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Abstract

Background: Camellia, comprising more than 200 species, is a valuable economic commodity due to its enormously
popular commercial products: tea leaves, flowers, and high-quality edible oils. It is the largest and most important
genus in the family Theaceae. However, phylogenetic resolution of the species has proven to be difficult.
Consequently, the interspecies relationships of the genus Camellia are still hotly debated. Phylogenomics is an
attractive avenue that can be used to reconstruct the tree of life, especially at low taxonomic levels.
Methodology/Principal Findings: Seven complete chloroplast (cp) genomes were sequenced from six species
representing different subdivisions of the genus Camellia using Illumina sequencing technology. Four junctions
between the single-copy segments and the inverted repeats were confirmed and genome assemblies were validated
by PCR-based product sequencing using 123 pairs of primers covering preliminary cp genome assemblies. The
length of the Camellia cp genome was found to be about 157kb, which contained 123 unique genes and 23 were
duplicated in the IR regions. We determined that the complete Camellia cp genome was relatively well conserved,
but contained enough genetic differences to provide useful phylogenetic information. Phylogenetic relationships were
analyzed using seven complete cp genomes of six Camellia species. We also identified rapidly evolving regions of
the cp genome that have the potential to be used for further species identification and phylogenetic resolution.
Conclusions/Significance: In this study, we wanted to determine if analyzing completely sequenced cp genomes
could help settle these controversies of interspecies relationships in Camellia. The results demonstrate that cp
genome data are beneficial in resolving species definition because they indicate that organelle-based “barcodes”,
can be established for a species and then used to unmask interspecies phylogenetic relationships. It reveals that
phylogenomics based on cp genomes is an effective approach for achieving phylogenetic resolution between
Camellia species.
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Introduction

Camellia, a genus containing shrubs and trees, is the largest
and most economically, socially, and ecologically valuable
genus in the family Theaceae [1–8]. It is native to eastern Asia
and is found throughout East and Southeast Asia [3,6], and
originated in South and Southwest China [2]. The genus
Camellia, consisting of more than 200 species [9,10], is not
only famous for its ornamental flowers, beverages, and plant
oils, but also for its phylogenetic significance. Camellia plants
provide excellent samples for studying the evolution of the
species, interspecific hybridization, and other fundamental life
science questions [11]. In addition, Camellia tea leaves harbor
more than 700 chemical compounds that have been found to

promote human health [7,12]. Camellia plants are therefore
some of the most popular and desirable plants for agriculture,
horticulture, and scientific research. Currently, more than 40
countries produce tea for commercial purpose. The annual
value of the tea industry in China alone is more than $5 billion
USD [12,13]. Many Camellia species are domesticated as
ornamental plants, while the weeds of others produce high-
quality edible oils. Because Camellia plants are grown for a
variety of uses, they are now found all over the world
[3,7,14,15].

Because of their enormous value in commercial, social, and
scientific fields, Camellia plants have garnered much attention
from scientists. The genus Camellia represents an excellent
example of a taxonomic group under controversial
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circumscription and having uncertain phylogenetic affinities that
require detailed investigations. The traditional classifications of
the genus Camellia were mainly based on morphology. The
three most recently developed traditional classification methods
applied to this genus were established by Sealy [16], Chang
[9,10,17] and Ming [1,3,5,6], but these systems have given rise
to many conflicting results. Sealy, Chang and Ming disagreed
on the boundaries of subgenera, sections, and species, as well
as the circumscription and relationships between species.
Chang identified about 280 species, while Ming only
recognized 119 species of Camellia. The genus Camellia was
divided into 12, 20, and 14 sections by Sealy, Chang, and
Ming, respectively. Furthermore, the Sealy system did not offer
any subgeneric divisions, but Chang divided Camellia into four
subgenera and Ming divided it into two. So far, it is uncertain
which of these systems most accurately describes the
phylogenetic relationships within the genus Camellia. As a
result, it is necessary to seek other evidence that can be used
to rebuild the classification system of Camellia.

Molecular methods based on DNA sequence analysis
provide useful information for taxonomy, species identification,
and phylogenetics. In the last few decades molecular
phylogenetics has rapidly developed, and is gaining increasing
importance in resolving phylogenetic relationships. Efforts to
explore the taxonomy issues, relationships, and the evolution
of subdivisions in Camellia have involved the use of molecular
phylogenetic methods [18–27]. Xiao and Parks [22,23]
attempted to resolve Camellia taxonomy using introns 11-16
and 23 of the RNA polymerase II (RPB2) gene. However, the
poorly resolved results of this study presented completely
different findings than the traditional classification methods.
Another study based on molecular phylogenetics, the Vijayan
et al. [7] study, inferred phylogenetic relationships within the
genus Camellia using internal transcribed spacer (ITS)
sequences of 112 species. These results resolved the 112
species into eight major clades, but the interrelationships
between clades remained unresolved. Overall, the results from
molecular phylogenetic studies have largely differed from the
results of studies using traditional classification methods. In
addition, recent studies on Camellia leaf the morphology have
further complicated the classification of Camellia [28–32].
Molecular phylogenetic research on Camellia has been
extensive applied, but there is no apparent structure associated
with its molecular phylogeny, which would help to reveal the
true phylogenetic relationships between its species. The major
reason for the lack of phylogenic structure is because the
genus Camellia contains a wide variety of species with
complex evolutionary relationships. In addition, the lack of
appropriate DNA sequences greatly limits the ability to perform
adequate molecular phylogenetic research on Camellia. Most
of the phylogenetic studies performed to date have suggested
that the limited availability of suitable DNA sequences has
resulted in finding relatively little genetic variation within the
genus Camellia. Consequently, achieving phylogenetic
resolution and performing species identification have been
almost impossible. Currently, the interspecies relationships
within the genus Camellia remain highly controversial.

Owning to the high cost of DNA sequencing and
technological restrictions, molecular phylogenetic analyses
have typically been limited. These roadblocks severely
restricted the extent to which investigators could analyze DNA,
only being able to sequence short segments of DNA contain a
small number of informative loci. At present, DNA sequencing
costs have fallen dramatically with the rapid development of
next-generation DNA sequencing technologies [33–38].
Simultaneously, genomics research has also rapid developed.
Phylogenomics [39], which combines genomics with
phylogenetics, has become an attractive avenue to help
reconstruct the tree of life [40]. The technology behind
phylogenomics allows large quantities of entire organellar
genomes and even nuclear genomes to be rapidly sequenced.
Phylogenomics therefore brings the benefits of affordable
genome-scale data collection to the area of phylogenetic
resolution. As a result, phylogenetic resolution, especially at
low taxonomic levels such as genus, has been substantially
improved [41].

Plastids are essential organelles in plant cells. Molecular
differences that arise in the chloroplast genomes between plant
species and individuals offer promising tools to achieve
phylogenetic resolution. The chloroplast (cp) genomes in
vascular plants have a conserved quadripartite structure
composed of two copies of a large inverted repeat (IR) and two
sections of unique DNA, which are referred to as the large
single-copy (LSC) regions and small single-copy (SSC)
regions, respectively [42,43]. There are many advantages to
using the chloroplast genome to achieve phylogenetic
resolution rather than the nuclear genome, afforded by its
haploid nature, maternal inheritance, single structure, gene
content, and high conserved genome structure [44,45].
Complete cp genome sequences have been widely used for
phylogenetic resolution in plants. Moore et al. [46] resolved the
relationships between basal angiosperms using plastid
genome-scale data. Similarly, Jansen et al. [47] used 64 plastid
genomes to infer relationships between angiosperms. Moore et
al. [48] used 83 chloroplast genomes to further resolve the
early diversification of eudicots. Parks et al. [41] increased the
phylogenetic resolution at low taxonomic levels using
chloroplast genomes. Because plastids offer a complete yet
relatively small genome, plastid genome sequencing has
become a universal method to obtain evolutionary information
that can be used for taxonomical and phylogenetic analyses on
plants.

Here, we present the complete nucleotide sequences of cp
genomes from seven Camellia individuals of six species using
Illumina sequencing technology applied to total cp DNA. We
aimed to evaluate the suitability of using the analyzed cp
genome sequences for taxonomy and phylogenetic resolution
between Camellia species. A phylogenetic tree formed by
seven complete cp genomes belonging to six species was
reconstructed. Our analyses of seven Camellia individuals
provided detailed genetic data that was able to differentiate
individuals and species. This study supports the method of
applying information from complete chloroplast genome
sequencing to taxonomy and phylogenetic resolution of
Camellia.

Chloroplast Genomes of <I>Camellia</I> Species
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Materials and Methods

Plant Materials
Seven plants from six different species, representing

different subdivisions of the genus Camellia, were sampled.
Healthy, clean, fresh green leaves were collected from the
seven adult plants. The voucher herbarium specimens for the
seven sampled tea plants were deposited at the Herbarium of
Kunming Institute of Botany of the Chinese Academy of
Sciences (KUN) (Table S1).

Chloroplast DNA Extraction, Sequencing, Genome
Assembly, and PCR-based Validation

Total DNA enrichment for chloroplast DNA (cp DNA)
extraction was performed as described in Zhang et al. [49] from
100 g of fresh leaves. A 5 mg sample of purified DNA was
fragmented and used to construct short-insert libraries
according to the manufacturer’s manual (Illumina). The DNA
from different individuals was indexed using tags and pooled
together in one lane of the Illumina’s Genome Analyzer for
sequencing at the Beijing Genomics Institute (BGI) in
Shenzhen, China. The deep-sequencing datasets of seven
plants of Camellia were deposited into the NIH Short Read
Archive (Table S1).

Because the raw sequence reads included non-cp DNA from
the nucleus and mitochondria mixed in with the cp DNA, we
isolated the cp sequence reads from the raw sequence reads
based on all known angiosperm cp genome sequences. The
filtered cp sequence reads were used to assemble cp
genomes. First, the filtered short reads were assembled into
non-redundant contigs using SOAPdenovo [50], a de novo
sequence assembly software, with k=31 bp and scaffolding
contigs having a minimum size of 100 bp. Then, all contigs
were aligned with reference cp genomes, including the cp
genomes of plants in the Solanaceae [51,52] and Araliaceae
[53,54] families, using the Basic Local Alignment Search Tool
(BLAST) database (http://blast.ncbi.nlm.nih.gov/), provided by
the National Center for Biotechnology Information (NCBI),
using the default search parameters. Next, the order of the
aligned contigs was determined according to the reference
genomes, and the gaps between the de novo contigs were
replaced with consensus sequences of raw reads mapped to
the reference genomes. Finally, we acquired preliminary
assembly genomes.

The four junctions between the single-copy segments and
the inverted repeats were confirmed using PCR-based product
sequencing of the preliminary assembled genomes. To avoid
assembly errors and to obtain high-quality complete cp
genome sequences, we validated genome assembly using
intensive PCR-based sequencing. We designed 123 pairs of
primers to cover the seven preliminary cp genome assemblies.
PCR products were sequenced using the BigDyeV3.1
Terminator Kit for ABI 3730xl (Life Technologies). Sequences
obtained using Sanger method were aligned with the
assembled genomes using Geneious [55] assembly software to
determine if there were any differences. The final complete cp
genome sequences of six species of Camellia were deposited
into the GenBank (Table S1).

Genome Annotation and Repeat Analysis
We annotated the sequenced genomes using the Dual

Organellar GenoMe Annotator (DOGMA) database [56], and
then manually corrected for start and stop codons and for
intron/exon boundaries in order to match the gene predictions
of sequenced cp genomes within GenBank and the Chloroplast
Genome Database. The sequences of identified tRNA genes
were achieved using DOGMA and tRNAscan-SE (version 1.23)
[57]. The functional classification of cp genes was determined
by referring referred to the CpBase (http://c
hloroplast.ocean.washington.edu/). The annotated GenBank
files of the Camellia cp genomes were used to obtain gene
maps using the OrganellarGenomeDRAW tool (OGDRAW)
[58].

Both direct and inverted repeats were assessed using
REPuter [59]. Four types of repeats—dispersed, tandem,
palindromic, and gene similarity repeats—were determined
within the Camellia cp genomes. The maximal length of the
gap size between palindromic repeats was restricted to 3 kb.
Overlapping repeats were incorporated into one repeat motif
whenever possible. Furthermore, a given region in the genome
was defined as having only one type of repeat, when one
repeat motif could be described as both tandem and dispersed,
the region was described as a tandem repeat rather than a
dispersed repeat.

Molecular Markers Identification
To examine divergence regions within the seven Camellia cp

genomes for phylogenetic applications, we extracted all
regions, including coding regions, introns and intergenic
spacers. Every homologous region was aligned using the
Multiple Sequence Alignment Tool (MUSCLE) [60], followed by
making additional manual adjustments where necessary.
Afterward, the percentage of variable characters within each
region was calculated.

For regions that were hotspots of divergence, the maximum
parsimony method was used to construct phylogenetic trees
using PAUP4.0b10 [61,62], which also allowed us to check the
congruence of the phylogenetic tree with the evolution and life
history of each species. Heuristic tree searches were
conducted using 10,000 random taxon addition replicates
(holding 20 trees at each step) and tree bisection-reconnection
(TBR) branch swapping with MulTrees in effect. A non-
parametric bootstrap analysis was conducted using 1,000
replicates with TBR branch swapping.

Phylogenomic Analyses
We aligned the seven Camellia cp genome sequences using

the Muitiple Sequence Alignment Program (MAFFT version 5)
[63] and made manual adjustments where necessary.
Unambiguously aligned DNA sequences were used for
phylogenetic analyses, but ambiguously aligned regions were
excluded. To check the utility of different genomic regions for
phylogenetic resolution, simultaneous analyses were carried
out on the following data: (1) the complete cp DNA sequences;
(2) the protein-coding exons; (3) the large single-copy region;
(4) the small single-copy region; (5) the inverted repeat region;
and (6) the introns and spacers.

Chloroplast Genomes of <I>Camellia</I> Species
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Maximum likelihood (ML) and maximum parsimony (MP)
analyses were conducted using PAUP 4.0b10. Characters
were treated as unordered and unweighted. For ML analyses,
the best model and parameter settings were chosen using the
Akaike information criterion (AIC) as suggested by Modeltest V
3.7 [64,65]. Heuristic searches were conducted with tree
bisection-reconnection (TBR) branch swapping, MulTrees in
effect, and 10,000 random taxon addition replicates holding 20
trees at each step. Bootstrap support (BS) values for individual
clades were calculated by running 1,000 bootstrap replicates of
the data, with starting trees acquired by a single replicate of
random stepwise addition of taxa, under TBR branch swapping
with MulTrees in effect. The consistency index (CI), retention
index (RI) and rescaled consistency index (RC) were obtained
through PAUP 4.0b10 as the actual number of site differences
excluding insertions and deletions (indels).

Bayesian analyses (BA) were conducted using MrBayes 3.2
software [66,67]. The best model and parameters settings were
chosen using the Akaike information criterion (AIC) as
suggested by ModelTest v 3.7. The results were based on the
best-fit models of the AIC test. Four independent Markov Chain
Monte Carlo algorithms were performed simultaneously and
sampled every 100 generations for 1,000,000 generations. To
establish the burn-in phase, i.e., the phase before the log
probability values reached stationarity, we plotted generations
against log likelihood scores using Excel 2003 (Microsoft,
Redmond, WA, USA); the trees identified in the burn-in period
were discarded from the analysis.

Results

Genome Assembly and PCR-based Validation
Seven individuals were sequenced to produce 6,539,876 to

7,233,285 paired-end reads (90 bp average read length) using
the Illumina Hiseq 2000 system. After screening these paired-
end reads by aligning them with reference cp genomes,
108,851 to 112,589 reads were mapped to the reference
genomes, reaching, on average, over 100× coverage of the cp
genome. After de novo and reference-guided assembly, three
complete cp genomes were obtained. The other four cp
genomes had four to six gaps, but were complete using PCR-
based sequencing.

The four junction regions in each resulting cp genome were
validated using PCR-based sequencing. We simultaneously
corrected potential errors using PCR-based validation in order
to eliminate assembly errors caused by heterogeneous indels
from homopolymeric repeats, resulting in complete, high-quality
cp genome sequences [38,68]. We designed 123 pairs of
primers for the preliminary cp genome assemblies to validate
these sequences in each cp genome (Table S2). The validated
sequences from each individual reached 172,100 bp. We
assembled the high-quality sequences into complete cp
genomes using Phred, Phrap, Consed software [69,70]. We
then compared these sequences directly to the assembled
genomes, and we observed no nucleotide mismatches or
indels. These results validated the accuracy of our genome
sequencing and assembly methods. We obtained complete cp

genome sequences ranging from 156,577 bp to 156,976 bp in
length.

Genome Features and Sequence Divergence
As seen in other angiosperms, Camellia cp genomes

showed a typical quadripartite structure consisting of a pair of
IRs (26,025–26,057 bp) separated by the LSC (86,204–86,673
bp) and SSC (18,232–18,318 bp) regions (Figure 1). The cp
genomes were found to encode an identical set of 146
predicted functional genes, of which 123 were unique and 23
were duplicated in the IR regions. The 123 unique genes
comprised 81, 38 and 4 protein-coding, transfer RNA and
ribosomal RNA genes, respectively. Eighteen distinct genes,
namely atpF, ndhA, ndhB, petB, petD, rpl16, rpl2, rpoC1,
rps12, rps16, trnA-UGC, trnG-GCC, trnI-GAU, trnK-UUU, trnL-
UAA, and trnV-UAC, contained one intron, while two genes
(clpP and ycf3) contained two introns. These introns of all
protein-coding genes shared the same splicing mechanism as
group II introns [71]. In addition, we identified some unusual
start codons, such as ATC for ndhD, GTG for rps19. Similar
noncanonical start codons have been detected in other
angiosperms [68,72] and tree fern plants [73].

We found no genes with lost or reduced functioning in
Camellia cp genomes. The ycf1_like gene in the junction region
of IRb and SSC was the only pseudogene found, and arose
because of incomplete duplication of the normal copy of ycf1 in
the IRa and SSC junction region (Figure 1). Similar mutations
have been identified in the cp genomes of other angiosperm
species [68].

A total of 60.52%-60.71% of the Camellia cp genomes were
made up of coding regions. Overall, 52.82%-53%,
1.91%-1.92%, and 5.76%-5.78% of the genome sequence
encoded proteins, tRNAs, and rRNAs, respectively. The
remaining 39.29%-39.48% of the genome was made up of non-
coding regions filled with introns, intergenic spacers, and
pseudogenes. Similar to other angiosperm cp genomes
[72,73], Camellia cp genomes was also found to be AT-rich,
with overall AT and GC content is 62.7% and 37.3%,
respectively. In general, the genome features of the seven
Camellia cp genomes analyzed in this study were found to be
quite similar in terms of gene content, gene order, introns,
intergenic spacers, and AT content, and the sequences identity
to 98.5%.

Sequences were plotted to check their identity using the
mVISTA tool [74] by aligning the seven Camellia cp genomes
with Panax ginseng [53] as a reference. The sequences
identity percentage is 93% of Camellia species and reference.
Moderate genetic divergence in Camellia species was
detected. Taken together, the aligned sequences showed
moderate divergence with more than 20 regions having
sequence similarities below 60%. These results suggested that
Camellia cp genomes contain moderate genetic differentiation
especially in the noncoding and single-copy regions. More than
10 divergent hotspot regions were identified (Figure 2).

SNPs analyses were conducted using SAMtools [75] and
Venn diagram showing overlap of SNPs identified were made
(Figure S1). Simultaneously, the variant positions (substitution,
indels) and variation types (transition, transversion) were
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aggregated and summarized according to the coding, intron-
spacers, IR, LSC and SSC regions (Figure S2).

P-distances were used to estimate the average genetic
divergences of the seven Camellia individuals. The results
showed that the p-distances in all individuals, between species,

and within individuals were 0.000829, 0.00118 and 0.00003,
respectively. These results suggest that moderate interspecies
genetic divergence existed within the genus Camellia. In
addition, we found that interspecies sequence divergence was

Figure 1.  Gene map of the Camellia chloroplast genomes.  Genes shown outside the outer circle are transcribed clockwise and
those inside are transcribed counterclockwise. Genes belonging to different functional groups are color-coded. Dashed area in the
inner circle indicates the GC content of the chloroplast genome.
doi: 10.1371/journal.pone.0073053.g001
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Figure 2.  Visualization of alignment of the seven Camellia chloroplast genome sequences.  VISTA-based identity plots
showing sequence identity between seven sequenced chloroplast genomes and the one published chloroplast genomes of
Araliaceae, with Panax ginseng as a reference. Genome regions are color coded as protein coding, rRNA coding, tRNA coding or
conserved noncoding sequences.
doi: 10.1371/journal.pone.0073053.g002
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much more pronounced than intraspecies sequence
divergence.

Repetitive Sequences
Four categories of repeats—dispersed, tandem, palindromic

and gene similarity repeats [49,76] — were identified using
REPuter [59] and manual verification of sequence having a
copy size of 30 bp or longer and a sequence similarity greater
than 90%. Repeat analysis identified more than 300 repeats in
the seven Camellia cp genomes. The longest repeat, other
than the IRs, was 65 bp in length. Most of the repeated
sequences were located in the intergenic regions, while some
were found in protein-coding regions.

Analysis of IRs
Our study showed that the IRs of Camellia were

representative of the typical dicot cp genome structure, in
which the IRs expanded to the rps19 and ycf1 genes. In IR-
LSC, the 5’-end of rps19 partially fell within the IRs, and the IRs
expanded to the 5’-end of ycf1 in IR–SSC.

Genome Divergent Hotspot Regions
Hotspot regions of sequence divergence were identified

using a genome-wide comparative analysis of seven Camellia
whole cp genomes. The results suggested that 11 hotspot
regions (accD-psaI, atpF-atpH, ccsA-ndhD, clpP-psbB, ndhC-
trnV, ndhF-rpl32, petD-rpoA, psbH-petB, rpl32-trnL,
trnG_intron, trnS-trnG) could be applied to the phylogenetic
analysis of Camellia. All hotspot regions contained more than
1% variable characters.

Phylogenomic Analyses
Six data partitions (complete cp DNA sequences, protein-

coding exons, the large single-copy region, the small single-
copy region, the inverted repeat region and introns and
spacers) from the seven Camellia cp genomes and four
outgroups (NC_006290, NC_016430, NC_004561, NC_
007062 from GenBank) [51–54] were used for phylogenetic
analyses. Excluding outgroups, the sequence characteristics of
the ingroups associated with the six datasets are shown in
Table S3. The small single-copy region harbored the highest
percentage of variable characters, at 0.67%, followed by the
introns and spacers with 0.61%. The large single-copy region
and the protein-coding exons also possessed moderate genetic
variation, reporting 0.48% and 0.34% variable characters,
respectively. The inverted repeat region was highly conserved,
having the fewest, less than 0.2%, variable characters.

Phylogenetic trees with bootstrap values (BS) and posterior
probabilities (PP) were built based on the previously discussed
six datasets (Figure 3). The method of data analysis (ML, MP,
or BA) had no effect on the resulting phylogenetic trees, and
their topologies were also found to be highly similar.
Phylogenetic trees produced according to each of the six
datasets were largely congruent with each other. These
findings suggest that there were no conflicts between partitions
of the cp genome. The results also revealed that the
phylogenetic resolution and the support values of nodes

increased significantly with the increasing of the sequences
(Figure 3).

All analyses (ML and MP) generated a single phylogenetic
tree in each dataset. The topology of these phylogenetic trees
consisted of dichotomous branches for resolving phylogenetic
relationships using the complete cp DNA sequences and the
introns and spacers. By contrast, phylogenetic analyses using
the other four datasets did not provide much information to help
in the phylogenetic resolution of Camellia.

Discussion

Genome Organization
Structural rearrangements and gene loss-and-gain events

often occur in some angiosperms, and are especially common
in monocot cp genomes. A representative example is the cp
genome of the Poaceae, in which three inversions within the
LSC regions and gene translocation of the rpl23 gene from the
IR to the LSC regions constitutes a disruption to the canonical
order [77]. Indels and gene loss (deletions or becoming a
pseudogene) are also frequently found in Poaceae cp
genomes, as evidenced by intron loss within rpoC1, insertion
within rpoC2, and gene loss in accD, ycf1, and ycf2 [78,79].
Other monocot families also display rearrangements and gene-
loss events in their cp genomes. Phalaenopsis and Oncidium
have lost most of their ndh genes [80,81], while Lemna,
Dioscorea and two Acoraceae members each lost a single
gene: infA, rps16, and accD, respectively [78,82,83].
Rearrangements have also occurred in Dioscorea, such as the
inversion of SSC [83]. Similarly, rearrangements and gene
loss-and-gain events have also occurred in dicots.
Geraniaceae cp genomes have experienced remarkable
genomic changes [84], such as the loss of ndh genes in
Erodium [85]. Some legumes do not have the IR and have lost
the rps16 gene [36,86–88]. Usually, IR expansion is quite
common, such as the expansion of single-copy rps19 and rpl22
genes from the LSC into the IRs as a result of gene
duplications [89,90]. The Pelargonium cp genomes contain
massive IR expansions, also due to gene duplications [91]. IR
contractions are also common, such as those observed in the
subfamily Apioideae [92]. However, we found that the genome
organization of Camellia wais relatively well conserved. The
gene order within the Camellia genomes was identical to the
gene order in the published Solanaceae and Araliaceae
genomes. The cp genomes of the six Camellia species were
very similar to the cp genome of standard angiosperms, and
were distinctly different from the cp genomes of monocots in
structure and content. We detected no structural
rearrangements, IR expansions, or gene loss-and-gain events
in Camellia cp genomes. And, as the previous study [93], the
ycf15 gene, employing an ATG start codon, is likely a
functional gene.

Repetitive Sequences
The presence of repeats in cp genomes, especially in

intergenic spacer regions, has been reported in all published
angiosperm lineages. Compared with other angiosperm
species, the number of repeats found in Camellia is rather high.

Chloroplast Genomes of <I>Camellia</I> Species
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In all, more than 300 repeats were detected in the seven
Camellia cp genomes. The numbers and distributions of the
four repeat types were found to be remarkably similar and
conserved among the seven cp genomes. Among these
repeats, tandem repeats were the most common, accounting
for 42% of the total number of repeats, while gene similarity
repeats only made up 4%. Except for a few repeats, which
were found in the genes infA, rpoC2, rps18 and rps3, the
majority of repeats were located in noncoding regions. The
lengths of repeats found in Camellia range from 30 to 61,
representing much shorter repeats than those in the Poaceae,
some of which have measured 91-bp and 132-bp [49,94].

Previous research has suggested that repeat sequences
may play roles in rearranging sequences and producing
variation which cp genomes through illegitimate recombination
and slipped-strand mispairing [76,95,96]. Our research also
showed that divergent regions of the cp genome were
associated with repeat sequences; for example, the rpoC2
gene harbored various repeats. It is possible that repeat
sequences also correlate with genome rearrangement in
Camellia cp genomes.

Figure 3.  Maximum parsimony trees of all the six chloroplast datasets for seven Camellia individuals.  Numbers above the
lines on the left indicate the maximum parsimony bootstrap of each clade >50%, numbers above the lines on the right indicate the
Bayesian posterior probabilities, numbers below each branch are the maximum likelihood bootstrap of each clade >50%.
doi: 10.1371/journal.pone.0073053.g003
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Genome Divergent Hotspot Regions
Aligning entire chloroplast genomes revealed that Camellia

chloroplast genomes are relatively well conserved.
Furthermore, similar to other angiosperms, the noncoding
regions show greater sequence divergence than the coding
regions, among the six Camellia species studied. Although the
gene order and content between Camellia cp genomes were
found to be highly conserved, the differences that do exist may
indicate of species variation and differentiation. The
phylogenetic analyses on the complete cp genomes of six
Camellia species provided enough evidence for unique
variations between the different lineages. The observed rates
of interspecies nucleotide polymorphism were moderate at
0.12%.

In this study, 11 hotspot regions of divergence were
checked, and were reported to have more than 1% variable
characters. Of these regions, 11 intergenic regions harboring
high phylogenetic information were newly identified in our
study. Previous studies have also shown that noncoding
regions of chloroplast genomes could be successfully used for
phylogenetic studies in angiosperms [80,97,98]. The new
divergence hotspot regions found in our study could potentially
be used as molecular targets for future phylogenetic studies.
Furthermore, developing universal primers for these hotspot
regions could aid in revealing the molecular phylogeny of other
Camellia species.

Phylogenetic Implications
Phylogenomic analyses have revealed that different species

within a genus are associated with moderate genetic
differentiation. Furthermore, individuals of the same species
but from different distributions also have moderate genetic
differentiation and can therefore be distinctively classified. For
example, two individuals of C. taliensis, both share a common
monophyletic node, yet they harbor 16 variable sites.
Regardless of the level moderate genetic differentiations may
provide enough phylogenetic information to distinguish
between species or even individuals. The sites of sequence
variation occur primarily in intergenic regions, such as ndhC-
trnV, petD-rpoA, trnS-trnG, etc. The results of our study show
that analyses of entire cp genomes significantly contribute to
species identification and phylogenetic studies.

Our phylogenetic analysis of Camellia did not agree with any
of the traditional classification methods used recently in
Camellia taxonomy. Such as C. danzaiensis, C. impressinervis
and C. taliensis, belonging to the Subgen. Thea according
Chang, did not form a monophyletic clade. Similarly, C. pitardii
and C. yunnanensis, belonging to Subgen. Camellia according
to Ming, dispersed into the clade of Subgen. Thea comprising
C. taliensis, C. cuspidata, C. impressinervis and C. danzaiensis
(Figure 3). Taxonomic studies on Camellia are very
controversial. Traditional classification systems conflict with
each other, especially in terms of species definition; the
number of Camellia species has been reported any where from
119 to 280, depending on the classification systems used.
However, defining species of Camellia using analyses of entire
cp genomes provides a feasible way to resolve the
controversial taxonomy of Camellia.

Previous molecular phylogenetic research failed to resolve
the phylogenetic relationships of Camellia for a variety of
reasons. Overall, previous phylogenetic studies did not contain
enough informative characters, used samples that may have
undergone hybridization, resulted in incomplete lineage sorting,
involved stochastic properties, or used non-concerted evolution
ITS markers. A comparative analysis using the entire cp
genome revealed many informative characters; compared with
prior analyses of short sequences in Camellia, our analyses on
the entire cp genomes contained more than 100 times the
number of parsimony-informative characters, and resulted in
phylogenetic trees with better-resolved nodes and higher
support values. While analyses using entire cp genomes may
still be insufficient to fully resolve all phylogenetic relationships
[41,99,100], our results suggest that this type of whole-genome
phylogenomic analyses will provide solutions to many disputes
and guide the way for phylogeny in Camellia.

Furthermore, with the rapid development of next-generation
DNA sequencing technologies, the sequencing costs have
dramatically fallen and the sequencing accuracy has
significantly improved. As a result, genome sequencing of
organelles and phylogenomic analyses are becoming a
reasonable way to improve resolution in phylogenetic studies,
especially at low taxonomic levels. In the near future,
sequencing the genomes of thousands of organelles will
greatly benefit to break the current limitations that arise from
using short sequences to carry out phylogenetic studies
[41,101,102]. The “barcodes” associated with entirely
sequenced cp genomes [101,103] will significantly improve our
ability to distinguish between and identify different species.
Especially for groups mired in controversy over species
definition, organelle-based genome barcodes will help promote
taxonomic studies and contribute to the establishment of
natural classification systems.

In this study, we sequenced seven individuals, representing
six species of Camellia using Illumina sequencing-by-synthesis
technology. The sequenced cp genomes provided large
amounts of genetic information to aid in the species
identification and phylogenetics of these economically
important plants. The analyzed cp genomes showed moderate
genetic variations, which may provide enough genetic
information to further species identification and species
definition efforts. At the same time, this information may also
provide enough adequate phylogenetic information to resolve
the evolutionary relationships between species of Camellia.
Our results show that whole-genome analyses using Camellia
chloroplast genomes provide an effective and feasible
approach to resolve species identification issues and support
phylogenetic applications in the study of Camellia.
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