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Novel cis/trans-4- and cis/trans-5-(2-vinylstyryl)oxazoles have been synthesized by Wittig reactions from the diphosphonium salt

of a,0’-0-xylene dibromide, formaldehyde and 4- and 5-oxazolecarbaldehydes, respectively. In contrast, trans-5-(2-

vinylstyryl)oxazole has been synthesized by the van Leusen reaction from trans-3-(2-vinylphenyl)acrylaldehyde which is prepared

from o-vinylbenzaldehyde and (formylmethylene)triphenylphosphorane. The 4- and 5-(2-vinylstyryl)oxazoles afford, by photo-

chemical intramolecular cycloaddition, diverse fused oxazoline-benzobicyclo[3.2.1]octadienes, which are identified and character-

ized by spectroscopic methods. The photoproducts formed are relatively unstable and spontaneously or on silica gel undergo oxazo-

line ring opening followed by formation of formiato- or formamido-benzobicyclo[3.2.1]octenone derivatives. On irradiation of

4-(2-vinylstyryl)oxazole small quantities of electrocyclization product, 4-(1,2-dihydronaphthalen-2-yl)oxazole, are isolated and

spectroscopically characterized.

Introduction

The bicyclo[3.2.1]octane skeleton is the basic framework of
numerous important biologically active natural compounds or
their metabolites [1]. Properly functionalized bicyclo[3.2.1]-
octanes have proved as useful reactive intermediates in stereo-
selective transformations making these derivatives powerful

building blocks in organic synthetic strategies [2]. Various

methodologies and new synthetic approaches for their prepar-
ation and reactivity have been reviewed [3]. Continuing our
long-standing interest for photochemical intramolecular cyclo-
addition reactions of various B-heteroaryl-o-divinylbenzenes,
furans [4-6], thiophenes [6-8], pyroles [9,10] and sydnones [11-
13], as routes to polycyclic compounds, we turned our attention
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to oxazole derivatives. The oxazole structure is commonly
found in natural products and pharmaceuticals [14-17] and is
applied in useful reagents and intermediates in organic syn-
thesis [18-25]. There are examples of oxazole photochemical
intermolecular cycloadditions [26-32], but to the best of our
knowledge, there are no examples of intramolecular photocy-
cloaddition. We describe herein, the synthesis of new 4- and
5-(2-vinylstyryl)oxazoles (1, 2) and their intramolecular photo-
cycloaddition to diverse fused tetracyclic oxazoline compounds
which further spontaneously or during the work-up procedure
hydrolyze to benzobicyclo[3.2.1]octenone derivatives. This is a
new method for the synthesis of functionalized benzobi-
cyclo[3.2.1]octenes.

Results and Discussion

cis/trans-Isomers of 4- and 5-oxazole derivatives (1, 2) were
synthesized by Wittig reactions from the diphosphonium salt of
a,0’-0-xylene dibromide, formaldehyde and oxazole-4- and
S-carbaldehydes (3, 4), respectively, in absolute ethanol with

sodium ethoxide as a base (Scheme 1).

The procedure of this multicomponent reaction is slightly modi-
fied, compared to the described method [33], in order to opti-
mize the yields. The yield of 4-oxazole derivative 1 was 50%
whereas the best result found for the 5-oxazole derivative 2 was
22%. The required oxazole-4/5-carbaldehydes (3, 4) [34-36]
were prepared from commercially available esters by DIBALH
reduction following the procedure [34] for oxazole-4-carbalde-
hyde (3). The crude products obtained were used in the next
step of the synthesis without purification because of their
volatility. Reduction of ethyl oxazole-4-carboxylate proceeds
completely whereas the crude reaction sample of the oxazole-5-
carbaldehyde (4) contains 10% of unreacted ester. The unre-
acted ester is difficult to separate by column chromatography
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from the trans-isomer 2. It could be removed from the reaction
mixture by mild basic hydrolysis [37].

To avoid the use of volatile oxazole-5-carbaldehyde (4) we
developed a new synthetic route to 5-(2-vinylstyryl)oxazole (2)
in which the oxazole ring is formed at the end of the reaction
sequence (Scheme 1). An oxazole ring substituted in the 5-pos-
ition can be synthesized from the corresponding aldehydes
using van Leusen’s reagent, tosyl methyl isocyanide (TosMIC)
[38,39]. For the preparation of 5-(2-vinylstyryl)oxazole (2) by
this method 3-(2-vinylphenyl)acrylaldehyde (6) was needed.
This new o-substituted phenylacrylaldehyde 6 was prepared
using (formylmethylene)triphenylphosphorane by a Wittig reac-
tion from o-vinylbenzaldehyde (5). The yield of desired prod-
uct 6 is lower, compared to the yields of previously prepared
B-heteroarylacrylaldehydes [23]. This can be explained by the
diminished nucleophilic attack of the reagent to the carbonyl
moiety due to the steric hindrance of the o-vinyl group in
5 and continued competitive reaction of the carbonyl
from the formed o-vinylphenylacrylaldehyde 6 with (formyl-
methylene)triphenylphosphorane to give 5-(2-vinyl-
phenyl)penta-2,4-dienal (7) as byproduct. Under optimal reac-
tion conditions (see Supporting Information File 1) 32% trans-
3-(2-vinylphenyl)prop-2-enal (6) is obtained in addition with
5% trans,trans-5-(2-vinylphenyl)penta-2,4-dienal (7) as a cont-
aminant, alongside with a large amount of resinous material.
The required o-vinylbenzaldehyde (5) [40] was synthesized
from 2-bromostyrene and used without purification. As the
starting aldehyde 6 for the reaction with TosMIC was in trans
configuration the 5-(2-vinylstyryl)oxazole (2) obtained retained
the frans configuration. This is clearly seen from the coupling
constants of the ethylene protons (J = 16 Hz) in the 'H NMR.
All new compounds for further experiments, cis/trans-1, cis/

trans-2 and trans-6 are isolated by column chromatography on
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Scheme 1: Synthesis of 4- (1) and 5-(2-vinylstyryl)oxazoles (2).
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silica gel in moderate yields (22—-50%) and characterized by

spectroscopic methods (see Supporting Information File 1).

The irradiation experiments have been performed in a Rayonet
reactor (>300 nm, rt, using up to 16 lamps each with a power of
8 W) with petroleum ether, acetonitrile or benzene as a solvent.
Benzene gave the cleanest reaction profile and was used as the
solvent in further preparative experiments. The '"H NMR
spectra of the crude photomixtures showed complete conver-
sion after 3—5 hours of irradiation. In the case of cis/trans-4-(2-
vinylstyryl)oxazoles 1 two dominant products 8a (74%) and 8b
(20%) were observed in the "H NMR spectra and a small quan-
tity of 9 (6%) was observed as well (Scheme 2).

N
¢
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Whereas in the case of cis/trans-5-(2-vinylstyryl)oxazoles (2)
one major product 10 (75%) and minor product 11 (25%) along
with a lot of small quantities of unidentified side products
(Scheme 2) were observed. Irradiation of compounds 1 and 2 in
NMR tubes dissolved in deuterated benzene and recording the
spectra at timed intervals demonstrated that 11 is not the photo-
chemical product as can be clearly seen in Figure 1.

After complete conversion of the starting compound 2 only
compound 10 was present in the 'H NMR spectrum in contrast
to photochemical conversion of compound 1 in which the same
mixture of three products (8a, 8b and 9) is obtained as in
preparative experiments.
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Scheme 2: Irradiation of 4- (1) and 5-(2-vinylstyryl)oxazoles (2) (crude reaction mixtures).
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Figure 1: Part of "TH NMR spectra in CgDg of the crude photomixtures after 200 min (300 nm, rt ) of irradiation of cis/trans-1 (a) and cis/trans-2 (b).
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The structure of photoproduct 10 was completely determined
using COSY, NOESY and HSQC techniques (see Supporting
Information File 1). Aromatic protons of 10 are at 6.9-7.3 ppm
and the proton on the oxazoline moiety is a singlet at 6.2 ppm.
The specific aliphatic protons Ha—Hp of the bicyclic skeleton
(Figure 1) show a similar pattern as the previously described
benzofuran intermediate [41]. In the 13C NMR spectrum there
are 5 signals in the region from 108 to 40 ppm. The doublet at
108 ppm indicates the structure with sp2-hybridized carbon
(Ch(a)) and the triplet at 44 ppm indicates the existence of one
geminal carbon atom. The tetracyclic oxazoline stereoisomer
rel-(2S)-10 undergoes spontaneously oxazoline ring-opening to
11 during the solvent evaporation after the irradiation and there-
fore the identification of this compound had to be done immedi-
ately after the work-up procedure. The formation of tricyclic
formamido derivative re/-(95)-11 can be explained by the addi-
tion of water to the exo-double bond of the bicyclic skeleton or
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the C=N double bond and further oxazoline ring-opening
(Scheme 3).

Formamido derivative rel-(95)-11 is completely characterized
by spectroscopic methods. In its IR spectrum there are signals at
3334 cm™! of the NH group, and strong signals at 1722 and
1683 cm™! of two carbonyl groups. The formamido proton in
the 'H NMR spectrum appears at 8.29 ppm and the proton of
the NH group as a broad singlet at 6.29 ppm. Specific signals
for the aliphatic protons Ha—Hg of the benzobi-
cyclo[3.2.1]octenone structure are present at higher field from
4.8 to 2.3 ppm as expected (Figure 2: (b)). From the NOESY
spectrum was evident that the Hy is oriented towards the

methano bridge.

The diastereomeric fused tetracyclic oxazolines rel-(2S)-8a and
rel-(2R)-8b (Scheme 2, Figure 1), that were obtained on irradi-
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Scheme 3: Plausible mechanisms of oxazoline ring-opening in photoproduct 10.
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Figure 2: "H NMR spectra in CgDg of rel-(9S)-12a (a) and rel-(9S)-11 (b).
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ation of cis/trans-4-(2-vinylstyryl)oxazole (1), are more stable
than 10 but not sufficiently so that they can be separated chro-
matographically on silica gel. The major diastereomer 8a is
isolated mixing the diastereomeric mixture for several hours in
dry ether with some quantity of silica gel. The minor diastereo-
mer 8b is identified and characterized in the NMR spectra of
the photomixtures. The difference in structures of 8a and 8b is
in the orientation of Hg (8a) or Hy, (8b) protons. In the NOESY
spectrum of the diastereomeric mixture the interaction between
Hp and Hg protons can be seen which is a clear proof that the
Hgp is facing the methano bridge in the major diastereomer 8a.
There is no interaction between Hy, and Hy¢ protons in the minor
isomer 8b suggesting that Hy, proton is opposite to the methano-
bridge. The diastereomer in which the Hp is oriented towards
the methano bridge is the main product in photochemical reac-
tions of either 4- or 5-(2-vinylstyryl)oxazole.

The formation of the photoproducts 8 and 10 can be explained
by intramolecular cycloaddition and formation of resonance
stabilized biradicals A/A’ followed by the 1,6-ring closure
(Scheme 4).

An 1,3-H shift, as in furan and thiophene derivatives [6], and
rearomatization to fused oxazole derivatives B/B’ is not
detected. The 1,6-ring closure of the biradicals A/A’ occurs
stereoselectively giving the major products rel-(25)-8a/rel-(2S)-
10 in which the hydrogen on C-2 is oriented toward the
methano bridge. The formation of dihydronaphthalene deriva-
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tive 9, found only on irradiation of 1, is explained by 6= electro-
cyclization of the benzodivinyl moiety to intermediate C fol-
lowed by 1,5-H shift and rearomatization of the benzene ring.
Analogue electrocyclization was not detected in phenyl or furyl-
substituted o-divinylbenzenes but instead stilbene-like 67 elec-
trocyclization and formation of 1-vinylphenanthrene [42] or
6-vinylnaphtho[2,1-b]thiophene [6] occured, respectively.

During chromatography on silica gel the tricyclic formiato
derivative rel-(9S5)-12 is formed from 8 (Scheme 5).

In the "H NMR spectrum the main diastereomer rel-(95)-12a
shows the signal of the formiato proton in the low field at
8.2 ppm. The signals from 5.6 to 2.3 ppm are assigned to
Ha—Hg protons of the bicyclic skeleton. Using COSY and
NOESY techniques all corresponding interactions are found.
The signals of two carbonyl groups located at 200.8 (C=0) and
159.3 (CH'=0) ppm in the 13C NMR spectrum were confirmed
in the IR spectrum with the bands at 1740 and 1714 cm™'. No
signal for a NH proton was found in the 'H NMR (Figure 2: (a))
nor the NH band in the IR spectrum. Its HRMS also confirmed
the compound without the presence of nitrogen. The NOE inter-
action between protons Hp and Hg proved that the Hp proton is
facing to the methano bridge and that in the open structure rel-
(95)-12a Hp retained the same orientation as it had in the closed
product 8a. 'H NMR spectra of rel-(95)-12a and rel-(9R)-12b
are similar and have comparable interactions of protons in the
COSY spectra. Unlike the NOESY spectrum of re/-(95)-12a
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Scheme 4: Mechanism of the formation of polycyclic compounds (8-10).
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Scheme 5: Reactions of the photochemical product 8 with EtOH, MeOD and HyO/silica gel.

with Hp at 5.61 ppm in interaction with Hg, the H, proton at
5.07 ppm of rel-(9R)-12b has no interaction with Hg.

The photoproduct 8 is more stable than 10. The stability can be
attributed to the existence of conjugated double bonds present
in the structure. The structure of 8 in which the exo-double bond
is in conjugation with the oxazoline double bond is also
confirmed by isolation of adducts 13 and 14 (Scheme 5).

When the crude photomixture, containing 8a, 8b and 9, was
dissolved in absolute ethanol and left in a refrigerator at 13 °C
over the weekend the adduct 13 was formed as a main product.
The same procedure with MeOD showed the incorporation of
deuterium in the bicyclo[3.2.1]octadiene moiety and a methoxy
group on the N=C oxazoline bond by 1,4-addition or more
likely by addition to the N=C bond followed by keto—enol
tautomerization giving 14. The adducts are spectroscopically
completely identified (see Supporting Information File 1). The
spectra of alcohol adducts show that alongside with (25)-13/14
there were traces of 9 and traces of what we suspect to be (2R)-
13/14. Products 13/14 easily undergo ring opening on silica gel
giving the same formiato derivative 12. Plausible mechanism of

/ 3
H i OR

o
) ROH(D)

=N
rel-(2S)-8a \

L H

O  OR

HDY X —~
N H

the ring opening of oxazoline derivative 8 might be as outlined
in Scheme 6.

Conclusion

In summary, photochemical fused oxazoline-benzobi-
cyclo[3.2.1]octadiene products 8 and 10 are formed by photo-
chemical intramolecular cycloaddition of 4- (1) and 5-(2-vinyl-
styryl)oxazoles (2), respectively. Product 10 spontaneously
undergoes ring opening and formation of benzobi-
cyclo[3.2.1]octenone derivative 11. Diastereomers 8 are stable
under non-acidic conditions allowing the isolation of the main
diastereomer 8a. They are easily hydrolyzed under mildly
acidic conditions (silica gel) to functionalized benzobi-
cyclo[3.2.1]octenone derivatives 12. Related benzobi-
cyclo[3.2.1]octen-3-ones have been prepared by the method of
Lansbury from chloroallylindene [43-45], by carbene reaction
from benzonorbornadiene [46,47] or by intramolecular inser-
tion of the vinyl group into a carbon—carbon single bond using
organometallic catalysts [48]. Herein we have reported a new
simple method for the synthesis of functionalized benzobi-
cyclo[3.2.1]octene derivatives using light as a traceless reagent
[49].

H H
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Scheme 6: Plausible mechanisms of oxazoline ring opening in photoproduct 10 and formation of 12.
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