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A growing body of evidence demonstrates that susceptibility and progression of both acute and chronic central nervous system
disease in the newborn is closely associated with an innate immune response that can manifest from either direct infection and/or
infection-triggered damage. A common feature of many of these diseases is the systemic exposure of the neonate to bacterial
infections that elicit brain inflammation. In recent years, the importance of innate immune receptors in newborn brain injury, the
so-called Toll-like receptors, has been demonstrated. In this paper we will discuss how neonatal sepsis, with particular emphasis on
Escherichia coli, coagulase-negative staphylococci, and group B streptococcal infections in preterm infants, and Toll-like receptor-
mediated inflammation can increase the vulnerability of the newborn brain to injury.

1. Introduction

Perinatal brain injury represents a significant clinical prob-
lem [1]. A growing body of evidence demonstrates that
susceptibility and progression of both acute and chronic cen-
tral nervous system (CNS) disease is closely associated with
an innate immune response that can manifest from either
direct infection and/or infection-triggered damage [2]. A
common feature of these diseases is the systemic activation of
inflammatory mediators, which via the blood can disrupt the
blood-brain barrier, affect the circumventricular organs in
the brain (which lack a blood-brain barrier), or interact with
the brain endothelium, thereby eliciting brain inflammation
[3]. Furthermore, the presence of activated inflammatory
cells derived from systemic circulation or from dormant
brain resident populations is a key feature of many CNS
diseases. More recently, the importance of innate immune
receptors in CNS injury, the so-called Toll-like receptors
(TLRs), has also been emphasized. In this paper we will focus
on how neonatal sepsis and TLR-mediated inflammation
increase the vulnerability of the newborn brain.

2. Neonatal Sepsis and Brain Injury

Infants with sepsis have an increased incidence of cerebral
palsy [4] and white matter abnormalities [5–11]. In a
large study of 6093 extremely low birth weight (<1000 g)
infants, those who were infected (including early-onset sep-
sis, suspected sepsis (culture negative), and had necrotizing
enterocolitis (NEC)) were more likely to have cerebral palsy
than children who did not have a neonatal infection [12].
In another recent large sample-size study involving 1155
infants born at 23 to 27 weeks gestation, it was found
that children who had both late bacteremia (positive blood
culture result after the first postnatal week) and surgical NEC
were at increased risk of diparetic cerebral palsy compared
with children who had neither [13]. Moreover, by comparing
outcomes of 150 infants with periventricular leukomalacia
(PVL) with controls matched for gestational age, it was
found that infants with bacterial sepsis were twice as likely
to develop PVL, and those with meningitis were almost four
times as likely to develop white matter disease [14]. Similar
findings were noted in a smaller case-control study, where
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associations between cerebral palsy, clinical chorioamnioni-
tis and sepsis were demonstrated [15]. Moreover, there was
an increased incidence of Gram-negative bacterial and fungal
infections in a very low birth weight population, and these
infants were at significantly increased risk for moderate to
severe cerebral palsy and neurodevelopmental impairment at
18 months of age [16].

2.1. Bacterial Pathogens in Neonatal Sepsis. Escherichia coli
is one of the main pathogens causing early-onset infections
in preterm neonates, accounting for up to 40% of the
cases of bacteremia among very low birth weight preterm
infants (<1,500 g) [17]. Cerebral white matter injury has
been found by MRI following Escherichia coli meningitis
in human newborn infants [18]. Furthermore, Escherichia
coli induce brain damage in a number of antenatal rabbit
and rodent models [19–26]. Also, in a recent study, white
matter injury was demonstrated in an animal model of
neonatal Escherichia coli sepsis in 5-day-old rat pups [27].
Experimental studies show that early-life Escherichia coli
exposure can also have long-term effects, influencing the
vulnerability to other factors in adulthood, for example, age-
related cognitive decline [28] as well as attenuated glial and
cytokine responses to amphetamine challenge [29].

In recent years, coagulase-negative staphylococci
(CONS) have emerged as the most prevalent and important
neonatal pathogens, responsible for approximately 50% of
all episodes of late-onset neonatal sepsis in neonatal inten-
sive care units around the world [30–33]. CONS cause sig-
nificant morbidity, mortality, and healthcare costs worldwide
in preterm newborns, especially in very low birth weight
infants [34–38]. The vulnerability of preterm infants to
CONS infection has been suggested to be due to the special
characteristics of the premature infant’s innate immunity
[39]. Although there is no direct evidence of CONS caus-
ing perinatal brain injury, the presence of CONS in the
chorioamnion space at delivery is associated with increased
risk for the development of cerebral palsy in preterm infants
[40, 41]. Further, in children with an established diagnosis
of cerebral palsy, who are admitted to pediatric intensive
care, there is a high rate of carriage of abnormal bacteria,
including CONS [42].

In very low birth weight preterm infants with early on-
set neonatal sepsis, the rate of group B streptococcal (GBS)
infections is relatively low in comparison with E. coli infec-
tions [17]. There is no direct evidence of GBS sepsis play-
ing a role in cerebral palsy; however, nearly half of all in-
fants who survive an episode of GBS meningitis suffer
from long-term neurodevelopmental sequelae [43]. Further,
extensive cortical neuronal injury was found in GBS-infected
neonatal rats, which was mediated through reactive oxygen
intermediates [44, 45].

3. Toll-Like Receptor-Mediated Vulnerability of
the Immature Brain

3.1. Toll-Like Receptors. Toll-like receptors (TLRs) play a
central role in primary recognition of infectious and viral

pathogens. The presence of all 13 known TLRs has been
demonstrated in the brain [46–48]. TLR4 mediates cellular
activation in response to LPS derived from Escherichia coli
[49], while CONS [39] and GBS infections [50] are, at
least partly, believed to be mediated by TLR2. Interestingly,
the role of TLRs in nonbacterial-induced brain injury has
also recently been highlighted [51]. TLRs signal through
the recruitment of intracellular adaptor proteins, followed
by activation of protein kinases and transcription factors
that induce the production of inflammatory mediators
(Figure 1). The adaptor protein MyD88 is used by most
TLRs, except TLR3, while the TRIF adaptor protein is used
only by TLR3 and TLR4. LPS-induced activation of TLR4
elicits, via both MyD88 and TRIF, a broad inflammatory
response in tissues, including the immature brain [52].

3.2. TLR Expression during Brain Development. There is rel-
atively little information regarding the expression of TLRs in
the developing brain. During embryonic life, protein expres-
sion of both TLR-3 and -8 has been identified [53, 54], while
TLR-2 expression is relatively low before birth and increases
during the first two weeks of life [55]. We have shown that
mRNA for TLR1-9 is expressed in the neonatal mouse brain
[56]. It appears that some of the TLRs may play important
roles during normal brain development, as TLR2 inhibits
neural progenitor cell proliferation during the embryonic
period, and TLR3 deficiency increases proliferation of neural
progenitor cells, while TLR8 stimulation inhibits neurite
outgrowth [53–55]. In support, TLR2 and TLR4 have been
shown to regulate hippocampal neurogenesis in the adult
brain [57].

3.3. LPS-Induced Brain Injury. We, and others, have shown
that systemic administration of LPS results in brain injury
in both fetal and newborn animals [58–60]. These injuries
appear, both histologically and by MRI analysis, to be very
similar to those found in preterm infants [61]. Furthermore,
it is now well established that pre-exposure to LPS can
increase the vulnerability of the immature brain to hypoxia-
ischemia (HI), in both rats [62, 63] and mice [64]. These
effects are TLR4 [65] and MyD88 dependent [64, 66]. In
a recent study, it was also shown that a very low dose of
LPS, specifically increased the vulnerability of the immature
white matter [67]. Low-dose LPS (0.05 mg/kg) sensitized
HI injury in P2 rat pups by selectively reducing myelin
basic protein expression and the number of oligodendro-
cytes while increasing neuroinflammation and blood-brain
barrier damage in the white matter. The neuroinflammatory
responses to LPS/HI appears to be age dependent [68].
Rat pups subjected to LPS/HI at P1 responded with weak
cytokine response, while there was a prominent upregulation
of cytokines in P12 pups subjected to the same insult.
Interestingly, IL-1β was upregulated at both ages; IL-1β
injections sensitize the newborn brain to excitotoxicity [69]
and repeated IL-1β exposure during the neonatal period
induces preterm like brain injury in mice [70].

Although it has clearly been demonstrated that LPS can
increase the vulnerability to HI, under certain circumstances
LPS can also induce tolerance to brain injury. We have
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Figure 1: Diagram outlining infectious agents, TLRs, and major signaling pathways. Abbreviations: SE: S. epidermidis; GBS: group B
streptococcus; LPT: lipopeptides. LPS: lipopolysaccharide; MyD88: myeloid differentiation primary response gene (88); TRIF: TIR domain-
containing adaptor inducing interferon-β-mediated transcription factor; NF-κB: nuclear factor-KappaB; IRF: interferon regulatory factor;
IP-10: interferon gamma-induced protein 10; IFN: interferon; TNF: tumor necrosis factor; IL-1: Interleukin -1.

shown that the time interval between LPS exposure and the
subsequent HI is imperative to the outcome [71, 72], where
a 24 h interval seems to induce a tolerant state that makes
the brain less vulnerable. This has been confirmed by others
who have implicated several possible mechanisms, including
upregulation of corticosterone [73], which is further sup-
ported by the fact that administration of dexamethasone
prevents learning impairment following LPS/HI in neonatal
rats [74]. Furthermore, Akt-mediated eNOS upregulation in
neurons and vascular endothelial cells have been implicated
in LPS-induced preconditioning [75].

The importance of the time interval between LPS and
other insults seems to be a generalized phenomenon. We
have recently demonstrated in an in vitro model that con-
ditioned medium from LPS-activated microglia affects the
antioxidant Nrf2 system and cell survival in astrocytes in
a time-dependent manner. LPS-induced inflammation had
dual, time-dependent, effects on the Nrf2 system in that
sustained activation (72 h) of GSK3beta and p38 downreg-
ulated the Nrf2 system, possibly via the activation of histone
deacetylases, changes that were not observed with a 24 h (tol-
erance) interval [76, 77]. These studies support our previous
report demonstrating that reductions in antioxidants were
more pronounced when HI was preceded by LPS injection
in 8-day rats 3 days prior to the HI insult [78].

3.4. Other TLRs in Perinatal Brain Injury. Compared to
TLR4, much less is known about other TLRs in perinatal
brain injury. As mentioned above, TLR2, TLR3, and TLR8
can affect normal brain development [53–55]. Activation
of TLR2 in neonatal mice decreases volume of cerebral
gray matter, white matter in the forebrain, and cerebellar
molecular layer [79]. Further, we have recently demonstrated
the expression of both TLR1 and TLR2 in the neonatal mouse
brain following HI. In these studies, TLR2 deficiency resulted
in reduced infarct volume after HI, while TLR-1-deficient
mice were not protected [56].

Maternal viral immune activation is believed to increase
the risk of psychiatric disorders such as schizophrenia in off-
spring, and in order to examine this relationship, several
authors have investigated the vulnerability of the fetal
brain to synthetic double-stranded RNA, polyriboinosinic-
polyribocytidilic acid (poly I:C), a TLR3 agonist. Maternal
injection with poly I:C towards the end of gestation (≥G15)
causes sensorimotor gating deficits in the adult offspring
in mice [80] and increased sensitivity to the locomotor-
stimulating effects of MK-801 [81]. The effects of Poly I:C
appear to be gestational age dependent [82]. Maternal Poly
I:C injection on GD9, but not GD17, significantly impaired
sensorimotor gating and reduced prefrontal dopamine D1
receptors in adulthood, whereas prenatal immune activation
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in late gestation impaired working memory, potentiated the
locomotor reaction to a NMDA-receptor antagonist, and
reduced hippocampal NMDA-receptor subunit 1 expression.
In particular, Poly I:C injections early during rodent preg-
nancy affect structural brain development, such as a transient
decrease of myelin basic protein in the neonatal offspring
[83] and cerebellar pathology [84].

4. Conclusion

E. coli infections are common in preterm neonates, and
considerable evidence suggests that E. coli-induced inflam-
mation play a role in the development of white matter dam-
age in preterm infants. There is much less data available
concerning the importance of two other common neonatal
pathogens, CONS and GBS, in perinatal brain injury. Fur-
thermore, it is becoming clear that TLRs have important
roles during development and may be involved in both
pathogen-induced damage as well as so called “sterile” HI-
induced inflammation. In order to better understand the
underlying causes of perinatal brain injury, the interaction
between common neonatal pathogens and TLRs in the
newborn brain deserves further investigation.
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[60] X. Wang, G. Hellgren, C. Löfqvist et al., “White matter damage
after chronic subclinical inflammation in newborn mice,”
Journal of Child Neurology, vol. 24, no. 9, pp. 1171–1178, 2009.

[61] J. Dean, Y. van de Looij, S. V. Sizonenko et al., “Delayed cortical
impairment following lipopolysaccharide exposure in preterm
fetal sheep,” Annals of Neurology. In press.

[62] S. Eklind, C. Mallard, A. L. Leverin et al., “Bacterial endotoxin
sensitizes the immature brain to hypoxic-ischaemic injury,”
European Journal of Neuroscience, vol. 13, no. 6, pp. 1101–
1106, 2001.

[63] L. Yang, H. Sameshima, T. Ikeda, and T. Ikenoue, “Lipopoly-
saccharide administration enhances hypoxic-ischemic brain
damage in newborn rats,” Journal of Obstetrics and Gynaecol-
ogy Research, vol. 30, no. 2, pp. 142–147, 2004.

[64] X. Wang, L. Stridh, W. Li et al., “Lipopolysaccharide sen-
sitizes neonatal hypoxic-ischemic brain injury in a MyD88-
dependent manner,” Journal of Immunology, vol. 183, no. 11,
pp. 7471–7477, 2009.

[65] S. Lehnardt, L. Massillon, P. Follett et al., “Activation of innate
immunity in the CNS triggers neurodegeneration through a
Toll-like receptor 4-dependent pathway,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 100, no. 14, pp. 8514–8519, 2003.

[66] J. M. Dean, X. Wang, A. M. Kaindl et al., “Microglial MyD88
signaling regulates acute neuronal toxicity of LPS-stimulated
microglia in vitro,” Brain, Behavior, and Immunity, vol. 24, no.
4, pp. 776–783, 2010.

[67] L. W. Wang, Y. C. Chang, C. Y. Lin, J. S. Hong, and C.
C. Huang, “Low-dose lipopolysaccharide selectively sensitizes
hypoxic ischemia-induced white matter injury in the imma-
ture brain,” Pediatric Research, vol. 68, no. 1, pp. 41–47, 2010.

[68] M.-E. Brochu, S. Girard, K. Lavoie, and G. Sébire, “Develop-
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