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Dietary carbohydrate intake 
is associated with the subgingival 
plaque oral microbiome abundance 
and diversity in a cohort 
of postmenopausal women
Amy E. Millen1*, Runda Dahhan1, Jo L. Freudenheim1, Kathleen M. Hovey1, Lu Li2, 
Daniel I. McSkimming3, Chris A. Andrews4, Michael J. Buck5, Michael J. LaMonte1, 
Keith L. Kirkwood2, Yijun Sun6, Vijaya Murugaiyan5, Maria Tsompana5 & 
Jean Wactawski‑Wende1

Limited research exists on carbohydrate intake and oral microbiome diversity and composition 
assessed with next-generation sequencing. We aimed to better understand the association between 
habitual carbohydrate intake and the oral microbiome, as the oral microbiome has been associated 
with caries, periodontal disease, and systemic diseases. We investigated if total carbohydrates, 
starch, monosaccharides, disaccharides, fiber, or glycemic load (GL) were associated with the 
diversity and composition of oral bacteria in subgingival plaque samples of 1204 post-menopausal 
women. Carbohydrate intake and GL were assessed from a food frequency questionnaire, and 
adjusted for energy intake. The V3–V4 region of the 16S rRNA gene from subgingival plaque samples 
were sequenced to identify the relative abundance of microbiome compositional data expressed as 
operational taxonomic units (OTUs). The abundance of OTUs were centered log(2)-ratio transformed 
to account for the compositional data structure. Associations between carbohydrate/GL intake and 
microbiome alpha-diversity measures were examined using linear regression. PERMANOVA analyses 
were conducted to examine microbiome beta-diversity measures across quartiles of carbohydrate/GL 
intake. Associations between intake of carbohydrates and GL and the abundance of the 245 identified 
OTUs were examined by using linear regression. Total carbohydrates, GL, starch, lactose, and sucrose 
intake were inversely associated with alpha-diversity measures. Beta-diversity across quartiles of total 
carbohydrates, fiber, GL, sucrose, and galactose, were all statistically significant (p for PERMANOVA 
p < 0.05). Positive associations were observed between total carbohydrates, GL, sucrose and 
Streptococcus mutans; GL and both Sphingomonas HOT 006 and Scardovia wiggsiae; and sucrose and 
Streptococcus lactarius. A negative association was observed between lactose and Aggregatibacter 
segnis, and between sucrose and both TM7_[G-1] HOT 346 and Leptotrichia HOT 223. Intake of total 
carbohydrate, GL, and sucrose were inversely associated with subgingival bacteria alpha-diversity, the 
microbial beta-diversity varied by their intake, and they were associated with the relative abundance 
of specific OTUs. Higher intake of sucrose, or high GL foods, may influence poor oral health outcomes 
(and perhaps systemic health outcomes) in older women via their influence on the oral microbiome.
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The human microbiome plays a critical role in human health and disease1. In particular, the oral microbiome 
is associated with not only the health of the mouth, but also risk of other chronic diseases (e.g., cardiovascular 
disease2,3 hypertension4, type 2 diabetes5, and cancer6,7). Understanding of the factors (e.g., dietary intake, smok-
ing behavior, medication use, etc.) affecting the composition of the oral microbiome is critical to understanding 
these observed associations with disease outcomes.

Over 700 different species of bacteria have been identified in the oral cavity8 with, on average, more than 
250 different species in any one individual mouth9. The diversity of the oral microbiome in relation to oral 
health is complex. For example, previous data shows that the alpha-diversity of the microbiome in supragingi-
val plaque samples (where cariogenic pathogens reside), decreases with the severity of caries10. Differently, the 
alpha-diversity in subgingival plaque samples, (where periodontal pathogens reside), increases with increasing 
severity of periodontal disease11,12, and such a relationship was observed in this cohort with the microbiome of 
our subgingival plaque samples13.

Diet has been shown to be associated with both caries and periodontal disease14 and hypothesized to influence 
the microbial composition and diversity of the saliva and gingival crevicular fluid15. Fermentable carbohydrates 
(simple sugars and starch) are significant sources of bacterial energy metabolism and are broken down by both 
bacterial enzymes and by endogenous processes in the oral cavity15. There is evidence that fermentable carbo-
hydrates are essential to development of dental caries16. However, the association of carbohydrate intake with 
periodontal disease is less well studied17–21. Few studies have examining habitual intake of dietary carbohydrates 
in relation to the diversity and composition of the oral microbiome22–24.

We studied the association between habitual dietary carbohydrate intake and the subgingival plaque oral 
microbiome in a cohort of 1204 postmenopausal women, using data from the Buffalo Osteoporosis and Periodon-
tal Disease (OsteoPerio) Study, a cohort study ancillary to the Women’s Health Initiative (WHI) Observational 
Study (OS)25. The OsteoPerio Study used 16S rRNA gene sequencing of oral plaque samples to identify and meas-
ure the relative abundance of the oral bacteria found26. We hypothesized that the alpha-diversity (within-subject 
diversity [number of species]) of the oral microbiome would be associated with intake of total carbohydrates, 
GL, starch, disaccharides (lactose, maltose, sucrose) and monosaccharides (fructose, galactose, and glucose) and 
that the beta-diversity (between group diversity) of the oral microbiome would differ across quartiles of intake 
in all carbohydrates and glycemic load (GL).

Methods
Study design.  The OsteoPerio Study is an ongoing prospective cohort26, and ancillary to the WHI, a national 
study focused on health outcomes of postmenopausal women25. The OsteoPerio study was originated to exam-
ine the association between osteoporosis and loss of bone in the oral cavity27. Study participants were recruited 
from the WHI clinical center in Buffalo, NY between 1997 and 2001; 1,342 women participated in the baseline 
exam (Supplemental Fig. 1)26. Women were excluded if they had fewer than 6 teeth, bilateral hip replacement, a 
history of non-osteoporotic bone disease, a recent 10 years history of cancer, or if they were treated for serious 
diseases26. There were 1222 women with sequenced subgingival microbiome and dietary data at baseline, and 
of these, 18 women were excluded because their self-reported energy intakes were > 5000 or < 600 kcals, leaving 
a sample of 1204 women. All participants provided informed consent, and the study protocol was approved by 
the University at Buffalo’s Health Sciences Institutional Review Board. All experiments were in agreement with 
relevant guidelines regarding Human Subjects Research.

Assessment of dietary carbohydrate intake.  Dietary intake was assessed as part of the WHI OS par-
ticipant’s year 3 visit, which coincided with the OsteoPerio baseline exam26. A modified Block food frequency 
questionnaire (FFQ), with 122 main questions and 4 summary questions, was administered to participants ask-
ing them to recall usual consumption during the last 3 months28. The WHI FFQ has been validated in a study 
conducted among 113 women in the WHI comparing the FFQ to mean intake from four, 24-h recalls and one 
4-day food record28. The energy-adjusted Pearson correlation coefficients for total carbohydrates and total fiber 
were 0.63 and 0.65, respectively28. Our main exposures include intake of total carbohydrates, GL, total fiber, 
soluble fiber, insoluble fiber, starch, disaccharide intake (lactose, maltose, sucrose) and monosaccharide intake 
(fructose, galactose, and glucose). GL reflects both the amount of carbohydrate in a food in addition to its influ-
ence on blood sugar. In this study, total carbohydrate including fiber intake, rather than available carbohydrate 
intake, was used to estimate the GL29. Carbohydrate intake is presented as the percent of calories from carbo-
hydrate consumed, or in the case of fiber intake and GL, as grams per 1,000 kcals consumed. All analyses used 
these energy-adjusted variables.

Subgingival plaque samples and  sequencing.  A dental examiner performed an oral examination 
wherein subgingival plaque samples were taken with paper points from 12 index teeth (or substitutes), as 
described previously30. Paper points were inserted into subgingival pockets of a tooth’s mesiobuccal surface, 
with samples taken from maxillary and mandibular teeth and stored in freezers at − 80 °C.

The composition and diversity of the oral subgingival microbiome were assessed by 16S ribosomal DNA 
(rDNA) sequencing with the Illumina MiSeq platform as previously described26. Briefly, bacterial DNA was 
isolated from subgingival samples (maxillary and mandibular samples pooled) with the DSP Virus/Pathogen 
Mini Kit in QIAsymphony SP automated system (Qiagen, Valencia, CA). Before DNA extraction, an enzymatic 
pretreatment was performed for more efficient isolation of Gram-positive bacteria. Metagenomic DNA was 
subsequently amplified for the 16S rRNA gene hypervariable V3–V4 region with negative (extraction reagents 
and microbial DNA free water) and positive (subgingival plaque pools and Zymogen mock DNA standard) 
controls. Three hundred base paired-end sequencing (2 × 300) was performed using the MiSeq Reagent Kit V3 
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on the Illumina MiSeq. Paired-end sequences were joined using Paired-End read merger (PEAR version 0.9.6). 
The joined sequences were then filtered for quality with the Fastx-Toolkit (V.0.013) to isolate the Illumina paired-
end reads that had 90% of their bases measured up to a score of at least Q3031. This score means that only 1 out 
of every 1000 bases may be incorrect32. Only participant samples that had a minimum at least 3,000 reads were 
included in our analytic sample31. Following quality filtering, sequences were clustered at 97% identity against the 
Human Oral Microbiome Database (HOMD) version 14.533 with Basic Logical Alignment Search Tool (BLAST) 
aiming at the species level34. Finally, in the raw OTU tables, any OTU that had a frequency count of < 0.02% of 
the total reads was removed from the sample31.

Assessment of additional covariates.  Participant characteristics including height, weight, and blood 
pressure were measured in the OsteoPerio clinic by trained examiners. Either as part of the broader WHI OS25 
or the OsteoPerio Study26, data were collected on women’s age, race/ethnicity, education, medical and oral his-
tory, lifestyle and health behaviors, dietary supplement intake, and use of medications, including antibiotics, in 
the last 30 days.

Statistical analysis.  The subgingival microbiome was analyzed using Compositional Data Analysis 
techniques35,36 to avoid spurious correlations arising from compositional structure in the data. We used the 
centered log2-ratio (CLR) transformation, which represents the abundance of taxa relative to the geometric 
mean of the sample, and is defined by the formula CLR(x) = log2(x/g(x)), where g(x) is the geometric mean of 
the vector x37. We added 1 to all counts because of the existence of some zero values. This removes the zeros 
and keeps proportions of non-zero counts close to their natural values. Since we are using a logarithm base 2, a 
CLR transformed abundance of 3 represents a species with 23 times greater abundance than the average within 
the sample. Hereinafter, the CLR transformed relative abundance of each OTU is referred to as “relative abun-
dance”. Measures of relative abundance are considered primary endpoints for this analysis, along with measures 
of alpha- and beta-diversity.

A correlation matrix across all carbohydrate variables was computed. Mean carbohydrate intake was described 
by the level of participant characteristics. T-tests and ANOVAs were used to test for significant mean differences 
across characteristics. We examined the association between carbohydrate intake and three indices of alpha-
diversity: observed OTU count, the Chao-1 Index38,39 (both representing species richness), and the Shannon 
Index (representing species evenness)40,41. We regressed each alpha-diversity measure on each carbohydrate vari-
able and GL to examine the intra-individual microbial diversity in relation to carbohydrate intake. We also tested 
differences in the beta-diversity of the microbiome by carbohydrate intake by examining measures of Euclidean 
distance within and between quartile groups of each carbohydrate intake and GL variable using a PERMANOVA 
test. We visualized the associations by graphing the samples according to the top two principal components 
explaining variance in our 245 OTUs, color-coding the points by quartile, and drawing 95% content ellipses.

We also regressed each OTU’s relative abundance measure on continuous measure of total carbohydrate 
intake, GL, and subtype of carbohydrate. We present crude models and models adjusted for age, race and eth-
nicity, frequency of flossing, frequency of brushing, frequency of dental visits, smoking status, pack-years of 
smoking, and antibiotic use. We also considered models further adjusted for body mass index (BMI) and diabetes 
status, which may be in the causal pathway between carbohydrate intake and the composition of the subgingival 
microbiome. Data was missing for smoking status (n = 1), frequency of flossing (n = 5), and pack-years of smoking 
(n = 27) therefore adjusted models have 1,172 rather than 1,204 participants. Crude and adjusted beta-coefficients, 
associated standard errors, and p-values for each carbohydrate variable and OTU association are presented. The 
beta-coefficients represent the difference in the relative abundance of a specific OTU for each one-unit increase in 
carbohydrate/GL intake. A Bonferroni correction for the p-values was used to account for multiple comparisons 
(0.05 divided by 245). In exploratory analyses, we also repeated our analyses for total carbohydrate intake further 
adjusted for sucrose. In this way, we explored to what extent the associations with total carbohydrate intake were 
explained by simple rather than complex carbohydrate intake.

In exploratory analyses, we examined which food groups explained the greatest between person variation in 
carbohydrate or GL intake. Only carbohydrate variables found to be significantly associated with microbiome 
relative abundance were examined. We used forward stepwise regression with an inclusion criteria p-value of 
0.10 and an exclusion p-value of 0.05 to identify significant contributing foods groups.

Results
We examined a correlation matrix of all carbohydrate variables and GL. The strongest correlations (≥ 0.70) were 
seen between total carbohydrates and GL, total fiber, and soluble fiber; between all fiber types (total, soluble, 
and insoluble); and between fructose and glucose (Supplemental Table 1).

With the exception of antibiotic use, all participant characteristics were associated with at least some of the 
carbohydrate components (Tables 1 and 2). There was greater mean soluble fiber, fructose, and glucose intake in 
older compared to younger women. Sucrose intake was highest in Non-Hispanic Black/African Americans and 
lowest in Hispanic/Latinas. Fructose and glucose intake was highest in Non-Hispanic Black/African Americans 
and lowest in Non-Hispanic Whites. The mean intake of total carbohydrate, total fiber, soluble fiber, insoluble 
fiber, and galactose was greater in women with a post-college education compared to those with less educa-
tion. Intake of total carbohydrates, GL, total fiber, soluble fiber, insoluble fiber, fructose, galactose, and glucose 
intake was higher in those with a low compared to high BMI. Never-smokers had the highest intake of total 
carbohydrate, GL, total fiber, soluble fiber, insoluble fiber, fructose, and glucose, followed by former smokers, 
and current smokers. Dietary sucrose and glucose intake were  lower in women reporting diabetes compared to 
those with no history of diabetes.
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Participant 
characteristic n

Total carbohydrate 
(%kcals) Glycemic load (g/1000) Total fiber (g/1000) Soluble fiber (g/1000) Insoluble fiber (g/1000) Starch (%kcals)

Age (years)

50–60 234 50.9 (10.5) 65.7 (14.7) 10.5 (3.7) 2.8 (0.9) 7.7 (2.9) 18.7 (4.9)

60–70 551 51.8 (9.3) 66.5 (13.0) 10.9 (3.7) 3.0 (1.0) 7.9 (2.8) 18.9 (4.9)

70–80 387 52.0 (9.1) 66.8 (12.4) 11.1 (3.5) 3.0 (0.9) 8.1 (2.7) 18.4 (4.5)

80 +  32 55.4 (9.1) 72.0 (12.6) 11.9 (4.7) 3.3 (1.2) 8.6 (3.5) 18.4 (4.4)

p-value* 0.085 0.088 0.113 0.009 0.223 0.438

Race

American Indian/Alas-
kan Native 6 49.8 (9.8) 62.9 (14.6) 10.5 (5.1) 2.9 (1.3) 7.6 (3.8) 16.7 (6.8)

Asian/Pacific Islander 3 55.7 (5.0) 69.0 (8.4) 10.2 (1.1) 2.4 (0.3) 7.8 (0.8) 19.1 (1.9)

Non-Hispanic Black/
African-American 18 55.8 (10.3) 71.2 (15.1) 12.6 (5.4) 3.4 (1.4) 9.2 (4.2) 17.3 (5.6)

Hispanic/Latina 4 51.6 (8.7) 65.8 (9.3) 10.6 (3.8) 3.3 (0.9) 7.3 (2.9) 20.0 (3.3)

Non-Hispanic White 1173 51.8 (9.5) 66.5 (13.2) 10.9 (3.6) 2.9 (1.0) 7.9 (2.8) 18.7 (4.7)

p-value 0.415 0.581 0.373 0.217 0.431 0.578

Education

High school 251 50.6 (9.3) 66.1 (13.4) 10.4 (3.5) 2.8 (0.9) 7.5 (2.7) 18.9 (4.8)

College 522 51.6 (9.5) 66.4 (13.3) 10.8 (3.6) 2.9 (1.0) 7.8 (2.7) 18.5 (4.6)

Post college 413 52.9 (9.4) 67.3 (12.8) 11.5 (3.8) 3.1 (1.0) 8.4 (2.9) 18.8 (4.8)

p-value 0.007 0.411 0.0003 0.008 0.0001 0.406

Body mass index (kg/m2)

 < 18.5 16 55.5 (10.0) 72.3 (12.1) 11.8 (4.1) 3.3 (1.1) 8.4 (3.2) 21.1 (6.2)

18.5–25 516 53.1 (9.8) 68.0 (13.5) 11.4 (3.8) 3.1 (1.0) 8.3 (2.9) 18.7 (4.8)

25–30 415 51.2 (8.9) 65.9 (12.5) 10.8 (3.6) 2.9 (0.9) 7.9 (2.8) 18.7 (4.4)

 >  = 30 257 49.9 (9.3) 64.5 (13.4) 10.0 (3.1) 2.8 (0.9) 7.2 (2.3) 18.3 (5.0)

p-value  < .0001 0.0009  < .0001 0.0002  < .0001 0.102

Smoking status

Never smoked 635 52.6 (9.3) 67.8 (13.0) 11.1 (3.7) 3.0 (1.0) 8.0 (2.8) 18.8 (4.6)

Former smoker 536 51.2 (9.6) 65.5 (13.3) 10.9 (3.7) 2.9 (1.0) 7.9 (2.8) 18.5 (4.9)

Current smoker 32 46.3 (7.8) 61.8 (12.0) 7.8 (2.3) 2.2 (0.7) 5.6 (1.7) 17.6 (4.5)

 p-value 0.0002 0.001  < .0001  < .0001  < .0001 0.23

Pack-years of smoking

Never smoked 635 52.6 (9.3) 67.8 (13.0) 11.1 (3.7) 3.0 (1.0) 8.0 (2.8) 18.8 (4.6)

Tertile 1 181 52.0 (9.6) 66.1 (13.5) 11.2 (3.8) 3.0 (1.0) 8.2 (2.9) 18.5 (5.3)

Tertile 2 180 50.6 (9.5) 65.0 (13.2) 10.6 (3.5) 2.8 (1.0) 7.7 (2.6) 18.3 (4.3)

Tertile 3 181 50.2 (9.8) 64.6 (13.5) 10.3 (3.7) 2.8 (1.0) 7.5 (3.0) 18.5 (5.0)

p-value 0.005 0.006 0.024 0.005 0.05 0.546

Diabetes

No 1148 51.9 (9.4)  66.7 (13.1) 10.9 (3.7) 2.9 (1.0) 7.9 (1.8) 18.6 (4.7)

Yes 56 50.3 (10.6)  64.0 (14.7) 11.5 (3.5) 3.1 (1.0) 8.4 (2.6) 19.3 (6.3)

p-value 0.227 0.129 0.237 0.308 0.233 0.398

Teeth brushing

Not everyday 8 47.8 (5.2) 64.9 (7.9) 9.2 (1.9) 2.5 (0.6) 6.6 (1.4) 19.5 (4.2)

1 × a day 268 50.4 (10.4) 65.1 (15.0) 10.3 (3.7) 2.8 (1.0) 7.5 (2.8) 18.7 (5.3)

2 × a day 661 52.1 (9.2) 67.0 (12.6) 11.0 (3.5) 3.0 (1.0) 8.0 (2.7) 18.6 (4.6)

 > 2 × a day 267 52.7 (9.3) 67.1 (12.8) 11.4 (3.9) 3.0 (1.0) 8.3 (3.1) 18.7 (4.7)

p-value 0.014 0.221 0.004 0.011 0.004 0.964

Dental flossing

Not every week 217 50.8 (9.5) 66.3 (13.6) 10.3 (3.7) 2.8 (1.0) 7.5 (2.8) 18.7 (4.8)

Once a week 115 50.1 (9.8) 65.2 (13.7) 10.7 (3.6) 2.9 (0.9) 7.8 (2.8) 18.2 (5.3)

 > 1 × a week 348 51.0 (9.4) 65.4 (12.9) 10.6 (3.5) 2.9 (1.0) 7.7 (2.7) 18.4 (4.5)

Everyday 519 53.3 (9.4) 67.9 (13.0) 11.4 (3.7) 3.1 (0.9) 8.3 (2.9) 18.9 (4.8)

p-value  < .0001 0.023 0.0005 0.002 0.0006 0.322

Dental visits

Never 7 48.9 (9.3) 62.1 (13.2) 9.5 (5.4) 2.7 (1.6) 6.8 (3.9) 15.2 (2.3)

Only with a problem 96 49.6 (9.6) 65.1 (13.9) 10.0 (3.6) 2.7 (1.0) 7.2 (2.8) 18.0 (5.2)

Continued
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Mean total carbohydrate intake, total fiber, soluble fiber, and insoluble fiber intake were higher in those 
who brushed more compared to less frequently. Mean total carbohydrate intake, GL, total fiber, insoluble fiber, 
lactose, and galactose intake were higher in participants who flossed more compared to less frequently. Dental 
visits were associated with total and insoluble fiber intake, with higher fiber intake in those who had visited the 
dentist more as compared to less frequently.

There were 122,631 read pairs generated per sample, 120,032 per sample after merging pair-end sequences, 
91,165 reads per sample used for OTU-calling, and 86,972 reads per sample that remained in the OTU table. We 
identified 245 OTUs in the subgingival plaque samples. Firmicutes was the most abundant phylum identified, 
accounting for more than 45% of reads within the dataset, followed by Bacteroidetes (17.2%) and Fusobacterium 
(13.5%). The most abundant species identified were Veillonella dispar and Veillonella parvula, two species from 
the phylum Firmicutes neither of which ferment carbohydrates.

As intake of total carbohydrate, GL, lactose, and sucrose increased, all three alpha-diversity measures 
decreased (Table 3), and as starch intake increased, OTU count decreased. Adjustment of the total carbohydrate 
model for sucrose intake attenuated the associations with alpha-diversity measures (data not shown); however 
associations were still statistically significant. Microbial beta-diversity was found to be statistically significantly 
different by quartile of total carbohydrates, fiber (total, soluble, and insoluble), GL, sucrose, and galactose intake 
(PERMANOVA p < 0.05). Supplemental Fig. 2 plots the associations between the top two OTU principal com-
ponents among study participants for GL that had the smallest p-value for PERMANOVA.

We examined continuous intake of total carbohydrates, GL, and carbohydrate subtypes in relation to the 
relative abundance of all 245 OTUs (Table 4). The beta-coefficients, standard errors, and p-values for each asso-
ciation examined are shown with no adjustment (crude), adjustment for age, race and ethnicity, frequency of 
flossing, frequency of brushing, frequency of dental visits, smoking status, pack-years of smoking, and antibiotic 
use (Model 1); and with further adjustment for BMI, and diabetes status (Model 2). In adjusted models, after 
correction for multiple comparisons, there were significant associations between intake of total carbohydrates, 
GL, lactose, and sucrose and the relative abundance of at least one OTU. The relative abundance of Streptococcus 
mutans was positively associated with total carbohydrates, GL and sucrose intake in all models. The association 
between Streptococcus mutans and total carbohydrate intake in Model 2 was not statistically significant after 
further adjustment for sucrose intake (data not shown). We also observed a positive association between GL and 
Sphingomonas HOT 006 in Model 1, and in Model 2 we observed a positive association between GL and both 
Sphingomonas HOT 006 and Scardovia wiggsiae. In Models 1 and 2, we observed a negative association between 
lactose and Aggregatibacter segnis, and a negative association between sucrose and both TM7_[G-1] HOT 3436 
and Leptotrichia HOT 223. A positive association between sucrose and Streptococcus lactarius was observed 
only in Model 2. Results for all dietary carbohydrate variables and OTUs associated at a p-value of < 0.05 are 
presented in Supplemental Table 2.

Exploratory analyses (Supplemental Table 3) identified which food groups, from a list of 122 food groups on 
the FFQ, explained at least 80% of the variation in total carbohydrate, GL, lactose, and sucrose intake. Twenty-
four of 122 food groups were identified. We summarized these foods into the following descriptive groups: (1) 
grains and baked-goods; (2) starchy vegetables and fruit, and cooked tomatoes; (3) sugary drinks; (4) added 
sugar, candy, frozen desserts, and pudding-type desserts; (5) and dairy products.

Discussion
In this analysis of postmenopausal women, we observed that intake of total carbohydrates, GL, starch, lactose and 
sucrose were negatively associated with the alpha-diversity of our microbiome measures; increased intake was 
associated with lower intra-individual diversity. We also observed differences in the diversity of the oral microbi-
ome across level of intake of total carbohydrates, fiber, GL, sucrose, and galactose (beta-diversity). Intake of total 
carbohydrates, GL, and sucrose were positively associated with the relative abundance of Streptococcus mutans, 
a bacteria with an expansion of carbohydrate metabolizing genes42,43. We also observed a positive association 
between GL and the relative abundance of both Sphingomonas HOT 006 and Scardovia wiggsiae, and between 
sucrose and Streptococcus lactarius. We observed a negative association between lactose and Aggregatibacter 
segnis, and between sucrose and both TM7_[G-1] HOT 346 and Leptotrichia HOT 223. To best of our knowledge, 
this is one of the first epidemiologic studies to examine associations between habitual carbohydrate intake and 

Participant 
characteristic n

Total carbohydrate 
(%kcals) Glycemic load (g/1000) Total fiber (g/1000) Soluble fiber (g/1000) Insoluble fiber (g/1000) Starch (%kcals)

Once a year 172 51.9 (9.01) 67.2 (12.6) 10.7 (3.6) 2.9 (1.0) 7.8 (2.7) 19.1 (4.8)

 > 1 × a year 929 52.1 (9.6) 66.7 (13.2) 11.1 (3.7) 3.0 (1.0) 8.0 (2.8) 18.7 (4.7)

p-value 0.091 0.491 0.026 0.115 0.021 0.08

Antibiotic use

No 1081 51.7 (9.5) 66.5 (13.2) 10.9 (3.7) 3.0 (1.0) 7.9 (2.8) 18.6 (4.7)

Yes 123 52.6 (9.8) 67.7 (13.1) 11.0 (3.6) 2.9 (0.9) 8.0 (2.9) 19.0 (5.0)

p-value 0.359 0.332 0.831 0.841 0.727 0.396

Table 1.   Mean energy-adjusted total carbohydrate intake, glycemic load, fiber intake, and starch intake by 
category of participant characteristics (n = 1,204). *p-value is for the significance of the t-test or ANOVA. 
Bolded values are statistically significant at a p < 0.05.
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Disaccharide Intake Monosaccharide Intake

Participant 
Characteristic n Lactose (%kcal) Maltose (%kcal)

Sucrose 
(%kcals)

Fructose 
(%kcals)

Galactose 
(%kcal) Glucose (%kcal)

Age (years)

50–60 234 4.8 (3.4) 0.722 (0.3) 8.7 (3.3) 5.5 (2.5) 0.095 (0.1) 5.5 (2.1)

60–70 551 4.9 (3.4) 0.764 (0.3) 8.7 (3.2) 5.7 (2.6) 0.092 (0.1) 5.8 (2.2)

70–80 387 5.0 (3.4) 0.766 (0.3) 8.9 (3.2) 5.9 (2.6) 0.081 (0.1) 6.0 (2.3)

80 +  32 5.1 (2.7) 0.680 (0.3) 10.0 (2.7) 6.8 (2.4) 0.080 (0.1) 6.8 (2.1)

p-value* 0.848 0.15 0.195 0.025 0.247 0.003

Race

American 
Indian/Alaskan 
Native

6 4.7 (3.1) 0.754 (0.3) 7.6 (2.3) 6.2 (3.5) 0.114 (0.1) 6.0 (2.6)

Asian/Pacific 
Islander 3 7.6 (5.0) 0.475 (0.1) 7.1 (0.9) 7.4 (4.5) 0.118 (0.1) 7.3 (3.1)

Non-Hispanic 
Black/African-
American

18 3.4 (3.1) 0.916 (0.5) 10.8 (5.3) 7.8 (2.9) 0.099 (0.2) 7.4 (1.9)

Hispanic/Latina 4 4.7 (1.7) 0.634 (0.1) 6.2 (2.3) 5.9 (2.5) 0.050 (0.03) 6.0 (1.8)

Non-Hispanic 
White 1173 4.9 (3.4) 0.753 (0.3) 8.8 (3.2) 5.7 (2.6) 0.088 (0.001) 5.8 (2.2)

p-value 0.224 0.103 0.022 0.0095 0.851 0.031

Education

High school 251 4.7 (3.0) 0.762 (0.3) 8.6 (3.3) 5.4 (2.8) 0.071 (0.1) 5.5 (2.4)

College 522 4.8 (3.4) 0.756 (0.3) 8.9 (3.3) 5.8 (2.7) 0.086 (0.1) 5.9 (2.2)

Post College 413 5.2 (3.6) 0.748 (0.3) 8.9 (3.0) 5.9 (2.4) 0.102 (0.1) 6.0 (2.1)

p-value 0.088 0.853 0.536 0.052 0.0004 0.069

Body mass index (kg/m2)

 < 18.5 16 4.5 (3.3) 0.798 (0.3) 9.3 (2.9) 6.0 (3.4) 0.137 (0.2) 6.1 (2.9)

18.5–25 516 5.1 (3.7) 0.760 (0.3) 8.9 (3.3) 6.0 (2.5) 0.097 (0.1) 6.1 (2.2)

25–30 415 4.8 (2.8) 0.769 (0.3) 8.8 (3.1) 5.6 (2.5) 0.081 (0.1) 5.7 (2.2)

 >  = 30 257 4.8 (3.5) 0.717 (0.3) 8.7 (3.3) 5.4 (2.8) 0.081 (0.1) 5.5 (2.3)

p-value 0.491 0.178 0.683 0.014 0.012 0.001

Smoking status

Never smoked 635 4.8 (3.2) 0.760 (0.3) 8.9 (3.0) 6.0 (2.7) 0.090 (0.1) 6.1 (2.3)

Former smoker 536 5.1 (3.6) 0.753 (0.3) 8.7 (3.3) 5.5 (2.4) 0.089 (0.1) 5.6 (2.1)

Current smoker 32 3.8 (2.4) 0.694 (0.2) 9.3 (4.4) 4.6 (2.1) 0.071 (0.1) 4.9 (1.7)

p-value 0.07 0.507 0.341  < .0001 0.589  < .0001

Pack-years of smoking

Never smoked 635 4.8 (3.2) 0.760 (0.3) 8.9 (3.0) 6.0 (2.7) 0.090 (0.1) 6.1 (2.3)

Tertile 1 181 5.5 (3.9) 0.749 (0.3) 8.5 (2.9) 5.7 (2.5) 0.094 (0.1) 5.8 (2.1)

Tertile 2 180 4.8 (3.5) 0.785 (0.3) 8.8 (3.2) 5.4 (2.4) 0.091 (0.1) 5.6 (2.1)

Tertile 3 181 4.8 (3.3) 0.705 (0.3) 8.9 (4.1) 5.1 (2.3) 0.078 (0.1) 5.3 (2.0)

p-value 0.099 0.095 0.497  < 0.0001 0.42  < 0.0001

Diabetes

No 1148 4.9 (3.4) 0.756 (0.3) 8.9 (3.2) 5.7 (2.6) 0.089 (0.1) 5.9 (2.2)

Yes 56 5.5 (3.6) 0.728 (0.3) 7.5 (3.0) 5.2 (2.8) 0.081 (0.1) 5.0 (2.0) 

p-value 0.162 0.516 0.001 0.109 0.573 0.003

Teeth brushing

Not everyday 8 4.0 (1.7) 0.684 (0.3) 8.5 (2.9) 4.5 (1.9) 0.051 (0.02) 4.9 (1.8)

1 × a day 268 4.5 (3.3) 0.741 (0.3) 8.5 (3.3) 5.5 (2.9) 0.081 (0.1) 5.6 (2.3)

2 × a day 661 5.0 (3.3) 0.753 (0.3) 8.9 (3.2) 5.7 (2.5) 0.091 (0.1) 5.9 (2.2)

 > 2 × a day 267 5.1 (3.6) 0.774 (0.3) 8.9 (3.1) 5.9 (2.5) 0.091 (0.1) 6.0 (2.1)

p-value 0.12 0.587 0.342 0.126 0.389 0.111

Dental flossing

Not every week 217 4.5 (2.9) 0.754 (0.3) 8.9 (3.4) 5.5 (2.7) 0.077 (0.1) 5.6 (2.3)

Once a week 115 4.3 (2.7) 0.747 (0.4) 8.9 (3.4) 5.4(2.5) 0.072 (0.1) 5.6 (2.2)

 > 1 × a week 348 4.7 (3.3) 0.750 (0.3) 8.7 (3.0) 5.7 (2.7) 0.084 (0.1) 5.7 (2.3)

Everyday 519 5.3 (3.7) 0.759 (0.3) 8.9 (3.2) 5.9 (2.5) 0.100 (0.1) 6.0 (2.2)

p-value 0.002 0.97 0.846 0.107 0.005 0.093

Continued
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subgingival, rather than salivary, microbiome samples; we found that carbohydrate intake is associated with the 
subgingival microbiome.

Minimal research on habitual carbohydrate intake and the oral microbiome has been conducted in humans. 
In a study in children, there were significant differences in the relative abundance of 18 species from the biofilm 
of occlusal surfaces by fermentable carbohydrate consumption assessed using an FFQ23. They did not identify 
Streptococcus mutans as one of the18 species. They did identify Aggregatibacter segnis, which we observed as 
associated with lactose intake, and Rothia mucilaginosa, which we identified as related to total carbohydrate 
intake in crude analyses. In a study of Danish adults (aged 20 to 81 years), there were no significant differences 
in salivary bacterial species by intake of energy-adjusted carbohydrates or the proportion of carbohydrates from 
sugar22. In a three week carbohydrate intervention study of 21 athletes, no significant differences in salivary 
microbial composition were observed24.

Our analysis does not fully capture associations between carbohydrate intake and all medias of the oral 
microbiome because we exclusively examined the microbiome in subgingival plaque samples unlike the previ-
ous studies of habitual carbohydrate intake that examined the microbiome of the saliva or biofilm of occlusal 
surfaces22–24. We found no evidence of Lactobacillus, known to be associated with caries risk44, in our subgingival 
plaque samples after we filtered out low abundance OTUs. Lactobacillus, highly abundant in saliva, is not found 
as frequently in the subgingival microbiome45. Several studies have identified Streptococcus mutans in subgingival 
microbiome samples, similar to our study46,47 Carbohydrates are likely accessible to a different composition of 
bacteria in subgingival, anaerobic conditions, compared to the salivary environment48. Despite likely differences 
in the microbiome of the saliva and subgingival plaque, studies have detected periodontal pathogens in both 
mediums, concluding that there is some overlap between these two microbiomes49,50. Likely the previous studies’ 
use of salivary or occlusal surface samples, and differences in participants’ ages may explain differences in our 
results and previous study findings.

As expected, we found a number of associations between sucrose intake and the subgingival microbiome. 
Sucrose can be broken down into glucose and fructose and taken up by the bacteria, or it can be cleaved inside 
the bacterial cell by bacterial enzymes15. Starches can be broken down by human salivary amylase or by bacte-
rial amylases. Certain Streptococci such as Streptococcus gordonii and Streptococcus mitis can bind amylase to 
metabolize starch, while other bacteria, such as Streptococcus mutans, have enzymes of their own capable of 
metabolizing starch15. Once broken down into simple sugars, sucrose can be transported into the bacterial cell 
for energy production15. Experimental studies show that increasing sugar and fermentable carbohydrate intake 
increases prevalence of caries51 and that frequent sucrose consumption is associated with decreased species 
diversity, and increased relative abundance of certain Streptococcus spp. in the oral biofilm52. Our results support 
the existing evidence that certain fermentable carbohydrates (e.g., sucrose) promote the growth of cariogenic oral 
bacteria, such as Streptococcus mutans16,53 We also observed that increased carbohydrate intake was associated 
with decreased alpha-diversity similar to other studies23,52,54.

The association of carbohydrate intake with periodontal disease, rather than caries, is less well studied17–21. 
There is evidence of associations between increased carbohydrate intake and increased gingival bleeding17,55 
and positive associations between diets high in percent of calories from carbohydrates and rates of periodontal 
disease21. Leptotrichia spp., which we observed to be positively associate with sucrose intake, has been shown to 
be associated with gingivitis in some studies12,56. The other bacteria we identified as associated with carbohydrate 
intake or GL have not been previously appreciated as contributing to periodontal disease in the literature12 or 
in this cohort13.

There is evidence that fiber intake is associated with decreased risk of periodontal disease progression 
markers18,20,57. In a previous study, the oral microbiome (from extracted mice jaws) of mice fed sugar and fiber 
pellets compared to mice fed sugar pellets alone was lower in Streptococcus, Staphylococcus, Lactobacillus, and 
Enterococcus, as well as greater in alpha-diversity58. This suggests fiber consumption may result from mechanical 

Disaccharide Intake Monosaccharide Intake

Participant 
Characteristic n Lactose (%kcal) Maltose (%kcal)

Sucrose 
(%kcals)

Fructose 
(%kcals)

Galactose 
(%kcal) Glucose (%kcal)

Dental visits

Never 7 6.5 (6.5) 0.623 (0.2) 10.5 (4.6) 5.0 (2.9) 0.084 (0.02) 5.1 (2.4)

Only with a 
problem 96 4.5 (3.2) 0.723 (0.3) 8.7 (3.7) 5.6 (3.1) 0.079 (0.1) 5.5 (2.4)

Once a year 172 4.8 (3.6) 0.760 (0.3) 9.0 (3.5) 5.6 (2.4) 0.092 (0.1) 5.7 (2.2)

 > 1 × a year 929 5.0 (3.3) 0.758 (0.3) 8.8 (3.1) 5.8 (2.6) 0.089 (0.1) 5.8 (2.2)

p-value 0.244 0.503 0.462 0.629 0.784 0.335

Antibiotic use

No 1081 4.9 (3.3) 0.751 (0.3) 8.8 (3.2) 5.7 (2.6) 0.088 (0.1) 5.8 (2.2)

Yes 123 5.2 (3.8) 0.788 (0.3) 9.0 (3.3) 5.8 (2.8) 0.091 (0.1) 5.9 (2.4)

p-value 0.421 0.222 0.608 0.804 0.788 0.822

Table 2.   Mean Energy-adjusted Disaccharide and Monosaccharide Intake by Category of Participant 
Characteristics (n = 1,204). *p-value is for the significance of the t-test or ANOVA. Bolded values are 
statistically significant at a p < 0.05.
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Table 3.   Beta-coefficients and standard errors (SE) associated p-values for regression of alpha-diversity 
measures on carbohydrate intake (n = 1204). *Correlation coefficients (r) for linear relationship between 
the carbohydrate variable and alpha-diversity measure. † P-value for ANOVA. Bolded values are statistically 
significant at a p < 0.05.

Alpha-diversity Beta-coefficient (SE) for carbohydrate Pearson r* P-value†

Total carbohydrate intake (%kcal)

Chao1 Index − 0.480 (0.105) − 0.131  < .0001

Shannon Index − 0.008 (0.002) − 0.098 0.0007

Observed OTU − 0.432 (0.095) − 0.131  < .0001

Dietary glycemic load (g/1000)

Chao1 Index − 0.340 (0.076) − 0.128  < .0001

Shannon Index − 0.005 (0.002) − 0.089 0.002

Observed OUT − 0.308 (0.068) − 0.129  < .0001

Dietary fiber (g/1000)

Chao1 Index − 0.452 (0.275) − 0.047 0.101

Shannon Index − 0.006 (0.006) − 0.029 0.313

Observed OTU − 0.443 (0.247) − 0.052 0.073

Dietary soluble fiber (g/1000)

Chao1 Index − 1.700 (1.025) − 0.048 0.098

Shannon Index − 0.021 (0.022) − 0.029 0.322

Observed OTU − 1.59 (0.921) − 0.050 0.084

Dietary insoluble fiber (g/1000)

Chao1 Index 0.567 (0.359) − 0.045 0.115

Shannon Index − 0.007 (0.008) − 0.028 0.325

Observed OTU − 0.564 (0.323) − 0.050 0.081

Dietary starch (%kcal)

Chao1 Index − 0.407 (0.212) − 0.055 0.056

Shannon Index − 0.003 (0.004) − 0.019 0.513

Observed OTU − 0.380 (0.191) − 0.057 0.046

Dietary lactose (%kcal)

Chao1 Index − 0.898 (0.297) − 0.087 0.003

Shannon Index − 0.019 (0.006) − 0.086 0.003

Observed OTU − 0.782 (0.267) − 0.084 0.004

Dietary maltose (%kcal)

Chao1 Index − 3.09 (3.200) − 0.028 0.335

Shannon Index − 0.051 (0.067) − 0.022 0.453

Observed OTU − 2.77 (2.874) − 0.028 0.336

Dietary sucrose (%kcal)

Chao1 Index − 1.47 (0.311) − 0.135‡  < .0001

Shannon Index − 0.022 (0.007) − 0.097‡ 0.0007

Observed OTU − 1.22 (0.280) − 0.124‡  < .0001

Dietary fructose (%kcal)

Chao1 Index − 0.398 (0.388) − 0.030 0.305

Shannon Index − 0.008 (0.008) − 0.030 0.299

Observed OTU − 0.416 (0.349) − 0.034 0.234

Dietary galactose (%kcal)

Chao1 Index − 3.74 (9.913) − 0.011 0.706

Shannon Index − 0.276 (0.209) − .0.038 0.186

Observed OTU − 0.861 (8.904) − 0.003 0.923

Dietary glucose (%kcal)

Chao1 Index − 0.697 (0.452) − 0.044 0.123

Shannon Index − 0.014 (0.010) − 0.042 0.142

Observed OTU − 0.697 (0.406) − 0.049 0.087
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disruption of oral microbiome by fiber. We did not find any significant differences in alpha-diversity or the rela-
tive abundance of any of the measured bacterial species by differing fiber intake. It may be that any effect of fiber 
on the oral microbiome is less important in a cohort of women who frequently brush their teeth.

The relationship between carbohydrate intake and the relative abundance of bacteria is not just defined by 
whether a certain bacterium has the metabolic capability to utilize a carbohydrate. If two types of sugar are avail-
able, some bacteria may preferentially utilize one sugar over the other, as they possess regulatory mechanisms for 
carbohydrate metabolism59. Therefore, we may not see strong relationships with certain types of sugar if both are 
present and bacteria prefer one over the other. Additionally, bacteria can uptake sugars that have been cleaved 
by other bacteria or by salivary amylase60. Therefore, even if bacteria do not possess the metabolic capability to 

Table 4.   Linear regression of the relative abundance of oral OTUs on carbohydrate intake and glycemic load 
with beta-coefficients (ß), standard errors (SE), and associated p-value for each dietary variable. (n = 1,204). 
*Model 1 adjusted for age, race and ethnicity frequency of flossing, frequency of brushing, frequency of dental 
visits, smoking status, pack-years of smoking, and antibiotic use. OTUs are ranked for each carbohydrate or 
glycemic load by the significance of the p-values for the beta regression coefficients in the crude model. Sample 
size reduced to n = 1,172 for Model 1. † Adjusted for all covariates in Model 1 plus further adjustment for 
body mass index (BMI) and diabetes status. Sample size stayed at n = 1,172 for Model 2. ‡ P-values are bolded 
when a p-value is significant after a Bonferroni correction is applied (0.05/245 = 0.0002). In other words, a 
p-value < 0.0002 will remain statistically significant after an adjustment for multiple comparisons. Only OTUs 
with p-values for crude models < 0.0005 are shown (no crude models 0.0005 or higher became statistically 
significant with adjustment). § Partial r for each carbohydrate variable and glycemic load in Model 1.

Species/OTU

Crude Model 1* Model 2†

Partial r §ß (SE) p-Value‡ ß (SE) p-Value‡ ß (SE) p-Value‡

Total carbohydrates (% kcals)

Sphingomonas HOT 006 0.016 (0.004)  < .0001 0.015 (0.004) 0.0003 0.015 (0.004) 0.0004 0.106

Rothia dentocariosa 0.037 (0.009)  < .0001 0.030 (0.009) 0.001 0.031 (0.009) 0.001 0.096

Rothia mucilaginosa 0.033 (0.008)  < .0001 0.026 (0.008) 0.002 0.027 (0.008) 0.002 0.093

Streptococcus mutans 0.046 (0.012) 0.0001 0.051 (0.012)  < .0001 0.056 (0.012)  < .0001 0.123

Brevundimonas diminuta 0.016 (0.004) 0.0003 0.016 (0.005) 0.0006 0.016 (0.005) 0.0005 0.101

Glycemic load (g/1,000 Kcals)

Streptococcus mutans 0.039 (0.009)  < .0001 0.041 (0.009)  < .0001 0.044 (0.009)  < .0001 0.138

Sphingomonas HOT 006 0.012 (0.003)  < .0001 0.012 (0.003)  < .0001 0.012 (0.003)  < .0001 0.117

Streptococcus salivarius 0.024 (0.006) 0.0002 0.022 (0.007) 0.0009 0.024 (0.007) 0.0002 0.098

Brevundimonas diminuta 0.012 (0.003) 0.0002 0.012 (0.003) 0.0003 0.012 (0.003) 0.0002 0.107

Scardovia wiggsiae 0.024 (0.007) 0.0003 0.026 (0.007) 0.0002 0.028 (0.007)  < .0001 0.111

Total fiber (g/1,000 Kcals)

Actinomyces HOT 171 0.092 (0.021)  < .0001 0.071 (0.022) 0.001 0.065 (0.022) 0.003 0.095

Ottowia HOT 894 0.090 (0.023)  < .0001 0.080 (0.023) 0.0007 0.084 (0.024) 0.0004 0.100

Rothia aeria 0.090 (0.025) 0.0003 0.053 (0.025) 0.036 0.050 (0.025) 0.048 0.062

Lautropia mirabilis 0.086 (0.024) 0.0004 0.052 (0.024) 0.034 0.049 (0.025) 0.046 0.063

Insoluble fiber (g/1,000 kcals)

Actinomyces HOT 171 0.123 (0.028)  < .0001 0.096 (0.029) 0.0009 0.088 (0.029) 0.002 0.098

Ottowia HOT 894 0.118 (0.030)  < .0001 0.104 (0.030) 0.0007 0.110 (0.031) 0.0004 0.100

Neisseria elongata 0.132 (0.036) 0.0003 0.110 (0.037) 0.003 0.111 (0.037) 0.003 0.087

Lactose (% Kcals)

Aggregatibacter segnis − 0.117 (0.028)  < .0001 − 0.125 (0.028)  < .0001 − 0.124 (0.028)  < .0001 − 0.129

Sucrose (% Kcals)

Streptococcus mutans 0.201 (0.035)  < .0001 0.198 (0.035)  < .0001 0.207 (0.035)  < .0001 0.163

TM7_[G-1] HOT 346 − 0.104 (0.027) 0.0001 − 0.105 (0.027) 0.0001 − 0.105 (0.027) 0.0001 − 0.113

Leptotrichia HOT 223 − 0.094 (0.025) 0.0001 − 0.098 (0.025) 0.0001 − 0.097 (0.025) 0.0001 − 0.113

Streptococcus lactarius 0.080 (0.021) 0.0002 0.078 (0.022) 0.0003 0.083 (0.022) 0.0001 0.106

Leptotrichia buccalis − 0.111 (0.030) 0.0002 − 0.108 (0.030) 0.0003 − 0.109 (0.030) 0.0003 − 0.105

Streptococcus intermedius 0.109 (0.030) 0.0003 0.113 (0.030) 0.0002 0.111 (0.030) 0.0002 0.111

Streptococcus parasanguinis_II 0.103 (0.028) 0.0003 0.097 (0.028) 0.0005 0.101 (0.028) 0.0003 0.102

Leptotrichia HOT 498 − 0.101 (0.029) 0.0004 − 0.107 (0.029) 0.0002 − 0.109 (0.029) 0.0002 − 0.108

Brevundimonas diminuta 0.047 (0.013) 0.0004 0.043 (0.013) 0.001 0.043 (0.013) 0.001 0.095

Galactose (% Kcals)

Leptotrichia goodfellowii 2.741 (0.720) 0.0001 2.352 (0.725) 0.001 2.323 (0.727) 0.001 0.095
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cleave a certain sugar, they may still be able to utilize its components, which is why we may see a relationship 
with a certain type of carbohydrate even if the bacteria cannot metabolize it.

We also identified top contributing food sources of total carbohydrate and GL, sucrose, and lactose in a 
cohort of postmenopausal women. Our findings suggest that attention to dental hygiene should occur after 
consumption of these foods (e.g., baked goods, added sugar, candy, milk, etc.). This is in alignment with the 
American Dental Associations’ guidelines on Diet and Nutrition which states “that oral health depends on proper 
nutrition and healthy eating habits, and necessarily includes avoiding a steady diet of foods containing natural 
and added sugars, processed starches and low pH-level acids…”61. A recent dietary intervention (n = 11 adults, 
average age 32 years) showed that milk and yogurt consumption, as compared to sucrose intake, resulted in less 
growth of cariogenic bacteria. Continued research needs to be conducted to better understand the influence of 
carbohydrate-containing foods, which also contain other nutrients, on the oral microbiome62.

Our study has several limitations. Because it was cross-sectional, we cannot make any assumptions about 
temporality or causality. FFQs, although useful in that they assess habitual dietary intake, are prone to social 
desirability bias and often underestimate energy intake63. We adjusted for energy intake in an attempt to mini-
mize measurement error and underestimation of energy intake64. The measure of relative abundance is also not 
without its shortcomings65. Because relative abundance relies on the proportion of the bacteria rather than their 
absolute number, the measure may induce spurious correlations65. However, this limitation is minimized here by 
adopting Compositional Data Analysis techniques, such as the use of the CLR transformation. Another limitation 
is that we were unable to examine our oral microbial compositions by anterior versus posterior teeth or by teeth 
in the upper (maxillary) versus lower (mandibular) jaw arches. This is because we stored plaque samples from all 
maxillary teeth together and from all mandibular teeth together and then combined these plaque samples prior 
to sequencing them for bacterial DNA. We did not do an internal assessment of the reliability of our results. We 
also corrected for multiple testing for 245 OTUs, but did not further correct for multiple testing across our 11 
carbohydrate variables and GL.

The age distribution of our participants could be considered a limitation. However, the postmenopausal 
age range gave us an opportunity to examine these effects in a subpopulation where the association between 
carbohydrates and the oral microbiome has not been previously studied. Findings may be different in samples 
with different ages; a broader age group might have allowed for examination of how more varied intake of car-
bohydrates might affect the oral microbiome over the lifespan.

Despite the limitations of this study, it has important strengths. It is the first study to examine carbohydrate 
intake and the subgingival microbiome in a sample consisting exclusively of postmenopausal women. We exam-
ined many subtypes of carbohydrate, and GL, in order to better understand which carbohydrate components have 
the strongest associations with the subgingival microbiome. We were able to control our analyses for potential 
confounding factors including oral hygiene, smoking, and antibiotic use. The selection of our participants into 
the OsteoPerio study is another strength—they were not selected based on disease status or dietary intake. This 
would have made our results less generalizable.

In conclusion, our findings suggest that total carbohydrate and GL, as well as intake of the disaccharides 
sucrose and lactose, are inversely associated with bacteria alpha-diversity in the subgingival microbiome. Fur-
thermore, the beta-diversity of the microbiome varied by total carbohydrates and GL, but also by certain car-
bohydrate subtypes (sucrose, galactose, and fiber); and we observed that intake of the total carbohydrates, 
GL, sucrose and lactose to be significantly associated with the relative abundance of specific OTUs estimating 
bacterial species. Further study of food group intake and dietary patterns will contribute to our understanding 
of the extent to which the oral microbiome varies in association with carbohydrate consumption and the extent 
to which these differences are associated with periodontal disease, oral health, and the influence of oral health 
on systemic health.

Data availability
Data, codebook, and analytic code used in this report may be accessed in a collaborative mode as described on 
the Women’s Health Initiative website (www.​whi.​org). Sequence data is also uploaded at the NCBI Sequence 
Read Archive (SRA) database. The BioProject ID # is PRJNA796273.
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