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rformance of a functionalized
CNT-based sensor array for breathomics through
clustering and classification algorithms: from gas
sensing of selective biomarkers to discrimination of
chronic obstructive pulmonary disease†
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An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating

breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array

performance in identifying target volatiles and we explored the combination of various classification

algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array

was exposed to ammonia (NH3), nitrogen dioxide (NO2), hydrogen sulphide (H2S), and benzene (C6H6).

Among them, ammonia (NH3) and nitrogen dioxide (NO2) are known biomarkers of chronic obstructive

pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following

exposure to the four target molecules. A remarkable response to ammonia (NH3) and nitrogen dioxide (NO2),

according to benchmarking with available data in the literature, was observed. Sensor array responses were

analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to

discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath

samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported

vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to

accurately discriminate healthy from COPD subjects, in spite of the limited dataset.
Introduction

Pristine and functionalized carbon nanotube (CNT) layers are
largely used to develop gas sensors.1 Indeed, CNT-based sensors
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display a remarkable stability over time and can operate at room
temperature. Furthermore, their virtually one-dimensional
nature is at the origin of the high surface to volume ratio and
the remarkable charge transport properties, which are both
required for highly sensitive gas/volatile sensors.

Functionalization and decoration of CNTs offer manifold
solutions that can be exploited to develop multiplexed systems for
volatile organic compound (VOC) proling in exhaled breath,
a non-invasive, real-time, potential diagnostic tool of many
diseases.2–4 For these reasons, electronic noses may become an
important tool in diagnostics and in health screening programs.

Since each sensor in the electronic nose can respond to several
different volatiles, thus reducing the selectivity towards specic
analytes, suitable data processing from the whole set of sensors is
required to obtain relevant information on exhaled breath VOC
patterns. In this context, chemometrics and classicationmachine
learning methods such as linear discriminant analysis (LDA),
support vector machine (SVM), and principal component analysis
(PCA) represent effective tools to analyse electronic nose data.5

Along with the sensitivity of properly functionalized CNTs, this
statistical approach can, therefore, be quite helpful to cope with
a fundamental challenge of gas/volatile sensing, i.e. the capability
© 2021 The Author(s). Published by the Royal Society of Chemistry
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to monitor environments where a manifold of target molecules is
present, providing a response that is able to discriminate the
desired property, even though the sensors can be individually
poorly selective.

Despite CNT-based sensors are largely used as single gas
sensors, studies on electronic noses completely based on CNT and
exposed to human breath samples are still few.6–10 Usually, these
arrays are exposed to simulated (synthetic) human breath, con-
sisting of a mixture of gas/volatile molecules11–13 or to single target
Table 1 CNT-based sensor arrays for breathomics applications: material
DFA is the discriminant functional analysis

Sensors material Disease

SWCNT-organic
semiconductors layers

COPD

Bilayers of polycyclic
aromatic hydrocarbons and
SWCNT

Multiple sclerosis

Organically stabilized
spherical gold NPs and
SWCNTs capped with
polycyclic aromatic
hydrocarbons

Lung cancer

CNT and gold NPs Precancerous gastric lesions
and gastric cancer

Polymer and functionalized
SWCNTs

Liver cancer

CNT coated with
nonpolymeric organic
materials

Lung cancer

CNT Chronic renal failure
Ionic liquid-CNT —

Nanoparticle decorated
SWCNT

—

Transition metal decorated
SWCNT

Lung cancer

CNT/Hexa-peri-
hexabenzocoronene bilayers

Cancer

CNT-conductive polymer
nanocomposites

Lung diseases

MWCNT and gold NPs —
CNT-conductive polymer
nanocomposite

Lung cancer

COOH-MWCNT
functionalized with
polyhedral oligomeric
silsesquioxanes (POSS)

Lung cancer, diabetes,
malignant pleural
mesothelioma

Sulfonated poly(ether
ketone) (SPEEK)
nanocomposites based on
hybrid nanocarbons

Lung cancer

Surfactant-CNT Lung cancer
Polymer coated CNT Lung cancer
Carbon nanorods Lung diseases
DNA-CNT Skin cancer
SWCNT and metallic NPs —
DNA-functionalized SWCNT Lung cancer, excessive

drinking and diabetes
SWCNT, SWCNT + NPs,
polymer coated SWCNT

—

Metal decorated MWCNT —

© 2021 The Author(s). Published by the Royal Society of Chemistry
gases/volatiles that are known biomarkers of specic diseases.14–31

For example, exhaled breath C6H6 is found elevated in lung cancer
patients,21 whereas high exhaled breath NH3 concentrations are
related to liver or kidney disease.2,32–34 Low ammonia concentra-
tions35 and high NO2 concentrations are related to COPD;14,36,37

nally, H2S has been proposed as a biomarker of asthma.38,39

The use of CNT-based arrays in breath analysis applications
is detailed in Table 1, where the different CNT-based sensing
layers, data analysis strategy, and analysed samples (human
s, targeted disease, testing gas/volatile and data analysis methodology.

Testing gas/volatiles Data analysis Ref.

Exhaled breath + 9
biomarkers

PCA, SVM 6

Exhaled breath DFA 7

Exhaled breath DFA 8

Exhaled breath DFA 9

Exhaled breath + 5
biomarkers

PCA 10

Simulated breath PCA 11

Simulated breath PCA 12
Simulated breath and 8
biomarkers

PCA 13

9 biomarkers PCA 16

1 biomarker 17

5 biomarkers PCA 18

9 biomarkers PCA 19

7 biomarkers PCA 20
19 biomarkers PCA 21

9 biomarkers PCA 22

7 biomarkers PCA 23

15 biomarkers PCA 24
8 biomarkers PCA 25
19 biomarkers PCA 26
18 biomarkers 27
4 biomarkers PCA 28
7 biomarkers 29

6 biomarkers PCA 30

1 biomarker LDA 31

RSC Adv., 2021, 11, 30270–30282 | 30271



Fig. 1 (a) Single sensor layout; (b) sensor array layout. (b) T and RH
represent the temperature and relative humidity sensors, respectively
(c) single sensor readout scheme. (d) Resistance change vs. time
measured by the eight sensors array during exposure to two different
ammonia concentrations: 15.9 ppm and 8.1 ppm, respectively. Expo-
sure time was set at 180 s.
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breath, synthetic breath, biomarkers) are listed. Studies using
CNT-based sensor arrays to analyse exhaled breath from sick
individuals, are relatively few,6–10 mainly focused on cancer,
particularly lung cancer.8,10,19,21–26 Most of these studies used
PCA for data analysis. Only one study has been reported in
patients affected by a chronic lung pathology other than cancer,
i.e., chronic obstructive pulmonary disease (COPD).6 However,
the recent COVID 19 pandemic has pointed out the importance
of developing a rapid and reliable diagnostic test for respiratory
diseases such as pneumonia and seasonal u,40 along with the
possibility to deploy screening test for the detection of COVID-
19 infections.41 In this frame, e-noses might play a major role in
the screening of respiratory diseases.

In the present study, the overall sensing behaviour of an 8-
element array of CNT-based sensors, each with different func-
tionalization, is investigated. In a previous study,6 we presented
the general physical properties and behaviour of the array; in
this study, we focus on a more comprehensive data analysis at
all stages of the array testing: exposure to selected biomarkers,
extraction of calibration curves of individual sensors, and
exposure to a limited number of samples from COPD. Finally,
we assess various multivariate analysis strategies to optimize
the chemical sensor array classication capability.

According to this scheme, a set of NH3, NO2, C6H6, H2S expo-
sures was carried out and the calibration curves for each of the 8
sensors in the array exposed to the 4 volatiles were built. Data were
analysed by PCA, to assess the array selectivity and its capability to
discriminate the four different target volatile molecules.

Next, the sensor array was exposed to exhaled breath samples
fromCOPDpatients andhealthy control volunteers. The array ability
to discriminate breathprints of sick and healthy volunteers was
assessed by three different algorithms: PCA, SVM and LDA. In
particular, we explored the classication ability of the present device
in a limited number of individuals, including repeated measure-
ments taken from the same individual and collected in different
conditions (such as ambient relative humidity and temperature,
different days). The sample collection was dened by a minimal set
of rules, mostly based on the use of disposable materials. This
approach might have applications in harsh environments where
control over strict sample collection protocols may not be feasible.

Experimental
Sample preparation and characterization

To synthesise single-walled carbon nanotubes (SWCNTs) we uti-
lised an aerosol chemical vapor deposition (CVD) method.42

Namely, SWCNTswere grown by gas-phase formation based on the
thermal decomposition of ferrocene in the presence of carbon
monoxide and deposited onto low-adhesive lter in the same
process. SWCNT lms with the thickness of about 30 nm were
collected on the lter from the gas phase downstream of the
reactor and subsequently dry-transferred43 on a polyethylene tere-
phthalate (PET) substrate with a dimension of the sample of 1.5�
1.0 cm2.

The array of sensors was composed of 8 SWCNT lms: one was
made of pristine SWCNTs, the other one was UV-functionalized
(hereaer called COOH), while the rest 6 lms were
30272 | RSC Adv., 2021, 11, 30270–30282
functionalized with selected organic molecules, namely by DNA
oligonucleotide (hereaer called DNA), a,a0-dihex-
ylquaterthiophene (hereaer called Hex-4T-Hex), polyaniline
(hereaer called PANI), perylene-3,4,9,10-tetracarboxylic-
dianhydride (hereaer called PTCDA), tris(4-carbazoyl-9-ylphenyl)
amine (hereaer called TCTA) and 4,40-cyclohexylidenebis [N,N
bis(4-methylphenyl) benzene-amine] (hereaer called TAPC).

DNA and PANI layers were deposited from an aqueous solution
with a concentration of 0.5 mM and 0.1 mM, respectively, forming
the monolayer on the top of nanotubes. Film of Hex-4T-Hex
molecules was deposited via thermal evaporation at 70 �C and
speed of 0.01 nm s�1 to form an average thickness of 5 nm. PTCDA
molecules were evaporated at 120 �C and 0.025 nm s�1 and form
a porous 4 nm lm. TCTA lm with the average thickness of 6 nm
was formed via thermal evaporation at 105 �C and 0.012 nm s�1

speed. Film of TAPC with the thickness of 10–20 nmwas deposited
by the same technique at 77 �C and 0.1 nm s�1 speed.

The structural and optical properties of the samples were
characterized by atomic force microscopy (AFM), transmission
electron microscopy (TEM), UV-Vis and Raman spectroscopy.6

Cr/Pd (5 nm/150 nm) electrodes were sputtered through a paper
mask on the opposite sides of the 1.5 � 1.0 cm2 sample.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Sensing properties

A schematic view of the SWCNT-based sensor is shown in
Fig. 1a. The 8 sensors were set on a properly designed board
(Fig. 1b), with 8 independent channels (single read out scheme
is shown in Fig. 1c) for the simultaneous detection of each
sensor's response. Relative humidity (RH) (humidity sensor
HIH-4000 series – Honeywell sensing) and temperature
(Thermistor NTC PCB 5K – Murata) were also collected by
placing these sensors at the centre of the board (R and T in
Fig. 1b). The sensor signal was acquired using a script written in
the LabVIEW environment.

The sensing properties of the array upon gas/volatile expo-
sures were analysed in the chemo-resistive conguration, where
the presence of gases/volatiles is detected monitoring the
change in the resistance value of the sensitive element, i.e.
bundles of SWCNTs (pristine or functionalized).

The chemiresistor basic electronic circuit includes a load
resistor (RL) in series with the sensor, to which a constant
voltage (V ¼ 5 V) is applied. The resistance RS of the sensor is
tracked by monitoring the voltage VOUT across the sample. The
response, dened as DR/R0 ¼ (R � R0)/R0, where R0 is the
baseline resistance of the sensor measured without the gas/
volatile and DR is the resistance change during the gas/
volatile exposure, was then measured. Following a set of
multiple exposures, calibration curves for each sensor were
obtained by plotting the sensor response DR/R0 versus the gas/
volatile concentration.

In order to probe the capability of the sensors array to
discriminate different target molecules, the sensors array was
exposed to 4 gases/volatiles: ammonia, benzene, hydrogen
sulphide and nitrogen dioxide.

The exposure to ammonia has been carried out in laboratory
air and NH3 concentration was measured with a properly cali-
brated sensor. Responses to benzene, hydrogen sulde, and
nitrogen dioxide were carried out in a sealed test chamber. In
this case gas concentration was controlled by properly mixing
dry air with analyte molecules through mass ow controllers. In
all cases, humidity was constantly monitored through the RH
sensor placed in the middle of the board. All measurements
were performed at room temperature.
Fig. 2 Calibration curves extracted from measurements upon expo-
sure to ammonia (NH3), nitrogen dioxide (NO2), hydrogen sulphide
(H2S), and benzene (C6H6). Error bars are estimated on the basis of the
signal-to-noise ratio. Concentration range: 0–60 ppm for NH3, 0–
2.5 ppm for NO2, 0–2.5 ppm for H2S, 0–0.30 ppm for C6H6.
Breath analysis

Breath samples were collected (aer signed consent) from 11
volunteers aged 22–88 years. Among them, 7 volunteers suffer
from COPD, while 4 were healthy control volunteers. All
volunteers were recruited within a research project funded by
the Università Cattolica del Sacro Cuore in the frame of the
2016–2018 D 3.2 Strategic Program “Anapnoi”. For each volun-
teer, several samples were collected on different days. An overall
number of 52 samples were analysed. Subject characteristics
including age, gender, COPD category as well as the number of
tests carried out for each subject are shown in Table S1 (in the
ESI†). Breath sampling was carried out in a disposable bag
(volume ¼ 0.6 liters), containing the sensor array, and inated
by breath through a disposable plastic straw. This procedure
took around 10–15 seconds until the bag was fully inated. We
© 2021 The Author(s). Published by the Royal Society of Chemistry
did not record signicant differences among volunteers during
the bag ination phase, likely due to the reduced volume to ll
and to the lack of any lter along the collection pipeline, which
could hinder the bag ination step. The overall sensor exposure
time inside the bag was set to 3 minutes, to let all sensors fully
interact with the breath sample.
Data analysis algorithms

Data obtained from gas/volatile exposures and exhaled breath
samples are shown in ‘Sensing of selected biomarkers’ and
‘Breath analysis’ sections. Column mean-centring was used for
data pre-treatment. PCA was used to analyse a set of 26 expo-
sures from 4 gases/volatiles. PCA, LDA, and SVM were used to
analyse 52 exhaled breath samples obtained from 11 subjects.
Results and discussion
Sensing of selected biomarkers

Fig. 1d shows an example of sensor array resistance variation
during 3 min exposure to ammonia at 8.1 ppm and 15.9 ppm
concentrations. All sensors show increased resistance due to the
presence of ammonia, suggesting a p-type doping of CNTs.44 For
all sensors, the resistance increase depends on ammonia
concentration and the recovery is always reached in about 20
minutes.

Calibration curves obtained by sensor array exposures at
various ammonia concentrations are shown in Fig. 2. The same
y-axis scale was used to plot all the sensor responses; the error
bars, estimated on the basis of the signal-to-noise ratio, are
basically negligible. COOH and PANI sensors displayed the
greatest responses to ammonia.

All calibration curves shown in Fig. 2 display a linear
behaviour, except PANI and COOH curves, which show a clear
sublinear behaviour across the ammonia concentration range;
all data were interpolated by the Freundlich isotherm (DR/R0 ¼
A[NH3]

pow, dashed line in Fig. 2), with an exponential factor
RSC Adv., 2021, 11, 30270–30282 | 30273
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(pow) that resulted to be virtually 1 for the six sensors that
display a linear behaviour (see also Fig. S1 in the ESI†).

Similar data was obtained exposing the sensor array to
different nitrogen dioxide, hydrogen sulphide and benzene
concentrations as shown in Fig. 2.

All curves display a sub-linear behaviour. As expected, the
DR/R0 value decreased upon NO2 exposure, as NO2 is known as
an oxidizing molecule. In particular, COOH and TAPC sensors
displayed the highest responses to nitrogen dioxide exposure,
while DNA and TCTA sensors displayed the lowest ones. Hex-4T-
Hex and CNT responses to hydrogen sulphide and benzene were
quite low as compared to the noise and their evaluation was
difficult; thus, we did not proceed with the dataset tting. The
same holds for the TAPC response to benzene.

Finally, it is worth noticing that the lowest volatile concen-
trations used to build the calibration curves were in the sub-
ppm range (0.3 ppm for nitrogen dioxide, 0.12 ppm for
hydrogen sulphide, and 50 ppb for benzene).

Following the analysis of the calibration curves, nitrogen
dioxide (NO2) and ammonia (NH3) were selected to carry out
a benchmarking with literature results based on CNT sensors
and published since 2000. These volatiles are among the most
used compounds to test chemical sensors, due to their oxidizing
and reducing properties, respectively; in particular, testing of
Fig. 3 Benchmarking of the sensor array with respect to CNT-based
chemiresistor performances for nitrogen dioxide (NO2) (upper panel)
and ammonia (NH3) (lower panel) exposures.

30274 | RSC Adv., 2021, 11, 30270–30282
CNT-based sensors to evaluate their performances is oen
carried out with nitrogen dioxide (NO2) and ammonia (NH3).44

For these reasons, ammonia (NH3) and nitrogen dioxide
(NO2) exposure datasets available in literature are much larger
than hydrogen sulphide (H2S) and benzene exposure datasets,
making a benchmarking statistically more signicant.16,45–101

Fig. 3 shows this benchmarking, carried out by considering
the sensitivity, S, dened as S ¼ 100 � (DR/R0)/[gas/volatile],
where [gas/volatile] is the gas/volatile (ammonia, NH3 or
nitrogen dioxide, NO2) concentration. The comparison shows
that the present results, with testing mainly in the low gas/
volatile concentration range (1–10 ppm) are quite remarkable
in terms of sensitivity for all sensors in the case of NO2 (Fig. 3
upper panel), and especially for PANI and COOH sensors in the
case of NH3 (Fig. 3 lower panel).

Sensor responses obtained following exposures to the 4
gases/volatiles and used to draw the calibration curves have
been analyzed with PCA as shown in Fig. 4a and b. The resulting
variance in the PCA space is 99.71% by considering the rst and
second components (PC1–PC2 plot, Fig. 4a) and 96.61% for the
rst and the third components (PC1–PC3 plot, Fig. 4b).

The contribution of ammonia and nitrogen dioxide are well
separated in the PC1 vs. PC2 space (Fig. 4a), while benzene and
hydrogen sulphide exposure data are overlapped. However,
benzene and hydrogen sulphide can clearly be discriminated
considering a 2D space generated by PC1 and PC3 (Fig. 4b). As
expected, all 4 gases/volatiles follow a clear trend, which goes
from the edges to the plot center as gas/volatile concentrations
decrease. Furthermore, ammonia and nitrogen dioxide, which
are a reducing and an oxidizing gas/volatile, respectively, span
the opposite side of the space generated by both PC1–PC2, and
PC1–PC3 component couples.

Loading plots for PC1, PC2, and PC3 help clarify the role of each
individual sensor into the discrimination of target gas/volatile
molecules. As shown in Fig. 4c, all sensors equally contribute to
Fig. 4 PCA of the sensor array responses following nitrogen dioxide
(0.3–2.5 ppm), hydrogen sulphide (0.12–2.5 ppm), benzene (0.05–
0.25 ppm) and ammonia (2.2–60 ppm) exposures. (a) space generated
by PC1 and PC2, (b) space generated by PC1 and PC3, (c) loadings on
PC1; (d) loadings on PC2; (e) loadings on PC3.

© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Left panel: schematic representation of the breath sampling
setup. Right panel: resistance change vs. time measured by the eight
sensors array upon 180 s exposure to an exhaled breath sample from
a healthy subject. The COOH sensor curve has been rescaled by a 0.3
factor.

Fig. 7 Mean DR/R0 and standard deviation registered for each sensor
in the breath analysis. Sick and healthy patients have been separately
summed up to calculate mean and standard deviation: COPD ¼ green
dots; healthy subjects ¼ blue dots.

Paper RSC Advances
PC1 loadings, resulting in the capability to separate nitrogen
dioxide (NO2) and ammonia (NH3) measurements along the PC1
axis of the PC1–PC2 space. Benzene and hydrogen sulphide (H2S)
exposure data are not separated from each other and are found
nearly superposed on a vertical line in the bottom part of the PC2
range. Thus, PC2 separates the ammonia (NH3) and nitrogen
dioxide (NO2) pair couple from the benzene and hydrogen
sulphide (H2S) pairs. The loading plots (Fig. 4d) show that RH
sensor, and TCTA to a lesser extent, provide themajor contribution
to PC2. As shown by loading plots for PC3 (Fig. 4e), the discrimi-
nation between hydrogen sulphide (H2S) and benzene, provided by
the PC3 component in the PC1–PC3 plot, can be related to the
contribution of the PANI sensor and, to a lesser extent, to TCTA
and RH sensors.
Breath analysis

We exposed the sensors array to breath samples obtained from 4
healthy volunteers and 7 subjects with COPD. To avoid systematic
bias in breath sampling, samples were collected on different days
and environmental conditions. Subject characteristics and
number of samples collected from each person are presented in
Table S1† (in the ESI). Samples were collected asking the partici-
pants to fully exhale through a plastic straw into a disposable
plastic bag where the sensor array was placed. Aer breath
collection, the bags were sealed, and the sensor array exposed to
breath sample for 180 seconds. Then, bags were opened, and the
Fig. 6 DR/R0 data used for the PCA analysis. (a) Sick patients (b)
healthy subjects. Each vertical stack of points represents an e-nose
readout after a single exposure to exhaled breath. Data from the
COOH-doped sensor have been multiplied by 0.5 to provide a more
effective representation of the data set.

© 2021 The Author(s). Published by the Royal Society of Chemistry
sensor array was ushed with dry air until recovery to baseline
signal before exposing to the next breath sample. Fig. 5 shows
a schematic representation of the breath sampling setup (le
panel), along with an example of the 8-sensors array responses to
an exhaled breath sample from a healthy subject (right panel).
Sensors responses were analysed by PCA.

An overview of the data collected from the 52 exposures
considered in this study (Fig. 6) shows that a lower response of each
sensor in the array is clearly detectable in sick patients with respect
to healthy patients. The average and standard deviation for these
values is reported in Fig. 7 for each sensor of the array. This nding
is rather appealing and can be rationalized by relating the array
response to the specic sensitivity to NO2 and NH3. Qualitatively,
on the basis of literature (ref. 14, 36, 37 and 35, respectively) we
know that COPD patients display a higher NO2 concentration and
a lower NH3 concentration in the exhaled breath. Both facts are
expected to decrease the overall resistance of the p-doped CNT
layers upon exposure to exhaled breath. Indeed, NO2 is known to
act as an electron acceptor when interacting with CNTs while NH3

behaves as an electron donor (see, e.g. ref. 44). Therefore, a high
NO2 concentration increases the density of carriers (holes) in p-type
CNTs thus decreasing their resistivity, while a decrease of NH3

concentration decreases the resistivity, as NH3 decreases the
density of holes in p-type CNTs.
Fig. 8 (a) 2D PCA of exhaled breath sample data from seven (green
dots) COPD and four healthy (blue dots) subjects; the number in each
dot identifies the individual from whom it was obtained. (b) 3D PCA
with best boundary plane; COPD and healthy subjects are shown with
green and blue spheres, respectively.

RSC Adv., 2021, 11, 30270–30282 | 30275
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Apparently, the difference in signal intensity between healthy
and sick patients could be regarded as a method for classication,
as the mean value for healthy patients is always higher than the
corresponding value for sick patients, but standard deviation,
displayed in Fig. 7 is still too large, and superposition between the
two classes (sick and healthy) can still occur. For this reason, PCA
with SVM or LDA can provide more robust classication schemes,
which are indeed explored in detail in the following.

Fig. 8a shows the 2D-PC spaces obtained carrying out the
analysis on the full sensors data set. An overall good cluster
separation between healthy and COPD subjects can be detected on
the rst principal components, and classes can be well separated
by a linear border with the inclusion of the second (Fig. 8a) and
third (Fig. 8b) PCs. These are very promising results, since they
were obtained with an unsupervised, simple data reduction algo-
rithm such as PCA. The maximal data variance, related to the rst
PC and to its specic sensor linear combination, can then be used
to discriminate between healthy and COPD subjects.

For this analysis, an additional humidity sensor was also
considered. In fact, several studies report on the importance of
taking into account humidity when performing gas/volatile sensing
measurements.11,12,16,100 In our study, we found a small inuence of
RH in the data clustering. Finally, in Fig. 8a, each dot representing
a breath sample has been labelled with the study number of the
individual fromwhom it was obtained, as shown in Table S1 (in the
ESI†); it is worth noticing that each subject contribution, collected at
different times and on different days, tends to cluster in the same
spatial region, especially healthy subjects data. These results
conrm the reproducibility and reliability of our method.

In order to explore the accuracy of COPD classication, our
dataset was further analysed by three algorithms: PCA, LDA,
and SVM. In a practical application, the discriminating algo-
rithm should be trained with a well-characterized initial data-
set, which should provide the optimal linear combination of
sensor results and the best boundary denition between the two
data cluster. In this context, LDA can be used to better separate
the two clusters, since it is specically designed to maximize the
variance of each subgroups with respect to their average
Fig. 9 (a) PCA first and second principal components with optimal
linear cluster boundaries (dashed lines). The corresponding support
vectors are highlighted with larger dots. Please, note that the two data
clusters can also be resolved by considering the first three PCA
component (Fig. 6b). (b) first PCA component vs. LDA projection (top),
with LDA projection histogram (bottom) and predicted probability for
COPD identification (black line).

30276 | RSC Adv., 2021, 11, 30270–30282
distance; moreover, LDA results can be used to directly classify
unknown data. We used SVM approach to nd the optimal
cluster separation plane for PCA.

The graphs of the two rst principal components projections
for both techniques are shown in Fig. 9a and b for PCA and LDA,
respectively.

Data have been standardized in the usual way, i.e. by
removing each sensor average response and by normalizing by
the corresponding standard deviation. As already shown,
despite being an unsupervised method, the PCA principal
component (PCA-1, horizontal axis in Fig. 9a) shows a remark-
able separation of the two data classes; however, the class
separation is not observed for the PCA-2 component.

LDA (Fig. 9b) leads to a C-1 dimensional data projection,
where C is the class number. In this case, it denes a single
direction in the feature space with the best cluster separation.
We then represented the data by showing the PC-1 vs. LDA
subspace; the cluster separation is clearly better for LDA.
However, being a supervised method, it requires the a priori
knowledge of each individual class, making it less suitable for
prediction models. A good metric for LDA performance is the
ratio between the internal class averages and the sum of the
standard deviations of each class; we then obtained 1.7 for PC-1
and 2.9 for the LDA projection. The data distribution histogram
is shown in the lower panel of Fig. 9b, together with the
calculated probability function for COPD identication (black
line). For LDA we dened the overall accuracy as the average of
the identied probabilities associated to the projected data.

In order to better quantify the performances of PCA, we
resorted to SVM analysis, as implemented in the LibSVM
package.102 Such method allows dening a cluster boundary, by
nding a data subgroup (the support vectors, larger dots in Fig. 9a)
with the minimal interclass distance. Even if the two classes are
formally perfectly separable, for this work we applied a standard
linear kernel with a so margin, thus trading the “perfect”
boundary identication for a better reliability of the prediction
model on possible additional unclassied data. The related cost
function was calculated through cross-correlationmethods. Due to
the clear class separation and the relatively small number of
measurements, in SVM we avoided the use of more complex
kernel, such as Gaussian or polynomial ones. Furthermore, in
addition to the identication of the best class border, SVM also
allows for the calculation of identication probability, i.e. for the
denition of a continuous function, which assigns a likelihood for
each data point to belong to a certain class.

An example of probability functions for PCA is shown in Fig. 10a
with contour lines. For each dataset, we can then evaluate an
identication performance index (the ratio of the correctly
labelled data) and an overall accuracy index, which represent
the average probability. In a best-case scenario, both these
values should be close to 1, since we expect to assign each data
point to each class with the highest possible accuracy.

For the full dataset both methods show a perfect identica-
tion score, since the SVM boundary perfectly separates the two
classes, but LDA shows amuch better accuracy index (0.99) than
PCA (0.91), due to the better class separation with respect to the
boundary.
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 10 (a) PCA calculated on a randomdata subset (filled circles). SVM
calculated probabilities (dashed lines) evaluated on the test subset
(empty circles). (b) LDA projection histograms (left axis) calculated on
a random subset (dark green and blue bars) and on the projected test
set (light green and blue bars). Red circle highlights two outliers among
the test data, evaluated through the calculated probability curve (black,
right axis).

Fig. 11 Identification ratio (dotted line) and accuracy index (solid line)
for PCA-SVM (black) and LDA (red), evaluated for different datasets.
Bottom axis: training set dimension (N, with 28 < N < 51). Top axis: test
dataset dimension (52-N).
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We then investigated the capability of these methods to
actually classify unknown data. We carried out this analysis by
removing a random section of the dataset to be used as an
unlabelled test subset for SVM results and LDA. We removed up
to Nt ¼ 24 test patients from the N ¼ 52 total group, by picking
4000 random subsets for each case.

For the PCA it is possible to actually perform data reduction
with the full data set (thus with both classied and unclassied
data), and then perform the SVM classication on its results.
We choose to work with three principal components (as for
LDA), since they describe 95% of the data variance. An example
of PCA-SVM analysis with a reduced set (Nt ¼ 24) is given in
Fig. 10a. SVM probability function and boundary are calculated
only considering the training set (lled circles) and then applied
on a test subset (open circles). In this particular case, one COPD
case (empty green circle) falls outside the p ¼ 0.5 threshold and
thus is wrongly labelled. It should be noticed that the data point
position in Fig. 10a is identical to Fig. 9a, since the PCA is
carried out on the whole dataset.

For the LDA case, it is not possible to actually perform the data
reduction with the full data set because of the lack of classication
for the unknown data. Aer normalizing the whole dataset (as in
PCA), we then directly split the sensor data into a training and
a test set, and we perform LDA on the training set only. The test set
is then projected on the LDA direction. An example of LDA analysis
with a reduced set is given in Fig. 10b. In this case, the point
distribution of the LDA plot is different from Fig. 9b results, since
the data reduction is evaluated on a different set. In the example of
Fig. 10, two COPD case studies appeared as outliners among the
test data (red circle).

The results for the classication and accuracy index are
shown in Fig. 11. PCA-SVM performs well, with an identication
ratio larger than 92% and an accuracy index greater than 86%
even aer the removal of nearly half of the dataset. However, the
removal of just one data point in PCA can lead to detection
errors, dropping the identication ratio to 94% for the N ¼ 51
dataset. On the contrary, LDA discrimination performances are
extremely good, being greater than 95% even with the reduced
dataset. Accuracy and identication ratios are very similar, due
© 2021 The Author(s). Published by the Royal Society of Chemistry
to the wide separation between classes and to the steepness of
the probability functions in the inter-clusters region.

In the present approach SVM with a linear kernel turned out
to be enough to separate the two expected clusters. This means
that data are linearly separable, i.e. the dataset can be classied
into two classes by using a single straight line (in the PC1–PC2
2-dimensional plot) or by a single plane (in the PC1–PC2–PC3 3-
dimensional plot). With the aim to explore non-linear kernels,
that can in principle be expected for larger data set, we added
new experimental data to enlarge the dataset up to 130
measurements, collected from 50 (30 COPD + 20 healthy)
patients. As shown in the ESI le (Fig. S2†), a cluster separation
with a straight line (in the PC1–PC2 2-dimensional plot) or
plane (in the PC1–PC2–PC3 3-dimensional plot) still works with
this enlarged dataset, for this reason we did not further proceed
in classication with non-linear kernels.

The present results then support the application potential for
this sensor array, even with a relatively small training dataset such
as the one shown in this study. While PCA still performs remark-
ably well and is computationally lighter, for a practical application
LDA should be preferred, depending on the desired accuracy.
Conclusions

In conclusion, the overall sensing behaviour of an 8-element
array of CNT-based sensors was investigated by exposing the
array to a set of volatile biomarkers. Several exposures to
ammonia (NH3), nitrogen dioxide (NO2), benzene (C6H6), and
hydrogen sulphide (H2S) were carried out and calibration curves
for each of the 8 sensors in the array exposed to the 4 volatiles
were built. Data were analyzed by PCA, assessing the selectivity
of the array, as well as its capability to discriminate the four
different target gas/volatile molecules. The sensors perfor-
mances have been evaluated through a benchmarking with
CNT-based sensors in the case of NH3 and NO2 detection, while
RSC Adv., 2021, 11, 30270–30282 | 30277
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the main characteristics of the e-nose are compared with an
updated list of e-noses equipped with CNT-based sensors.

Following this phase, the sensors array was exposed to the
exhaled breath samples obtained from COPD patients and
healthy control volunteers. A combination of PCA, SVM, and
LDA methods shows that the present sensor array can be
trained to clearly discriminate healthy from COPD subjects, in
spite of the relatively limited dataset. Accuracy indexes above
0.90 and 0.97 were obtained for PCA and LDA respectively.

Thus, the robustness of this approach supports its potential
applications in harsh environments where control over strict
sample collection protocols may not be feasible. Overall, further
developments in the eld are expected with the use of graphene-
based sensors103,104 that, as the case of CNT, can operate at RT,
a requirement that is drawing attention also in the case of
metal-oxide based chemiresistors.105
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