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Abstract
The important physiological and pathophysiological roles of intestinal human microbiome (HMB) in human health have 
been emerging, owing to the access to molecular biology techniques. Herein we evaluated, for the first time, the intestinal 
HMB through direct hybridization approach using n-counter flex DX technology which bypasses the amplification procedure 
currently applied by other technologies to study the human microbiome. To this purpose, a clinical study was carried out 
on fecal samples, recruiting both healthy volunteers (N-FOB) and subjects positive for occult blood (P-FOB). A relevant 
custom panel of 79 16S rRNA target gene was engineered and 32 of them displayed a variation between the two clusters 
of subjects. Our findings revealed that bacteria belonging to Proteobacteria have higher distribution in P-FOB describing 
dysbiosis. Similarly, Bacteroidetes and Firmicutes phylum display high distribution in P-FOB. Of interest, the presence of 
Clostridium difficile that belongs to Firmicutes phylum displayed about 70% of low presence in N-FOB compared to P-FOB 
subjects. Only one bacterium belonging to the Actinobacteria phylum, the Bifidobacterium bifidum, was present.
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Introduction

Around  10^12 (trillion) complex microbial communities 
composed of fungi, yeasts, viruses and bacteria reside in 
the digestive tract, which constitute the human microbiome 
(HMB) (Marchesi et al. 2016). Its metabolism as well as 
its genetic set interacts with the host organism defining a 
close symbiotic relationship (Fischbach and Segre 2016). 

Concetta Cafiero and Agnese Re have contributed equally to this 
work.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1320 5-020-02351 -w) contains 
supplementary material, which is available to authorized users.

 * Erika Cione 
 erika.cione@unical.it

1 Oncology Unit, SG Moscati Hospital of Taranto, Taranto, 
Italy

2 Laboratory of Medical Genetics, Alessandria Artemisia, 
Rome, Italy

3 CNR-Institute of Cell Biology and Neurobiology, Rome, 
Italy

4 Dietetics and Aesthetic Medicine Section, Alessandria 
Artemisia, Rome, Italy

5 Department of Pharmacy, Health and Nutritional 
Sciences-Department of Excellence 2018-2022, University 
of Calabria, 87036 Rende, CS, Italy

6 Department of Microbiology and Virology, Pugliese Ciaccio 
Hospital, Catanzaro, Italy

7 Department of Endocrine and Metabolic Surgery, Policlinico 
Universitario A Gemelli-Università Cattolica del Sacro 
Cuore, Rome, Italy

8 Department of Endocrine and Metabolic Surgery, Mater 
Olbia Hospital, Olbia, Italy

9 Clinical Pharmacology and Pharmacovigilance Unit, 
Department of Health Sciences, Mater Domini Hospital, 
University of Catanzaro, Catanzaro, Italy

10 Nutrics, Nutritional Center, Luzzi, CS, Italy

http://orcid.org/0000-0002-0562-0597
http://crossmark.crossref.org/dialog/?doi=10.1007/s13205-020-02351-w&domain=pdf
https://doi.org/10.1007/s13205-020-02351-w


 3 Biotech (2020) 10:358

1 3

358 Page 2 of 8

As a result, the bacterial composition mirrors the sophis-
ticated commensality interplay that is established with the 
host organism and within the microbial community (Thursby 
and Juge 2017; Khangwal and Shukla 2019). Intestinal HMB 
changes with aging and metabolic disorder, and may con-
tribute to the decline of nutrients’ absorption (Dahiya et al. 
2017; Kastl et al. 2020). It has been shown that by proper 
nutritional intervention, HMB can be restored and balanced 
sustaining eubiosis (Nagpal et al. 2018; Salazar et al. 2017; 
Wu and Wu 2012). Eubiosis is also re-established by anti-
viral therapy in persistent hepatitis B virus (HBV) infection 
mouse model (Li et al. 2020). HMB is capable of guaran-
teeing the well-being of the entire organism and its role is 
essential for the immune system of the host organism (Wu 
and Wu 2012; Mu et al. 2016). Environmental factors, poor 
lifestyles, psycho-physical stress, overnutrition, and phar-
macological treatments are able to modify HMB, defining 
the dysbiosis (Karl et al. 2018). This latter condition is often 
linked to the lack of intestinal homeostasis which in turn 
correlates to a wide range of inflammatory conditions (Wen 
and Duffy 2017). Current knowledge concerning intestinal 
HMB, using test based on 16S rRNA gene target, points out 
to the existence of a community of almost 1000 bacterial 
species classified into five phyla: Actinobacteria, Bacte-
roidetes, Firmicutes, Proteobacteria and Verrucomicrobia 
(Rajilic-Stojanovic M and de Vos WM, 2014). The results 
achieved thus far via high-throughput sequencing (HTS) 
platforms are very interesting, but the workflow, which 
includes the library preparation protocols and the enzy-
matic amplification of the nucleic acid, could lead to differ-
ent results among the HTS platform used (Salipante et al. 
2016; D’Amore et al. 2016; Loman et al. 2012; Lam 2011; 
Quail et al. 2012; Clooney et al. 2016; Mohammadi et al. 
2019). Besides that, sample collection and bacterial DNA 
extraction as well as the 16S rRNA gene target region rep-
resent other important points in the assessment of intestinal 
HMB (Pollock et al. 2018; Rintala et al. 2017). Therefore, 
concerns about using HMB analysis is still debated, limit-
ing it to routinely clinical practice (Pollock et al. 2018). In 
this framework, the assessment of the intestinal HMB in the 
medical setting may be helpful to dissect symptoms such 
as episodic colitis attack, diarrhea, constipation, flatulence, 
and intestinal discomfort (Chichlowski and Rudolph 2015; 
Simrén et al. 2013). Moreover, intestinal HMB analysis can 
be fundamental to develop therapeutic and personalized 
nutritional interventions (Seo et al. 2013). In this work, we 
attempted to overcome these concerns. To minimize experi-
mental variation, fecal samples were collected and stored 
with OMNI gene GUT, which proved as a reliable and con-
venient system to study intestinal HMB (Panek et al. 2018). 
We performed bacterial DNA extraction with automatic sys-
tem MagCore HF16 Plus with some modification to improve 
DNA yield; to avoid library preparation, we performed 

direct hybridization with n-counter flex DX. To evaluate 
dysbiosis, fecal occult blood (FOB) samples were collected 
from patients enrolled via a clinical trial. Of note, several 
inflammatory intestinal disorders are related to FOB which 
is not strictly related to colon cancer (Walker 1990; Libby 
et al. 2018). In this scenario, we have designed in July 2017 
the first custom panel “CDR_CNV_Bc_miCrobioTA22586” 
with 79 bacteria 16S rRNA target genes representative of gut 
health and impaired in gut inflammation status (Tarallo et al. 
2019). Alicyclobacillus acidophilus, Rhizobium radiobacter 
and Salinibacter ruber are not present in the human gut and 
were used as negative control of human microbiota bacteria 
16S rRNA gene. ACTB, GAPDH and HDAC3 genes were 
used for monitoring human DNA contamination.

Materials and methods

Study design, sample collection and HMB 
community

Study design and analytical workflow are shown in Fig. 1. 
Subjects enrolled were divided into two groups: healthy-
negative for fecal occult blood (herein indicated as N-FOB; 
n = 48) and positive for fecal occult blood (herein indicated 
as P-FOB; n = 48). DNA extraction and/or genomic analysis 
was carried out for N-FOB n = 35 and P-FOB n = 35 sam-
ples, due to low amount of starting material.

Clinical data are reported in Table 1. The clinical trial 
was registered at https ://clini caltr ials.gov/ct2/show/NCT03 
38842 4. This study was authorized by the ethical commit-
tee of University of Catanzaro (protocol #287, November 
2017) and informed consent was obtained from each patient. 
All procedures were conducted according to the principles 
expressed in the Declaration of Helsinki and the Guideline 
for Good Clinical Practice.

0.5–1 g of fresh feces were collected in OMNI gene-
GUT OMR 200 (DNA Genotek Inc, Ottawa, Canada). The 
stool samples were then carefully mixed with 2 mL of sta-
bilization buffer in the provided tube and stored at room 
temperature.

DNA extraction and quantification

DNA extraction was performed by automatic system Mag-
Core HF16 Plus. Briefly, 2 mL of feces samples was first 
exposed to 2 h of lysozyme (final concentration 250 µg/ml) 
treatment at 37 °C, then digested with Proteinase K solution 
(10 mg/ml, in GT buffer) at 65 °C for 3 h. Samples were cen-
trifuged and the bacterial pellet was used for microbial DNA 
isolation by MagCore protocol cartridge 401 and carrier-
RNA or cartridge 202.

https://clinicaltrials.gov/ct2/show/NCT03388424
https://clinicaltrials.gov/ct2/show/NCT03388424
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96 assessed for eligiblity 

13 excluded for low 
amount of fecal material

DNA extraction for genomic analysis

Analyzed (n=70) 

N-FOB (n=48) P-FOB (n=48) 

P-FOB 
(n=35) 

13 excluded for low 
amount of fecal material 

N-FOB 
(n=35) 

Amount analysis

Sample Hybridization (n=70) 22 hours 

Pres Station (n=70) 3 hours 
for 12 sample at the time  

Digital counter (n=70) 5 hours 

Fig. 1  Study design and analytical workflow. Initially, 48 samples 
for each group, N-FOB, and P-FOB were collected, 13 samples for 
each group resulted in a low amount of fecal material. Therefore, 
DNA extraction for genomic analysis was carried out on 35 samples. 

Hybridization was performed for 22 h and cartridges were posed into 
the prep station for 3 h washing and then read to the digital counter 
for a further 5 h. Then n-solver software was used for the analysis
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The DNA quantity and quality measurements were per-
formed on Qubit 3.0 using the Qubit dsDNA HS (High Sen-
sitivity Assay by Thermo Fisher Scientific), based on the 
fluorescence readouts.

Microbiome panel design, NanoString sample 
preparation and nSolver™ rcc file acquisition

Genomic DNA ID from Taxonomy for 16S rRNA gene of 
79 bacterial strains was identified, of which three are not 
present in the human gut and three belong to the host DNA. 
The panel details are reported in Supplementary Table 1.

For the n-counter flex DX of NanoString Technology, 
400 ng of 16S rRNA gene was used as input. After 2 h of 
AluI digestion at 37 °C, the sample was then hybridized with 
CodeSet (Supplementary File 1) for 22 h at 65 °C.

The unhybridized CodeSet was removed with automated 
purification performed on an nCounter Prep Station, and 
the remaining target probe complexes were transferred and 
bound to an imaging surface as previously described (Panek 
et al. 2018; Geiss et al. 2008). Counts of the two reporter 
probes were tabulated for each sample by the nCounter Digi-
tal Analyzer.

NanoString reproducibility, robustness 
and Clostridium difficile testing with GeneExpert–
Cepheid™

The reproducibility of our set of experimental tests was 
monitored through the negative (AH # 8) and positive (AF 
# 6) control probes include in the panel by NanoString, as 
well as probe value for 12 samples were obtained with two 
different n-counter flex machine included in the panel and 
reported in the Supplementary Table 3 as count numbers. 
The robustness of the technology for the clinical sample 
was already studied (Veldman-Jones et al. 2015). Finally, to 
corroborate the proposed experiments, some samples were 
randomly (1:4) analyzed with a common technology (Gene-
Expert—Cepheid GXCDIFFBT-CE-10) for Clostridium dif-
ficile used in molecular microbiology clinical practice (Sup-
plementary Fig. 1).

Statistical analysis

Unless indicated, statistical significance was determined by 
a two-tailed Student’s t test with suitable multiple compari-
son correction. p value of < 0.05 was regarded as significant. 
Results are expressed as mean ± SD. A coefficient of vari-
ation (CV) of 60% was chosen as cutoff into the n-solver 
software analysis. CV is used for comparison between data 
sets with different units or widely different means. One sam-
ple from healthy subjects (N-FOB) was excluded due to the 
presence of a warning red flag in the n-solver analysis.

Results and discussion

The complex interaction between organism and microbiome, 
in both physiological and pathophysiological conditions, has 
attracted interest from the scientific community either for 
personalized medicine or to develop probiotics supplement 
to relieve gut nuisance (Salazar et al. 2017; Wu and Wu 
2012; Mu et al. 2016; Wen and Duffy 2017; Seo et al. 2013; 
Dahiya et al. 2017; Yadav et al. 2018). Furthermore, intes-
tinal discomfort is characterized by pain and gut inflamma-
tion. The panel design was fulfilled for intestinal discomfort 
and according to the scientific literature (Chichlowski and 
Rudolph 2015; Simrén et al. 2013).

Currently in the experimental pipeline of 16S rRNA 
gene sequence with HTS, each procedural step introduces a 
variation that could influence the final output (Pollock et al. 
2018). Therefore, there is an unmet need for standardization 
of methodology which would enable a reliable and repro-
ducible analysis of valuable human biological samples for 
studying gut microbiota (Pollock et al. 2018; Rintala et al. 
2017; Panek et al. 2018).

Herein, we show that the direct detection of 16S rRNA 
target gene via hybridization method allows us to appre-
ciate the variation of biodiversity (Fig. 2 and Supplemen-
tary Table 2) within the collected samples (Table 1). The 
designed panel based on 16S rRNA gene was suitable for 
n-counter flex platform considering also the haploid nature 
of the bacteria DNA (Geiss et al. 2008; Griswold 2018).

The minimum input of nucleic acid used in this study was 
400 ng. The DNA extraction was performed as described 
in “Materials and methods”. The highest DNA yields (an 
enrichment of DNA from 40- to 48-fold) were obtained 
using the cartridge 401 modified protocol compared to car-
tridge 202 (Table 2).

16S rRNA gene array profiles generate a heat map and 
hierarchical clustering based on the most differentiated bio-
diversity as shown in Fig. 2. The analyzed data set is com-
posed of 5.530 count number of 16S rRNA target, related to 
79 bacteria recognized by the best hybridization probe and 
detected in 69 different subjects.

Table 1  Clinical data of enrolled subjects

*Data from f-Hb (OC-Sensor Diana-Eiken Chemical-Tokyo)

Sample Age (years) Male Female Blood amount in stool 
sample and its percentage

N-FOB Range: 30–70 18 30 Absence of occult blood 
in stool

P-FOB* Range: 50–70 23 25 − 100 to 300 ng/ml: 82%
− 300 to 600 ng/ml: 10%
 > 800 ng/ml: 8%
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The samples were classified according to two clusters: 
P-FOB (in green) and N-FOB (in red) negative control (in 
black). Of 79 bacteria, 32 displayed variation between the 
two clusters. The differential bacteria distribution in P-FOB 
compared to N-FOB showed an increased presence of part 
of them in P-FOB subjects. The agglomerative cluster of the 
heat map with a dendrogram tree showed an obvious cluster-
ing of 16S rRNA-specific bacteria genes that ranged from 
− 3.51 up to 5.582 in P-FOB subjects, as illustrated in Fig. 2. 
Red indicates decrease up to − 3.51 of 16S rRNA-specific 
bacteria genes, while green indicates an increase up to 5.582 
of 16S rRNA-specific bacteria genes.

Data from the heat map, reported in Fig. 2 and in Sup-
plementary Table 2, show that bacteria biodiversity between 
the two groups is greatly different. The information obtained 
is in agreement with those reported in a recently paper from 
Tarallo et al. (2019).

In particular, bacteria belonging to Bacteroidetes phy-
lum was recently reviewed for its role in metabolic disease, 
among which Prevotella assumes an important meaning 
(Johnson et al. 2017). Likewise, Proteobacteria phylum 
such as Helicobacter pylori, Desulfovibrio vulgaris, Des-
ulfovibrio fairfieldensis, Desulfovibrio desulfuricans, 
Escherichia fergusonii, and Haemophiilus parainfluenzae 

Fig. 2  Heat map and hierarchical clustering of N-FOB (n = 34), and 
P-FOB (n = 35) based on the differentially present bacteria 16S rRNA 
in log2 ratios. The color intensity represents changes in bacteria vari-
ation, ranging from − 3.51 to 5.582. In the analysis, red represents 

low bacteria abundance and green represents high bacteria abun-
dance. Black represents unchanged bacteria presence as evident by 
the color reference. n-Solver software was used. A coefficient of vari-
ation of 60% was applied

Table 2  Comparison of total 
DNA extraction from stool 
samples between 202 (G1) and 
401 (G2) cartridge protocols

G1 Total DNA ng/µl
# 202 cartridge

G2 Total DNA ng/µl
# 401 cartridge

Enrichment G2 
vs G1

p value

1 1.5227 ± 0.0148 1 61.8962 ± 0.0176*** 40.65 < 0.001
2 1.3951 ± 0.0080 2 62.4069 ± 0.0142*** 44.73 < 0.001
3 1.2539 ± 0.0093 3 60.5769 ± 0.0167*** 48.31 < 0.001
4 1.0769 ± 0.0092 4 52.1298 ± 0.0212*** 48.40 < 0.001
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are higher in pathophysiological gut status according to 
our heat map results and previous studies (Tarallo et al. 
2019; Rizzatti et  al. 2017). Additionally, Libby et  al. 
(2019) pointed out a significant correlation for fecal blood 
presence and the increasing risk of dying from circula-
tory, respiratory and digestive diseases (excluding colo-
rectal cancer) as well as neuropsychological, blood and 
endocrine disease (Walker 1990). Therefore, defining the 
nature of dysbiosis for the presence of blood in feces could 
prevent these risks also combining biotechnological inter-
vention (Khangwal and Shukla 2019). The observations 
described here have two possible implications concerning 
gut dysbiosis. First, the dysbiosis in the microbiome linked 
to blood feces presence might also be used to explore the 
underlying reasons for different patterns of mortality in 
different populations across the world. Second, the proper 
prebiotics/probiotics intervention could modify micro-
biome dysbiosis and possibly blood feces biomarker to 
reduce the risk of premature mortality.

In addition, Firmicutes phylum abundances were signifi-
cantly different in cancer stool sample compared to healthy 
or the adenoma sample (Tarallo et al. 2019). In this context,, 
results from our trial showed a higher presence of Clostrid-
ium difficile that displayed about 70% of low presence in 
N-FOB compared to P-FOB subjects (21/34 red dots of 
N-FOB) vs 24/35 green dots in P-FOB). These data assume 
particular interest in preventing Clostridium difficile infec-
tion, where in extreme condition fecal microbiome trans-
plantation can occur (Juul et al. 2018). The importance of 
testing microbiome is becoming more evident, especially 
considering that the gut axis interaction involves several 
organs (brain, kidney, liver, bone, skin, adipose tissue and 
heart) (Ahlawat and Sharma 2020). Consequently, compre-
hensive information of the types of microbes that reside in 
the human gut is necessary before any kind of pharmaco-
logical intervention that attempts to alter the microbiome. 
Our methods could be applied successfully on long-term 
archived fecal sample sets, originally collected for test-
ing fecal blood, to stratify patients and could be used for 
microbiome-based early biomarker discovery for gut health 
(Rounge et al. 2018). Of note, this is the first time that direct 
hybridization with n-counter flex DX platform was applied 
to microbiome studies and although second generation of 
platform already exists, both produced equivalent signals 
and signal deviations (Yu et al. 2019). Finally, it is important 
to underline that using two different n-counter flex machines, 
we obtained similar results (p > 0.05) showing both, repro-
ducibility and robustness of the n-counter technology. More-
over, comparing the results obtained using a microbiologi-
cal clinical diagnostic tool for Clostridium difficile with the 
results obtained from n-counter flex DX, the presence of 
this bacterium in P-FOB subjects was successfully reported, 
corroborating our results.

Conclusions

The complex interaction between organism and microbi-
ome, both in the physiology and in the pathophysiology, 
has aroused much interest in the last years. The microbi-
ome represents one of the most significant new topics in 
the biomedical field that has concretely entered the medi-
cal/therapeutic field. This is the first study undertaken to 
determine HMB by direct hybridization using n-counter flex 
DX technology. This approach gives a useful tool for robust 
diagnostic/screening profiles of the microbiome. It is an 
innovative and exportable diagnostic model in the laboratory 
medicine practice. Furthermore, as the HMB panel could 
have strength up to 800 bacteria, this technology could lead 
to new biomarkers’ discovery of microbiome and pave the 
way for the identification of therapeutic targets for human 
well-being.
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