LPPG
antibodies have been detected in animal models and in
patients with amebiasis. The mechanism that leads to the
production of these antibodies has not been determined, but
it is probably influenced by the innate signaling of LPPG
(Figure 2). The intrinsic immunogenicity of LPPG and the
fact that it is a virulence factor of E. histolytica make LPPG an
attractive candidate for vaccine development. Its properties
as an adjuvant also deserve further study.

6. Concluding Remarks

The study of E. histolytica was initially motivated by the
high morbidity and mortality of amebiasis, and in our

group, this research led to the identification of LPPG, one
of the first PAMPs described in parasites, and a promising
vaccine candidate and potential adjuvant. The incidence
and severity of amebiasis has declined, because of improved
sanitation and effective treatments, but this disease is
still a health problem in many parts of the world. The
development of a vaccine that effectively protects against E.
histolytica infection would have a positive impact on global
health.
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