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Abstract
This work reports the use of layer analysis to aid the fluorescence lifetime diagnosis of cervi-

cal intraepithelial neoplasia (CIN) from H&E stained cervical tissue sections. The mean and

standard deviation of lifetimes in single region of interest (ROI) of cervical epithelium were

previously shown to correlate to the gold standard histopathological classification of early

cervical cancer. These previously defined single ROIs were evenly divided into layers for

analysis. A 10-layer model revealed a steady increase in fluorescence lifetime from the

inner to the outer epithelial layers of healthy tissue sections, suggesting a close association

with cellular maturity. The shorter lifetime and minimal lifetime increase towards the epitheli-

al surface of CIN-affected regions are in good agreement with the absence of cellular matu-

ration in CIN. Mean layer lifetimes in the top-half cervical epithelium were used as feature

vectors for extreme learning machine (ELM) classifier discriminations. It was found that the

proposed layer analysis technique greatly improves the sensitivity and specificity to 94.6%

and 84.3%, respectively, which can better supplement the traditional gold standard cervical

histopathological examinations.

Introduction
Every year approximately 300,000 women die from cervical cancer with approximately 510,000
new cases diagnosed [1, 2]. Preceding the invasive cancer is the slow-growing cervical intrae-
pithelial neoplasia (CIN) phase in which early detection and treatment is feasible. Consequent-
ly, many cervical screening protocols have been implemented to detect the pre-malignant
cervical changes and the cervical cancer associated deaths have significantly declined.

The primary screening method for early cervical cancer is the Papanicolaou (Pap) smear
test. Cells from cervix wall with suspected signs of neoplasia are collected for microscopic ex-
amination. However, the Pap test is complicated and labor-intensive and it shows a concurrent
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low sensitivity (�58%) and specificity (69%) [3, 4], implying the need for repeated tests to re-
duce the false-negatives. In addition, colposcopy has to be subsequently conducted to confirm
the abnormality. In expert hands colposcopy could achieve excellent sensitivity (>90%) but
low specificity (<50%), which further requires a directed biopsy for definitive diagnosis [5].
The thinly-sliced biopsy is stained with haematoxylin and eosin (H&E) to enhance the visual
contrast for histopathological evaluations. Haematoxylin stains the nuclei purple while eosin
stains the intracellular and extracellular protein pink. Morphological features, such as cell
shape, nuclear size and nuclear-to-cytoplasm (N/C) ratio are commonly used as diagnostic cri-
teria by histopathologists to identify abnormal cells [6, 7].

Cervical precancerous conditions are described by a well-defined three-tier grading system
named cervical intraepithelial neoplasia (CIN) [8, 9]. CINs are classified in grades, namely
CIN1 (mild dysplasia), CIN2 (moderate dysplasia) and CIN3 (severe dysplasia) [10]. The three
grades of CIN refer to the thickness of the epithelium affected by abnormal cells [11]. When
the basal third of the epithelium is replaced by abnormal cells, the tissue is histologically de-
fined as CIN1. CIN2 is used when the middle and basal third epithelium is occupied by neo-
plastic cells while the complete replacement of abnormal neoplastic cells defines CIN3. In most
hospitals, identifying the CIN grade of H&E stained tissue sections is regarded as the gold stan-
dard for cervical cancer diagnosis [12, 13]. However, great variability can exist in diagnostic re-
sults because of the labor-intensive procedure and the subjective interpretation involved [14].
In addition, implementation of this approach requires extensive infrastructure, personnel and
economic resources. Women, especially those from regions with low-resource settings, may
not have access to these screening programs [15]. Therefore, new automated imaging modali-
ties that allow for non-invasive and more accurate evaluation of cervical carcinoma would
overcome these limitations and greatly improve the prevention of cervical cancer.

Several optical techniques have been developed to aid the in vivo and in vitro diagnosis of
cervical precancer [5, 16–21]. These techniques differ from the gold standard diagnosis in how
tissues are processed. In particular, reflectance spectroscopy, elastic scattering spectroscopy
and fluorescence spectroscopy capable of characterizing morphological and biochemical infor-
mation have been used for diagnostic purposes. The use of H&E dye as a contrast agent in
non-linear imaging and fluorescence imaging has been reported elsewhere [22–24], but its la-
tent diagnostic value for cancer detection has yet to be fully explored. Our previous study [25]
on standard H&E stained cervical tissues showed that fluorescence lifetime imaging (FLIM)
was particularly useful for detecting abnormal biochemical changes related to CIN. The FLIM
technique has the advantage of being sensitive to biochemical changes in tissue micro-environ-
ment which correlates to tissue pathology [26, 27]. Furthermore, H&E stained cervical tissue
sections generate much stronger fluorescence emission as compared to the low autofluores-
cence from unstained tissues [25]. The diagnostic capability is thus enhanced by the more pre-
cise calculation of fluorescence lifetime values derived from larger number of emission photons
[28]. In addition, illumination variations and staining artifacts are eliminated since fluores-
cence lifetime is independent of excitation power and fluorophore concentration [29].

The gold standard diagnosis of cervical precancer (CIN) is based on the proportion of epi-
thelium affected by neoplasia, suggesting that diagnostic information exists in the layered
structures of cervical tissue sections. In this work, the diagnostic value in the layered structures
of H&E stained cervical tissue sections was investigated with FLIM. H&E stained cervical tissue
sections classified into categories of normal and cervical intraepithelial neoplasia (CIN1, CIN2,
CIN3) were used for fluorescence lifetime imaging and analysis. Lifetime values were first ana-
lyzed on a 3-layer model following the standard (CIN) diagnosis. Subsequently, epithelial re-
gions of these cervical tissue sections were divided into 10 equal layers and analyzed. The
10-layer model is based on the findings that epithelium is generally composed of approximately
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10 layers [11]. The basal layer which adheres to the basement membrane is one cell thick.
Above this layer are the parabasal cells which are two to three cells in thickness. These paraba-
sal cells mature and form the upper intermediate and superficial layer. Such layer division was
applied to assess the diagnostic values of fluorescence lifetime data measured from each cellular
layer. Feature vectors comprising lifetimes from different layers of the epithelial tissues were
fed into a neural network extreme learning machine (ELM) classifier [30, 31] for discrimina-
tions between normal and CIN. ELM classifier was selected due to its ability to detect complex
trends with good generalization performance at extremely fast learning speed.

This work showed that there exist an optimal number of cervical epithelial layers to consider
in the analysis at which the diagnostic accuracy is maximized. The accuracy here was evaluated
in terms of sensitivity and specificity. Interestingly, we identified the top half epithelium as the
effective zone for FLIM diagnosis with concurrently high sensitivity (94.6%) and specificity
(84.3%). The obtained average of sensitivity and specificity is about 1.5 times better than those
in whole-epithelium and 3-layer epithelium models. The proposed layer analysis of FLIM diag-
nosis can further aid and complement traditional histopathological examinations of cervical
diseases with better diagnostic accuracy.

Materials and Methods

Samples
A total of 32 H&E stained cervical tissue sections of 32 patients from the KKWomen's and
Children's Hospital (KKH), Singapore were used for the analysis carried out in this study. Each
chosen section has clear stratified layers that facilitate layer analysis to be made for this pilot
study. These tissue sections were pathologically examined by a senior consultant from the
KKH and the identified regions in the epithelium were classified as normal, CIN1, CIN2 and
CIN3. The sample set includes 10 normal, 8 CIN1, 6 CIN2 and 8 CIN3 cervical tissue sections.
This study was reviewed and approved by the local ethics committee (KKWomen's and Chil-
dren's Hospital (KKH), Singapore) and Institutional Review Board (CIRB 2010/745/C). Writ-
ten consent was obtained from participants for the use of information in medical studies.

Imaging Protocol and Lifetime Calculation
The imaging protocol was identical to that used in our previous work [25]. White light micros-
copy was initially used to locate the identified regions-of-interest and a time-resolved fluores-
cence measurement system, comprising a confocal laser scanning microscope (LSM 510, Carl
Zeiss, Germany) and a time-correlated single photon counting (TCSPC) system, was used for
fluorescence lifetime imaging. The illumination light source is a femtosecond Ti: Sapphire laser
(Coherent Mira 900, 76 MHz, 200 fs) operated at a wavelength of 760 nm. A 20× objective lens
(Fluar, Carl Zeiss, NA = 0.75) was used to focus the excitation laser beam to the tissue sample
and to collect the fluorescence emission. Fluorescence lifetime images were captured in a scan-
ning time window of 10 ns with a temporal resolution of approximately 39 ps. The acquisition
time for an image comprising of 256×256 pixels was 60 s. The image has a pixel size of approxi-
mately 1.8 μm.

The fluorescence lifetime τ is defined as the time that the emission fluorescence intensity de-
creases to 1/e of its initial value after a fluorophore is excited by a light pulse. The decay mecha-
nism of the fluorescence emission intensity I(t) is described by [32]:

dIðtÞ
dt

¼ � 1

t
IðtÞ ð1Þ

where τ = 1/(Kr+Knr), Kr and Knr are the radiative and non-radiative transition rates,

Epithelial Layer Analysis of Fluorescence Lifetime Images

PLOS ONE | DOI:10.1371/journal.pone.0125706 May 12, 2015 3 / 15



respectively, and t is the time elapse since light excitation. The fluorescence lifetime was calcu-
lated with the commercial software SPCImage (Becker & Hickl, Germany). The threshold
value for curve fitting was set to 50 photons so that dark pixels with cumulative photon counts
of less than 50 were not included in lifetime calculation. The instrument response function
(IRF) was estimated based on the rising edge of the decay curve and a double exponential
model was used for a good curve fitting with its reduced chi-square value (χ2) approaching
unity. The double exponential model of the fluorescence decay characteristic is expressed as:

IðtÞ ¼ a1expð�
t
t1
Þ þ a2expð�

t
t2
Þ ð2Þ

where τ1 and τ2 are the fluorescence lifetimes, and a1 and a2 are the fractional contribution of
each lifetime component. Lifetime values, τ1 and τ2, were obtained using nonlinear least-
squares (NLLS) algorithm [33]. Our previous work has shown that the longer lifetime compo-
nent τ2 distribution yield the notable diagnostic contrast among various cervical cancer stages
[25]. On the other hand, the shorter lifetime component τ1 with a typical value of ~30 ps and
was attributed to instrumental response time and has no correlation to tissue pathology. A
false-colored lifetime image consisting of 256×256 pixels was generated by mapping a specific
color to the lifetime value of τ2 at each pixel.

Cervical Epithelial Layer Definition and Feature Vectors
Epithelium regions in cervical lifetime images were divided into layers to analyze the character-
istics of the lifetime component τ2 along the epithelial growth direction. Cells in the epithelium
grow and differentiate progressively in the direction towards the epithelial surface. The base-
ment membrane, a thin and noncellular region between the epithelium and the neighboring
stroma, forms a barrier to downward epithelial growth and is only breached if epithelium un-
dergoes malignant transformation [34]. The structural difference in epithelium and stroma
makes them clearly distinguished in white-light image and fluorescence lifetime image as
shown in Fig 1. The basement membrane is marked by a white dashed line L while the epitheli-
al surface is outlined with white dashed line M (Fig 1B). Epithelial thickness is defined as the
distance from a point on the epithelial surface to the basement membrane along the direction
normal to the basement membrane. In our measurement the epithelium generally has a

Fig 1. Division of a typical H&E stained cervical tissue section epithelium into 10 layers and the corresponding ROI defined in the fluorescence
lifetime image. (a) White light image of the H&E stained tissue section (b) False color fluorescence lifetime image with scale bar from 0 to 2 ns. Basement
membrane was marked out by white dashed line L and epithelium surface was delineated by white dashed lineM. (c) Pixels in each divided layer were
obtained by moving basement membrane pixels in the direction perpendicular to the basement membrane towards the epithelial surface. Layers are
numbered incrementally from 1 to 10. Pixels in each divided layer constitute the ROI.

doi:10.1371/journal.pone.0125706.g001
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thickness of 260 ± 60 μm on gross examination which is consistent with literature data of 200–
500 μm [35]. The epithelium was divided into 3 and 10 equal thickness layers, respectively
along the direction of tissue growth [34] for lifetime analysis. The ROI in the epithelium for
lifetime analysis is defined with equal width of each divided layer. Fig 1C shows a typical cervi-
cal tissue section epithelium divided into 10 layers. Layer 1 refers to the basal layer while layer
10 indicates the superficial layer. The 3-layer model analysis is of great interest for diagnostic
comparison due to the classic definition of CIN, which is based on the thickness of epithelium
covered by neoplastic cells. On the other hand, the 10-layer model is used to approximate the
biological structure of a cervical epithelium, with its cellular maturity increasing towards the
epithelial surface. Thus, the 10-layer analysis model has the advantage of evaluating the CIN
cells as a function of their maturity level. Finally, the mean (μ) and standard deviation (σ) of
lifetime in each divided layer was calculated for tissue classification.

Extreme Learning Machine Classification Algorithm
Discrimination between normal and precancerous (CIN1, CIN2, CIN3) cervical tissues were
performed using a neural network ELM classifier. As compared to other conventional neural
network classifiers such as the support vector machines (SVMs) and back-propagation (BP)
method, ELM has a better generalization performance with greater learning speed because all
weights in the hidden nodes are randomly generated without the need to be iteratively tuned
[36]. The ELM learning algorithm is implemented as follows. Consider a training setC = {(xi,
ti) | xi = [xi1, xi2, . . ., xin]

T ∊ Rn, ti = [ti1, ti2, . . ., tim] ∊ Rm, i = 1, . . ., N} where xi and ti specify
the input lifetime feature vectors and the associated output target describing the pathological
state, and N represents the number of samples in the training set. The hidden layer output ma-
trixH and the output weight β of the neural network are calculated in the following steps:

1. Randomly assign input weight vectors ai and hidden node bias bi, i = 1,. . ., L where L is the
number of hidden nodes. L value was adjusted so that maximum discrimination accuracy
was achieved in this study.

2. Calculate the output function of each hidden node g(ai, bi, x), i = 1, . . ., N and the hidden
layer output matrixH = [g(a1, b1, x), . . ., g(aL, bL, x)]. Here, g(ai, bi, x) = 1/(1+exp[-(ai �
x +bi)]).

3. Determine the output weight, β =H+T whereH+ is the Moore-Penrose generalized inverse
of the hidden layer output matrixH andH satisfies the equationHβ = t, where β = [β1, . . .,
βL]

T.

In this work, n specifies the total number of feature components in each sample. In the
3-layer analysis, μ and σ from layer 1 to layer 3 constitute a total of 6 feature components and
thus n = 6. Meanwhile,m indicates the two possible pathological states of a cervical tissue sam-
ple, e.g. normal or precancerous, and thusm = 2.

In ELM, the output weight β of the neural network is first calculated based on the input fea-
ture vectors and their known target output from the training data set. This output weight β was
then used to determine the output of the feature vectors in the testing data set and compared to
their known target output to derive the diagnostic accuracy.

Cross-validation technique was applied to achieve unbiased selection of training data and
testing data. Basically, it randomly splits the whole dataset into training dataset and testing
dataset. Training data and testing data sets of equal sizes are used to maximize the accuracy of
ELM algorithm in this case. Hence, feature vectors from 16 randomly selected samples were
chosen as training data while feature vectors from the remaining 16 samples were used for
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testing. A total of 1000 random sets of training and testing data were generated for computa-
tion to reduce classification bias. For each set of randomly selected training data and testing
data, ELM is applied to distinguish between histologically identified normal and CIN samples.
The diagnostic accuracy (sensitivity and specificity) for each set of training data and testing
data is then calculated by comparing the ELM result with the histological identification. Finally,
the mean sensitivity and specificity from the 1000 sets of data were computed accordingly
for comparison.

Results

Lifetime Distribution in Whole Cervical Epithelium
Fig 1A shows the white-light microscopic image of a typical H&E stained normal cervical tissue
and Fig 1B shows the corresponding fluorescence lifetime image. A comparison between the
two images reveals that additional biochemical contrast could potentially be extracted from the
lifetime image to characterize cervical tissues. It can be seen that the epithelium region is made
up of multiple layers of closely-packed cells. The stroma region, which comprises of fibroblasts,
smooth muscle cells and collagen [37], is quite distinct. The boundary between the two regions
can easily be identified as depicted in Fig 1B.

The cell-rich epithelium region was specifically investigated and diagnosed with FLIM tech-
nique since cervical cancers mostly originate from the epithelium [38]. The diagnostic value of
mean (μ) and standard deviation (σ) of τ2 distribution in the whole epithelium is first explored
for comparison with layer analysis. Normal samples were found to have larger lifetimes in the
range from 670 ps to 1000 ps while precancerous tissues have smaller lifetimes distributed
from 450 ps to 850 ps. On the other hand, normal samples have lifetime σ values distributed be-
tween 150 ps and 200 ps while precancerous samples have lifetime σ values in the range of 170
ps to 280 ps. This allows a discrimination to be made between normal and precancerous cervi-
cal samples based on our previous work [25]. The diagnostic accuracy of whole-epithelium
analysis was assessed with ELM classifier, giving an averaged sensitivity of 62.2% and specificity
of 52.3%.

Three-Layer Analysis of Cervical Epithelium Lifetime
Each cervical epithelium was divided into 3 layers and the associated τ2 distribution profiles
were extracted for each layer and compared against the pathological stages (as shown in Fig 2).
A consistent trend of τ2 shortening can be observed as cervical tissue progresses from normal
to CIN3, except for layer 1, where τ2 only shortens when the disease stage progresses from
CIN2 to CIN3. The lifetime difference between normal and CIN 3 samples was estimated to be
50 ps at layer 1, 80 ps at layer 2 and 100 ps at layer 3. Mean lifetime of τ2 in each divided layers
was used to form a 3-dimensional feature vectors for ELM classification. The ELM classifica-
tion method gives an improved sensitivity of 81.1% and a decreased specificity of 39.6%. Stan-
dard deviation of τ2 distribution was also investigated, but its varying trends (S1 Fig) did not
contribute to any significant improvement in diagnosis and are therefore considered uncorre-
lated to tissue pathology. The results indicate that feature vectors comprising only the mean τ2
is sufficient to achieve the same diagnostic sensitivity and specificity.

Ten-Layer Analysis of Cervical Epithelium Lifetime
The distribution of τ2 in the 10 divided layers of each sample were analyzed for the various his-
tological stages and are presented in Fig 3. Distributions of τ2 in the first 5 layers (1–5) among
normal and CIN samples were first compared. Despite a consistent shortening of τ2 in layers
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(3–5) as CIN progresses, the value of mean τ2 change is below 70 ps when comparing normal
epithelium with CIN 3 samples. By contrast, the mean τ2 distribution from layer 6 to 10 shows
greater variation across different pathological stages, with normal tissues exhibiting the longest
lifetime. The mean τ2 values in layer 6 to 10 were observed to consistently decrease as the

Fig 2. Distribution profiles of mean τ2 in divided layer 1 (■), layer 2 (▲) and layer 3 (●) of epithelium against pathological states of Normal, CIN1,
CIN2 and CIN3.Here, the mean τ2 for each pathological state was calculated from the sample pool which includes 10 normal, 8 CIN1, 6 CIN2 and 8 CIN3
cervical tissue sections and the averaged relative standard deviation (RSD) was calculated to be 15% for all categories. More details regarding error bars are
elucidated in S3 Fig.

doi:10.1371/journal.pone.0125706.g002
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Fig 3. Distribution of mean lifetime τ2 in lower half layers (□-layer 1, ◯-layer 2,4-layer 3,5-layer 4,
�-layer 5) and top half layers (6–10) of epithelium as tissues progress from normal to various CIN
grades.Here, the mean τ2 for each pathological state was calculated from the sample pool which includes 10
normal, 8 CIN1, 6 CIN2 and 8 CIN3 cervical tissue sections and the averaged relative standard deviation
(RSD) was calculated to be 20% for all categories. More details regarding error bars are clarified in S4 Fig.

doi:10.1371/journal.pone.0125706.g003
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tissues progress to the precancerous stages. When comparison is made from layer 6 to layer 10,
the smallest lifetime variation of ~147ps is found at layer 6 while the largest change of ~245ps
occurs in layer 10. Similar to the 3-layer epithelium analysis, standard deviation σ of lifetime τ2,
with poor pathological correlation (S2 Fig), was not included into the feature vectors for
tissue classification.

The mean τ2 values of normal and precancerous (CIN1, CIN2, CIN3) samples in each layer
were also plotted in Fig 4 for comparison. Within each layer, varying differences between nor-
mal and precancerous samples was observed, thereby providing differing degree of diagnostic
information. It is desirable to have a suitable combination of mean τ2 values to improve the
classification performance [39].

To investigate the optimal number of layers to take into account for maximum accuracy,
feature vectors comprising mean τ2 values from successive layers, starting from layer 10, i.e. ep-
ithelial surface, to a lower layer (i.e layer 9) as the cut-off layer are studied. For instance, a typi-
cal set of feature vectors with cut-off layer at 9 is 2-dimensional containing mean τ2 values
from layer 10 and layer 9 while cut-off layer at 6 results in a set of 5-dimensional feature vectors
composed of mean τ2 from layer 10 to layer 6. ELM classifier was used to make classifications
between normal and precancerous samples. The corresponding sensitivity and specificity as a
function of the cut-off layer were calculated and shown in Fig 5. It can be seen from the plot

Fig 4. Distribution of mean τ2 in all divided 10 layers for normal (black square) and precancerous (red circle) samples.Here, the mean τ2 for each
pathological state was calculated from the sample pool which includes 10 normal, 8 CIN1, 6 CIN2 and 8 CIN3 cervical tissue sections and the averaged
relative standard deviation (RSD) was calculated to be 18% for all categories. More details regarding error bars are clarified in S5 Fig.

doi:10.1371/journal.pone.0125706.g004
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that when the cut-off layer decreases from 10 to 6, the sensitivity increases slightly from 92.8%
to 94.6% while the specificity rises sharply from 30.1% to 84.3%. Both the maximum sensitivity
and specificity occur at the cut-off layer of 6. When the cut-off layer decreases from 5 to 1, both
sensitivity and specificity decrease greatly and finally drops to a low value of 55.5% and 51.4%,
respectively. The overall maximum sensitivity (94.6%) and specificity (84.3%) occurs when fea-
ture components τ2 from layers (6–10) were used for ELM classification.

The proposed epithelium layer analysis with neural network ELM classifier could achieve
desirable discriminations between normal and precancerous cervical tissues when multiple fea-
ture vectors from mean τ2 values of layers (6–10) were used. The optimum sensitivity and spec-
ificity obtained are 94.6% and 84.3%, respectively. By contrast, whole epithelium analysis gave
a sensitivity and specificity of 62.2% and 52.3% respectively. Three-layer analysis consistent
with the generic definition of CIN achieves a sensitivity of 81.1% and specificity of 39.6%.
Table 1 summarizes the diagnostic accuracies from the various analysis models used in this
work. The 10-layer analysis suggests that the top half epithelium (layers 6–10) is the effective

Fig 5. Variation in ELM diagnostic sensitivity (black triangle) and specificity (blue square) as feature vectors includemean τ2 values successively
from epithelial surface (layer 10) to a lower layer as the cut-off layer.Optimum sensitivity (94.6%) and specificity (84.3%) were concurrently found at the
cut-off layer of 6.

doi:10.1371/journal.pone.0125706.g005
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zone for FLIM diagnosis with concurrently high sensitivity and specificity. The average of ob-
tained sensitivity and specificity (89.5%) is about 1.5 times those derived from whole-epitheli-
um (57.3%) and three-layer (60.4%) analysis.

In addition, the computation time for data fitting and ELM classification was also calculat-
ed. The time used was halved as compared to the whole-epithelium analysis that involves data
fitting for the whole epithelium. Lifetime data calculation by NLLS which is in the order of sev-
eral minutes is computationally intensive and contributes most significantly in the overall pro-
cessing time [40] while the ELM classification takes only tens of seconds with our system. Since
only the top half epithelium is needed to derive mean τ2 values, the total processing time to cal-
culate the lifetime data was decreased by two fold.

Discussion
This is a pilot study investigating the use of layer analysis in FLIM images of H&E stained cer-
vical tissue section epithelium for early cancer detection. A 3-layer epithelium model was first
studied for comparison with the standard 3-tier histological grading system (CIN1, CIN2 and
CIN3) which is based on the proportion of epithelial thickness affected by neoplasia. Lifetime
diagnosis with a 10-layer epithelium model was also conducted and the resulting diagnostic ac-
curacy was greatly improved. This model was investigated because it best represents the biolog-
ical structure of cervical epithelium comprising 10 cellular layers with increasing maturity
towards its surface. The classification result shown in Fig 5 identified the top-half epithelium
(layers 6–10) as the most effective region for cervical epithelium diagnosis. It has been demon-
strated in our previous work [25] that eosin is the contributing fluorophore which provides the
molecular contrast. The improved diagnostic accuracy with the top-half epithelium can possi-
bly be attributed to the prominent interplay between cellular maturity and eosin molecules.
Normal cells are known to differ markedly from CIN cells in their ability to differentiate [41].
Normal cervical cells can differentiate to mature specialized cells as they grow upwards from
the basement membrane to epithelial surface [42]. CIN cells, on the other hand, remain imma-
ture (undifferentiated) and proliferate vertically with increased abnormalities. It is evident in
Fig 4 that mean τ2 of normal cells rises steadily from layer 1 to layer 10 where the cells are fully
matured. By contrast, CIN cells show gradual increase in mean τ2 within the lower half epithe-
lium and minimal change in the top-half layers. The significant difference in mean τ2 between
normal and CIN cells, driven by their differing maturity, therefore constitutes the prominent
diagnostic contrast in the top-half epithelium.

The shortening of τ2 is also observed in “normal” unaffected layers of CIN1 and CIN2, as
defined by conventional grading system (see Fig 3). For instance, while CIN1 cells are in princi-
ple confined to the lower one-third epithelial layer according to standard diagnosis, shortening
of τ2 (indicating precancer development) is still observed in the top-half epithelium. Hence, the
shortening of τ2 is not solely attributed to the presence of immature CIN cells, but also other
possible abnormalities starting to develop in the upper epithelial layers. First, while CIN cells
are most prominent in the lower affected layers, abnormalities including increased mitotic ac-
tivity and nuclear atypia can be present at all layers [43, 44]. Secondly, human papillomavirus

Table 1. ELM diagnostic sensitivity and specificity derived from various analysis models.

Analysis Model Sensitivity Specificity

Whole epithelium 62.2% 52.3%

Three-Layer 81.1% 39.6%

Ten-Layer 94.6% 84.3%

doi:10.1371/journal.pone.0125706.t001
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(HPV) infection, a main cause of CIN [45], can result in koilocytosis, a condition where squa-
mous epithelial cells have undergone structural changes in the top-half epithelium [46, 47].

Koilocytosis affects the cytoplasm of cells resulting in cellular changes and can be seen by
identifying nuclei surrounded by tiny halos under white light microscopy. Cellular changes in-
cluding morphological and biochemical changes are involved in the process of cervical dyspla-
sia or even malignancy [11]. Therefore it is likely that early abnormalities occurring in top-half
epithelium involves cellular changes that can contribute to lifetime change of eosin in the cyto-
plasm [25].

The incorporation of σ of τ2 in the feature vectors did not improve and may even deteriorate
the diagnostic performance, suggesting that σ is not a good indicator of cellular abnormalities.
This can be explained from the fact that σ depicts the spread the τ2 and thus the cellular homo-
geneity in each layer. In the 10-layer epithelium model, each layer would encompass cells of
similar types and maturity [42], which would likely be independent of pathological states.

Dimensionality reduction of the raw input variables is an essential preprocessing step in the
classification process [48]. It is necessary to keep the input features concise to reduce computa-
tional cost [49] and avoid performance degradation due to redundant and irrelevant features
[50]. In this work, σ and τ2 of lower half epithelium were identified to be redundant and omit-
ted from analysis.

The origins of the biochemical changes, and the associated eosin lifetime changes, as cervical
cells become neoplastic warrants further investigation. Understanding the underlying mecha-
nism to the biochemical changes in the cytoplasm would lead to more effective diagnosis and
treatment of cervical cancer. The identification of the more useful diagnostic information in
the top-half epithelium suggests that efforts in understanding the underlying biochemical pro-
cess of cervical cancer development should concentrate on the top-half epithelium.

Conclusion
A quantitative method based on the fluorescence lifetime imaging (FLIM) technique to aid the
traditional gold standard histopathological diagnosis of cervical neoplasia was investigated.
Fluorescence lifetime images of cervical epithelium were divided evenly into multiple layers in
the tissue growth direction to study the diagnostic value of each layer. In 10-layer analysis, fea-
ture vectors comprising divided layer mean lifetime τ2 in the top-half epithelium (layer 6 to 10)
were used for discrimination by a neural network ELM classifier. Averaged sensitivity and
specificity of 94.6% and 84.3% were obtained when differentiating normal from precancerous
(CIN1, CIN2, CIN3) tissues. On the other hand, in 3-layer analysis where feature vectors are
from mean lifetime of τ2 in each of the three divided layers results in averaged sensitivity of
81.1% and specificity of 39.6%.

The proposed technique has the advantage of achieving a concurrently higher sensitivity
and specificity as compared to the whole epithelium and 3-layer analysis. In addition, analyzing
only the top-half of the cervical epithelium is computationally fast with significantly reduced
lifetime calculation as redundant feature components were eliminated. The proposed method
can provide more accurate and faster cervical diagnosis which can supplement traditional gold
standard histopathological examinations. Furthermore, the reduction of feature vector size
makes the ELM classifier a potentially more efficient tool when there is a need to analyze a
large quantity of data in future applications.
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Supporting Information
S1 Fig. Distribution of τ2 standard deviation in divided three layers among different patho-
logical states of normal, CIN1, CIN2 and CIN3 tissues.
(TIF)

S2 Fig. Distribution of τ2 standard deviation in divided layers (from 1 to 10) among differ-
ent pathological states of normal, CIN1, CIN2 and CIN3 tissues.
(TIF)

S3 Fig. Distribution profiles of mean τ2 in divided layer 1 (■), layer 2 (▲) and layer 3 (●) of
epithelium against pathological states of Normal, CIN1, CIN2 and CIN3.
(TIF)

S4 Fig. Distribution of mean lifetime τ2 in lower half layers (□-layer 1, ◯-layer 2,4-layer 3,
5-layer 4, �-layer 5) and top half layers (6–10) of epithelium as tissues progress from nor-
mal to various CIN grades.
(TIF)

S5 Fig. Distribution of mean τ2 in all divided 10 layers for normal (■) and precancerous (●)
samples.
(TIF)

S6 Fig. Original white-light image of a typical H&E stained cervical tissue section.
(TIF)
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