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Abstract 

Motivation:  Chemical–genetic interaction profiling is a genetic approach that quantifies the susceptibility of a set of 
mutants depleted in specific gene product(s) to a set of chemical compounds. With the recent advances in artificial 
intelligence, chemical–genetic interaction profiles (CGIPs) can be leveraged to predict mechanism of action of com-
pounds. This can be achieved by using machine learning, where the data from a CGIP is fed into the machine learn-
ing platform along with the chemical descriptors to develop a chemogenetically trained model. As small molecules 
can be considered non-structural data, graph convolutional neural networks, which can learn from the chemical 
structures directly, can be used to successfully predict molecular properties. Clustering analysis, on the other hand, is 
a critical approach to get insights into the underlying biological relationships between the gene products in the high-
dimensional chemical-genetic data.

Methods and results:  In this study, we proposed a comprehensive framework based on the large-scale chemical-
genetics dataset built in Mycobacterium tuberculosis for predicting CGIPs using graph-based deep learning models. 
Our approach is structured into three parts. First, by matching M. tuberculosis genes with homologous genes in 
Escherichia coli (E. coli) according to their gene products, we grouped the genes into clusters with distinct biological 
functions. Second, we employed a directed message passing neural network to predict growth inhibition against M. 
tuberculosis gene clusters using a collection of 50,000 chemicals with the profile. We compared the performance of 
different baseline models and implemented multi-label tasks in binary classification frameworks. Lastly, we applied 
the trained model to an externally curated drug set that had experimental results against M. tuberculosis genes to 
examine the effectiveness of our method. Overall, we demonstrate that our approach effectively created M. tuberculo-
sis gene clusters, and the trained classifier is able to predict activity against essential M. tuberculosis targets with high 
accuracy.

Conclusion:  This work provides an analytical framework for modeling large-scale chemical-genetic datasets for pre-
dicting CGIPs and generating hypothesis about mechanism of action of novel drugs. In addition, this work highlights 
the importance of graph-based deep neural networks in drug discovery.
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Introduction
Chemical-genetics involves the large-scale screening of 
compound libraries against genetically distinct cells to 
assess the impact of genetic differences on the activity 
of the drugs [1]. Chemical genetic approaches are pow-
erful tools for generating hypotheses about the general 
mechanism of action (MOA) of a drug and sometimes it 
can help to identify the interacting target(s). The underly-
ing principle is that changes in the dosage of a biologi-
cal macromolecule (i.e., in a knockdown mutation) alter 
the susceptibility of the cell in response to chemicals that 
directly or indirectly interact with that macromolecule 
[2, 3]. The changes in susceptibility of cells with altered 
macromolecule levels, affect their abundance relative to 
other mutants exposed to the drug, signaling chemical-
genetic interactions. The complete set of such changes, 
results in a characteristic chemical-genetic interac-
tion profile (CGIP) for each drug that can then be used 
to characterize their MOA. While powerful in terms of 
rendering results, chemical-genetics is not available to 
the standard bioscience laboratory. The reason is that 
chemical-genetic approaches require large-scale genetic 
manipulation of cells to construct mutant libraries and 
robotic equipment or next-generation sequencing for 
high-throughput screening of the drugs against a given 
mutant collection.

Machine learning (ML) is an area of artificial intelli-
gence that is commonly built from large data collections 
to find hidden patterns, thus providing predictive power 
for new data. Over the past decades, ML approaches 
have evolved rapidly and become a routine step in many 
chemical and biological applications [4]. In general, ML 
includes two major categories: supervised and unsu-
pervised learning. Supervised approaches use models 
learned on data sets (training set) with known patterns 
(labels) to predict the labels of new data (test set) [5]. 
Unsupervised approaches work to discover the patterns 
existing in a given data set and classify the objects into 
similar groups. Supervised methods have been applied 
in quantitative structure property/activity relationship 
(QSPR/QSAR) models analysis for years in attempt to 
increase and streamline the rate of drug discovery [6]. An 
efficient ML model could filter out thousands of extra-
neous compounds in the virtual database and accelerate 
the process of finding drug candidates with the desired 
activity. For example, the Support Vector Machine (SVM) 
classification algorithm is a robust, highly accurate clas-
sification technique that is capable of handling high 

dimensional spaces and is widely applied in QSAR analy-
sis [7]. Deep learning (DL) methods, which have flexible 
neural network architectures that allow the model to rec-
ognize distinct patterns in complex datasets, has been 
demonstrated to have capacities to handle various prob-
lems of drug discovery [8].

In the application of predicting molecular activities in 
cheminformatics, a DL model must effectively extract 
the underlying information from molecular structures. 
Traditional QSPR/QSAR models take fixed molecular 
descriptors, which are derived directly from the repre-
sentation of molecules, as the inputs. Therefore, vari-
ous molecular fingerprints generated by using different 
dimensions of molecular graphic information and algo-
rithms are largely employed and fed into networks for 
training. For instance, Extended-Connectivity Finger-
prints (also known as Morgan Fingerprints) [9], the 
wildly adopted topological fingerprints in QSAR models, 
can extract and characterize the molecular structures to 
enable the networks to access information about mol-
ecules. On the other hand, attempts have been made 
to construct models that can directly learn molecular 
structures while training [10–14]. Graph convolutional 
networks (GCNs) take molecular structures as input, 
aggregate low-level molecular information from atoms 
and bonds, and use the learned molecular representa-
tions to predict the desired properties. While the supe-
riority of descriptor-based or graph-based representation 
of molecules is still debatable, the GCN-based architec-
ture has some significant advantages over these descrip-
tor-based models. Compared to methods that learn from 
fixed descriptors, GCNs operate on the molecular graph 
directly, enabling architectures to construct molecular 
representations with greater flexibility. Moreover, a num-
ber of implementations of GCNs in QSPR/QSAR tasks 
have shown promising results. For instance, Wu et  al. 
[13] illustrated that the learnable featurization of mol-
ecules outperforms descriptor-based models in general. 
Also, Jiang et al. [15] reported that graph-based architec-
tures can achieve superior performance on multi-task or 
more extensive data.

The general objective of this work was to train GCN-
based models to predict CGPIs of drugs. To that end, we 
leveraged a large-scale chemical genetic dataset [16] in 
which hundreds of mutant strains of the bacterium Myco-
bacterium tuberculosis were partially depleted of essen-
tial proteins (called hypomorphs) and used to screen a 
compound library of 47,272 compounds. By performing 
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gene clustering and GCN-based model training on the 
CGIP of M. tuberculosis, followed by the examination 
of the externally curated M. tuberculosis inhibitors, we 
show that our integrated framework is capable of identi-
fying MOAs of chemical compounds.

Materials and methods
Chemical‑genetic profiles—based deep learning 
framework
The CGIP-based deep learning framework we pro-
pose here consists of three main steps (Fig. 1). First, we 
clustered the M. tuberculosis hypomorphs (named by 
the corresponding knocked down essential genes) into 
groups based on biological similarity of the knocked 
down essential gene. To facilitate clustering, we chose to 
use the homologous genes in Escherichia coli as they are 
more thoroughly annotated. Homology was determined 
with the Basic Local Alignment Search Tool (BLAST) 
[17], with a E-value threshold of 0.01. Then, a hierarchi-
cal dendrogram was generated according to the semantic 
similarity of homologs, and gene clusters were deter-
mined using dynamic tree cut [18]. For model-building, 
we utilized a variant of the GCNs, directed message 
passing neural network (D-MPNN) [14], as the architec-
ture for training and predicting. Finally, with the trained 

model, we searched for externally curated compounds 
that had experimental results against M. tuberculosis 
strains and made predictions using them to evaluate the 
effectiveness of the model. Overall, this framework pro-
vides a novel paradigm of utilizing large-scale CGIPs for 
predicting MOAs of virtual compound libraries.

Datasets
The CGIPs used in this study correspond to 47,217 com-
pounds screened against 152 M. tuberculosis H37Rv 
mutant strains or hypomorphs [16]. The screen was ini-
tially developed to identify compounds that were growth-
inhibitory to specific hypomorphs and hence could show 
potential to be developed as antimicrobial compounds 
against wild type M. tuberculosis. More than 4000 of 
the compounds were active against at least one of the 
hypomorphs, as demonstrated by their CGIPs, indicat-
ing potential for antibiotic activity against the wild type 
strain.

The CGIP data used in this work was downloaded 
from the website (https://​www.​chemi​calge​nomic​softb.​
com) built by Johnson et  al. [16]. The compound struc-
tures in this library are based on the simplified molecular 
input line entry system (SMILES), a type of specification 
for describing the molecular structure in ASCII strings 

Fig. 1  Overview of the study design. The CGIPs of M. tuberculosis consist of growth inhibitions (in Z-scores) of ~ 50,000 chemicals against 152 M. 
tuberculosis mutant strains (hypomorphs). The gene-level clustering was first achieved through the following processes: homology search in BLAST, 
gene semantic similarity computation, and cluster identification using dynamic tree cut. Using the clustered data, we trained a directed message 
passing network, which learned a molecular graph for each compound from the molecular features generated by RDKit. Next, we measured the 
performance on the test set and applied the model on several curated chemicals for further evaluation

https://www.chemicalgenomicsoftb.com
https://www.chemicalgenomicsoftb.com
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[19]. The CGIP data includes maximum likelihood esti-
mates of natural log fold change (LFC) of mutant strain 
abundance counts in each compound-strain combination 
compared to a dimethylsulfoxide (DMSO) solvent con-
trol. Larger absolute values of LFC indicate a larger differ-
ence in mutant strain abundance between two conditions 
(experimental compound vs. DMSO control). For each 
compound-strain combination, several types of statisti-
cal measures of the LFC are included, such as standard 
error of LFC, Wald test Z-score and p value [16]. Wald 
test Z-scores were used as a measure of strain fitness by 
dividing each LFC value by the respective standard error 
of the LFC estimate, and was assumed to follow a stand-
ard normal distribution [20]. The smaller the Z-score, the 
more significant is the growth inhibition of a molecule on 
the target. In this work, we construct our CGIPs with the 
usage of Z-scores measure across all the strains for every 
compound, as shown in Fig. 1.

Gene clustering
Before importing the training dataset, we clustered the 
genes into groups based on biological similarity. This was 
done for two reasons: the first is that clustering reduces 
the total number of tasks that a machine learning model 
must learn and predict. Given the 152 genes in the data-
set, training a multi-label algorithm with such a large 
number of targets is laborious and inefficient. In addi-
tion, it may be difficult to interpret the results due to the 
possible absence of an underlying correlation between 
the results. By clustering, genes with similar biological 
properties (i.e., gene function) can be trained on together 
instead of treating every gene as an individual category. 
Secondly, we rationalized that hypomorphs in genes from 
the same group may behave similarly when treated with 
different drugs. We used the following steps to categorize 
genes into clusters with biologically significant features 
(Fig. 1).

Homology search
Homology is referred to as having a common ancestor 
among species, and homologous genes are those which 
share a common ancestral sequence [21]. Genes can be 
clustered based on semantic comparison of biological 
functions contained in their gene ontology (GO) cat-
egory, the standard and systematical annotation of genes 
and their products [22]. Bioconductor provides genome-
wide annotations for 20 organisms wrapped in OrgDb, a 
series of R packages that store genome annotations for 
organisms based on mapping with entrez gene and GO 
identifiers [23]. However, M. tuberculosis is not included 
in the 20 organisms that Bioconductor offers. Thus, prior 
to computing gene similarity for M. tuberculosis, we 
first had to identify homologous genes present with the 

OrgDb dataset. Based on the closest phylogeny, we chose 
E. coli strain K12 [24].

The Basic local alignment search tool (BLAST) is one 
of the most widely used methods for sequence similar-
ity comparisons, including DNA and protein sequences 
[17]. In this study, we found the M. tuberculosis H37Rv 
(RefSeq accession NC_000962.3) homologs in E. coli K12 
(RefSeq accession NC_000913.3) using the BLAST avail-
able at the National Center for Biotechnology Informa-
tion (NCBI). Protein–protein alignments were executed 
with expectation values (E-value) < 0.01, a threshold com-
monly used for inferring homology [25]. The unique pro-
tein reference sequence IDs in the BLAST result were 
matched with the gene symbols and an output file was 
generated, containing the M. tuberculosis genes and cor-
responding homologous genes in E. coli K12.

Semantic similarity computation and hierarchical clustering
Having a homologous gene list in E. coli K12, we used 
GOSemSim [26], an R package developed for seman-
tic comparisons of GO terms, to compute similarities 
between the genes. Utilizing the functions in GOSem-
Sim, the GO data associated with the biological process 
(BP) was introduced for measuring semantic similarity. 
A biological process in GO is defined as a phenomenon 
mediated by one or multiple gene products and marked 
by a change leading to a specific outcome [27]. Next, the 
pairwise semantic similarities were computed taking the 
graph-based similarity measure algorithm proposed by 
Wang et al. [28].

In bioinformatics, hierarchical clustering is a data min-
ing method commonly used to detect highly correlated 
objects and categorize them into clusters. Objects are 
iteratively merged together during the hierarchical clus-
tering process. It is an excellent method for exploratory 
data analysis, especially with high-dimensional data [29, 
30]. In addition, it provides visualization capabilities and 
does not require pre-specifying the number of clusters, 
allowing greater flexibility in clustering tasks. We used 
hierarchical clustering with the average-linkage option, 
in which the distance between clusters is considered the 
average distance between all object pairs [31]. Hierarchi-
cal clustering constructs a data structure called a hierar-
chical clustering tree (dendrogram), where branches of 
the tree correspond to gene clusters. The dendrogram 
provides information on how objects are iteratively 
merged, as well as the merging height at each step.

Dynamic tree cut
Different types of tree cutting algorithms were pro-
posed to determine in which cluster each object belongs 
according to the dendrogram [18, 32]. The most common 
and intuitive method of tree cutting is the fixed height 
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branch cut. Depending on the data sets, a suitable height 
needs to be manually determined, and each successive 
branch of objects below the assigned height is perceived 
as a distinct cluster.

Nevertheless, the fixed height branch cut strategy 
does not work well in complex data structures. It is dif-
ficult to find a singular cutting height that divides all 
prominent branches if the dendrogram consists of nested 
clusters. To address this challenge, the dynamic tree cut 
was proposed by Langfelder et al. [18]. During the merg-
ing process of the dynamic tree cut algorithm, branches 
are formed from the bottom to the top of a dendrogram 
by applying four shape criteria: (1) satisfy the minimum 
number of objects; (2) low-merged objects need to be 
tightly connected; (3) clusters are separated by the gap 
between branches; (4) objects of the same branch would 
be excluded if they are too far away from the branch [18]. 
Conducting the dynamic tree cut with assigning param-
eters such as minimum cluster size, we can now cluster 
the homologs of M. tuberculosis H37Rv in E. coli K12.

Annotation of gene clusters
To better interpret and elucidate the biological proper-
ties of gene clusters, we assigned annotations to each 
cluster inferred by the biological functions of the genes 
contained within it. Specifically, we first matched the 
gene products of M. tuberculosis H37Rv and retrieved 
their protein reference sequence IDs from NCBI. Next, 
the reference sequences were submitted to the eggNOG-
mapper v2 server [33], to assign robust functional anno-
tations (e.g., gene name, function, GO category, Cluster 
of Orthologous genes (COG) category) [34]. COG cat-
egories are concise classifying annotations for proteins 
into one, or more, of 26 functional categories. Consid-
ering the prevailing gene functions and COG categories 
in the clusters, we thereby assigned a name to each M. 
tuberculosis gene cluster [35].

Deep learning models for predicting CGIPs
Molecular representations
The architectures for molecular property prediction tasks 
are primarily categorized into three domains: deep neu-
ral networks, graph convolutional neural networks, and 
recurrent neural networks [36]. In general, the three 
approaches utilize molecular fingerprints/descriptors, 
molecular graphs, and textual representation of com-
pounds respectively. Learning from various molecular 
representations, models can extract latent features of 
compounds and predict chemical properties according to 
different assignments.

In this work, we mainly exploit graph-based learning 
methods (Fig.  1). Unlike architectures that learn from 
the fixed featurization for entire molecules, graph-based 

neural networks learn and construct internal relation-
ships between chemical properties and molecular struc-
tures directly. Applying to the QSPR/QSAR tasks, GCNs 
treat chemical structures like graphs, where nodes corre-
spond to atoms and edges represent chemical bonds or 
other chemical interactions between them. Specifically, 
molecules are described as undirected graphs G with 
node features xv and edge features evw . Since featuriza-
tion of GCNs is generated in accordance with atoms 
and bonds, the atom/bond features are also referred to 
as the local features of molecules. In contrast, the mole-
cule-level descriptors/fingerprints are denoted as global 
features.

D‑MPNN architecture
Message passing neural networks (MPNNs) are catego-
rized as variants of graph-based approaches, and the ter-
minology was summarized by Gilmer et al. [12]. MPNNs 
comprise the message passing phase to iteratively aggre-
gate local information of the molecular graph. The read-
out phase then constructs a global representation of the 
graph to make predictions on chemical properties. That 
is, each atomic featurization is updated by summing the 
information of neighboring atoms, as well as edge fea-
tures. After T  message passing iterations, the learned 
hidden state across the molecule is fed into another non-
linear activation to produce a single featurization for the 
whole molecule, which can be used for different predic-
tion tasks. With the gradients of the loss function back-
propagated through two phases, the MPNN is trained 
end-to-end.

Our study used a variant of MPNNs, directed mes-
sage passing neural network (D-MPNN) [14], as our pri-
mary model (Fig. 1). Comparing to previously proposed 
MPNNs, D-MPNN considers messages associated and 
transferred through molecular bonds instead of atoms. 
Performing graph convolutions centered on bonds can 
avoid unnecessary loops during the message passing 
phase, enabling the network to build more informative 
and efficient molecular representations. The codes for 
D-MPNN was developed in Chemprop [37], which uses 
PyTorch [38] as the deep learning framework.

D‑MPNN with global features
Although constructing structural information of mole-
cules through graph encoders is prominent, it also comes 
with limitations compared to the networks that use fixed 
molecular descriptors. For instance, MPNNs suffer more 
to learn and extract structural information from mol-
ecules if the dataset is insufficient, which may lead to the 
problem of overfitting and cause poor predictions. Fur-
thermore, since bond messages are conveyed through a 
molecule in T  iterations, the local information is hard to 
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be passed to the entire graph. Therefore, by introducing 
global features such as molecular fingerprints or descrip-
tors into the second phase of MPNN, the network can 
incorporate the advantages of a network trained with 
descriptors and improve the performance [14]. For this 
reason, we used 200 molecular descriptors generated by 
the RDKit package [39] and incorporated the features 
into the network by concatenating them with the graph 
representations at the readout phase of D-MPNN. Prior 
to integrating into the model, the 200 descriptors were 
normalized by the cumulative density functions (CDFs) 
to prevent the features with a broader range of values 
from governing the prediction.

Model optimization and training procedure
Two techniques frequently used for model optimizations 
in ML, hyperparameter optimization and ensembling, 
were also utilized. Bayesian optimization (BO), which 
was implemented in the Hyperopt package [40], was first 
operated to decide the optimal values of hyperparam-
eters in D-MPNN [41]. In general, Bayesian optimiza-
tion creates a probability model of the objective function 
and optimizes parameters by taking into account the 
prior information and continuously updating the current 
combination of hyperparameters. The four hyperparam-
eters in D-MPNN: dropout probability, number of the 
message passing iterations, hidden size, and number of 
feed-forward layers were determined by running Bayes-
ian optimization for 30 epochs in 20 iterations (Table 1). 
Ensembling, on the other hand, is realized by training the 
model several times with different initial weights [42]. 
The results of ensembling were averaged together, aiming 
to find an optimal and robust prediction.

We adopted the data splitting strategy where a whole 
dataset is divided into three subsets (training set, vali-
dation set, and test set) following the ratio of 80:10:10. 
Normally, samples are randomly distributed in the three 
subsets following specific ratio (random splitting). In this 
study, we used a scaffold splitting [13], which imposes 
the subsets of data to share less molecular scaffolds. In 
particular, during the splitting process, RDKit [39] calcu-
lates a Murcko scaffold score for every molecule and they 
are partitioned into three subsets based on the scaffold 

scores. By doing so, compounds between bins share little 
molecular scaffolds, and thus fulfilled the scaffold diver-
sity and represent a more challenging and realistic con-
text for model evaluation [43].

After gene clustering, each molecule corresponds to 
multiple clusters and the prediction of each gene group 
is mutually independent, thus forming a multi-label 
task. The last layer of the model was set to a vector with 
the number of tasks, corresponds to gene clusters. As 
our goal was to predict the growth inhibitory activity 
of molecules in M. tuberculosis clustered hypomorphs, 
we treated the multi-label task as a binary classification 
by applying the sigmoid function to the last layer of the 
model and trained with binary cross-entropy loss. With 
the optimized hyperparameters, five models with differ-
ent initial weights were trained and ensembled to gener-
ate the prediction with more robustness. The output of 
each unit varies from 0 to 1, which can be interpreted as 
the probability of growth inhibitory activity occurring in 
each hypomorph cluster.

Model evaluation strategies and metrics
Label based metrics were used for the multi-label evalu-
ation where the metrics for each subset were computed 
individually and they were macro-averaged to obtain the 
overall results. We consider the area under curve (AUC) 
of receiver operating characteristic (ROC) curve, abbre-
viated as AUROC, as our primary performance metric 
for classification tasks. ROC is a comprehensive indica-
tor of continuous variables of sensitivity and specificity, 
it can be viewed as an infinite number of points, and each 
of these points represents a classifier. Given the predic-
tion of consecutive scores, we binarized the result in the 
decision-making process to derive the activity of com-
pounds against each gene cluster. In binary classifica-
tion, the most commonly used threshold for identifying 
classes is 0.5. In this work, because of the class imbal-
ance in our data, we performed threshold-tuning using 
Youden’s J statistic [44]. Specifically, based on the ROC 
curve for each cluster on the validation set, the optimum 
cutoff falls on the location where the sensitivity plus 
specificity minus one is maximized. Besides AUROC, 
one of the most commonly used metrics for classification 
with imbalanced data, the area under the curve of the 
precision-recall cure (AUPRC) was also presented. Hav-
ing the determined thresholds for each cluster, accuracy 
and F1 score were calculated.

Baseline models
We compared the D-MPNN with RDKit descriptors 
with five baseline models under different combinations 
of DL architectures and molecular features. The base-
line architectures include D-MPNN, generic MPNN 

Table 1  Bayesian optimization for hyperparameters in D-MPNN 
with RDKit descriptors

Hyperparameters Values

Dropout probability [0, 0.4] (Interval: 0.05)

Number of message-passing iterations 2, 3, 4, 5, 6

Number of feed-forward layers 1, 2, 3

Hidden size of D-MPNN [300, 2400] (Interval: 100)



Page 7 of 17Liu et al. Journal of Cheminformatics           (2022) 14:12 	

where atom/bond messages are conveyed on the undi-
rected graphs, and feed-forward neural network (FFN). 
The calculated global features include RDKit descriptors 
and binary Morgan fingerprints. For graph-based mod-
els, we also presented the results of training without the 
global features. Specifically, there are six model settings 
trained and evaluated in this study: (1) D-MPNN with 
RDKit descriptors; (2) D-MPNN; (3) MPNN with RDKit 
descriptors; (4) MPNN; (5) FFN with RDKit descriptors. 
(6) FFN with binary Morgan fingerprints. For consist-
ency, the hyperparameters of all models were optimized 
by Bayesian optimization on the scaffold split. All models 
were trained with an ensembling size of five.

Results
Gene clustering analysis
After performing the homology search between M. 
tuberculosis and E. coli through BLAST and the protein 
sequence alignment with E-value < 0.01, we obtained 122 
homologous genes in E. coli strain K12 that correspond 
to the genes in M. tuberculosis. Additional file 2: Table S1 
provides the complete list of 122 available genes for both 
organisms, including their products represented in the 
protein reference sequence. Using functions wrapped 
in the package GOSemSim [26], the GO data was pre-
pared with biological process. The semantic similarities 
among GO terms were then calculated with the graph-
based similarity measurement proposed by Wang et  al. 
[28]. After performing all the preceding procedures, 
we obtained 107 E. coli K12 homologs remained for 
clustering.

Based on the semantic similarity matrix of homologs, 
the hierarchical clustering with the average-linkage was 
performed using the hclust function [45]. It constructed 
a hierarchical clustering tree containing 107 homolo-
gous genes. We applied the dynamic tree cut algorithm 
to determine the gene clusters based on the dendrogram 
and the dissimilarity matrix. Figure 2 shows the heatmap 
and dendrograms of the homologous genes in the E. coli 
K12 strain, together with the result of the dynamic tree 
cut represented in the color bars below the dendrograms. 
In the dynamic tree cut algorithm, we limited the mini-
mum cluster size to 5 and enabled the parameter parti-
tioning around medoids (PAM) to assign more outlying 
objects into clusters. Thus, we clustered the genes into 
13 groups and each module color in the color bars shows 
cluster membership as determined by the dynamic tree 
cut algorithm. Genes with closer similarity values formed 
checkerboard-style blocks in the heatmap and they were 
grouped into the same gene cluster by the dynamic tree 
cut approach.

Subsequent to clustering, we applied the same graph-
based similarity measurement proposed by Wang et  al. 

[28] to calculate the pairwise semantic similarity scores 
among the 13 gene clusters. Additional file 1: Fig. S1 visu-
alizes the pairwise similarity matrix of generated results. 
The matrix is diagonally symmetrical, the more simi-
lar two gene clusters are, the greater the value between 
them. According to the similarity matrix, most gene clus-
ters have similarity scores ranging from 0.2 to 0.5. Clus-
ter 4 and cluster 5 have the least similarity score between 
them (0.13), while the highest cluster-level similarity is 
found between clusters 4 and cluster 7 (0.59).

Given the clustering results based on the homolo-
gous genes in E. coli, we then substituted the homologs 
to the corresponding M. tuberculosis genes and formed 
the clustering results containing 13 distinct M. tubercu-
losis gene groups. Notably, during the homology search 
in BLAST, the M. tuberculosis genes fadD30 and fadD32 
aligned to the same homologous gene fadD in E. coli. 
Similarly, M. tuberculosis kasA and kasB showed homol-
ogy to the E. coli fabF. Therefore, although 107 homologs 
exist in the dendrogram, a final clustering result consist-
ing of 109 M. tuberculosis genes was obtained.

Taking the protein sequences retrieved from NCBI as 
input, the eggNOG-mapper [33] generated annotation 
for genes and their COG categories. We then gave anno-
tations for clusters according to their biological proper-
ties inferred by gene functions in them. Table 2 lists the 
given cluster names, the number of gene members, and 
the COG categories for each cluster. The complete sum-
mary of M. tuberculosis gene functions can be found in 
Additional file  3: Table  S2, which includes additional 
information on gene names, protein reference sequence 
ID, and gene functions.

D‑MPNN for classifying chemical compounds
Data preparation
As stated in the previous section, the Wald test Z-score 
of LFC measures the magnitude of growth inhibitory 
activity for each compound against M. tuberculosis hypo-
morphs. In order to perform binary classification on 
the activities of the molecules, a threshold of Z-score is 
required to assign binary labels for each compound in 
every M. tuberculosis gene cluster. Deciding an appropri-
ate cutoff for Z-score is critical, as the accuracy of predic-
tions would be affected if compounds were added to the 
categories that share little traits with other compounds. 
Having several experiments on different Z-score thresh-
olds in an unsupervised way, we decided to use −  4 as 
the class criteria. Specifically, a Z-score less than or equal 
to −  4 was considered to have an inhibitory effect and 
labeled with 1. In contrast, a Z-score greater than −  4 
was marked with 0, indicating the chemical has no activ-
ity toward the target.
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Fig. 2  Clustering result of homologous genes in E. coli K12 displays in a heatmap, dendrograms, and color bars. The heatmap and dendrogram 
were generated by hierarchical clustering with average linkage. The heatmap is symmetrical about the diagonal, the more similar two homologs 
are, the closer the value between them is to 1 (red). The two dendrograms and their color bars on the top and left sides of the heatmap are 
identical. The vertical distances on each branch of the dendrogram indicate the relatedness of genes. Applying the dynamic tree cut algorithm on 
the tree, the clusters were formed as shown in the color bars below the dendrograms. The 13 gene clusters are represented in different modules in 
the color bar

Table 2  Cluster name, number of genes, and COG categories for M. Tuberculosis gene clusters

Clusters (C) Cluster name # Gene COG categories

C1 Tricarboxylic acid cycle and central carbon metabolism 9 O; C; E; F

C2 Translation and tRNA synthesis 11 M; J

C3 Non-aromatic amino acid biosynthesis 13 E; H

C4 Aromatic amino acid biosynthesis 5 E; H

C5 Stress protection and pathway equilibration 9 D; O; T; U; E; G; P

C6 tRNA and nascent polypeptide modification 10 M; T; J; E; F; S

C7 Folate and purine metabolism 5 C; E; F; H

C8 DNA replication and transcription regulation 9 K; L; H; I; O

C9 Lipid and lipid cofactor synthesis 11 F; H; I; Q

C10 Glycolysis and gluconeogenesis 8 C; E; F; G

C11 Peptidoglycan and precursor synthesis 6 D; M; G

C12 Purine and pyrimidine metabolism 8 M; F; G

C13 Porphyrin-compound synthesis 5 H
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To summarize, calculating molecular scaffolds and 
splitting the dataset with the subsets ratio, 47,217 com-
pounds from Johnson et  al. [16] were divided into a 
training set (37,773 compounds), a validation set (4721 
compounds), and a test set (4723 compounds). In order 
to perform the classification task on the molecules after 
clustering the genes, it was necessary to create the clus-
ter-level targets for each molecule. To achieve this, for 
each cluster, we took the median of Z-scores that were 
contained in the cluster as the cluster-level targets. Addi-
tional file 1: Fig. S2 shows the distribution of Z-score in 
each cluster in the form of kernel density estimate plot. 
Next, we applied Z-score = −  4 as the class criterion to 
binarize labels for classification. Table 3 lists the number 
of positive labels in each cluster for the three subsets. It 
is clear that the positive labels for each cluster had also 
been divided into the data bins in proportion to the ratio 
(80:10:10) after the scaffold splitting. For the whole data, 
the average percentage of positive labels across clusters 
is 4%.

Model performance of D‑MPNN classifier
To evaluate the performance of our models, we drew the 
ROC curves of the validation set as shown in Fig.  3A, 
in which ROC curves of 13 clusters were plotted in the 
exact coordinates. The averaged AUROC score across 13 
clusters achieved 0.80 on the validation set. The red dots 
on the ROC curves denote the position of the optimum 
cutoffs as identified by Youden’s J statistic [44]. To keep 
a fair and consistent comparation in predicted results, 
the cutoffs for the test set and the curated compounds 
were also determined by the cutoffs calculated in the 
validation set. The average threshold across clusters is 
0.05. Comparing to the default cutoff 0.5, the optimized 
thresholds are more lenient and thus the model tends to 
classify more positive classes after the threshold-adjust-
ing. The complete summary of cutoff for each cluster can 
be found in Additional file 1: Table S3. The ROC curves 
of gene clusters measured on the test set are presented in 
Fig. 3B, in which the averaged AUROC is 0.82.

We also evaluated the performance of the multi-label 
classifier in the form of confusion matrices after bina-
rizing the prediction of the test set using the optimum 
cutoffs acquired from the validation set (Fig.  4). The 

confusion matrix for binary classification consists of four 
entries, where top left results for true negatives (TN), top 
right results for false positives (FP), bottom left results 
for false negatives (FN), and bottom right results for true 
positives (TP). Similar to the imbalanced classes distri-
bution in the data, here we observed that the classifier 
also generated more results in the inactive class (73%) 
than the active (27%). Regarding the accuracy, the aver-
age accuracy of thirteen clusters is 0.75, of which cluster 

Table 3  Number of active molecules in the scaffold split after binarization of labels

Clusters (C) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

# Active in training set 1246 994 1281 1583 1542 1322 1554 1509 1256 1258 2373 1290 1968

# Active in validation set 168 140 174 216 209 185 218 195 168 163 287 183 258

# Active in test set 153 133 158 216 182 182 207 196 178 164 279 184 300

# Active in total 1567 1267 1613 2015 1933 1689 1979 1900 1602 1585 2939 1657 2526

Fig. 3  Receiver operator characteristic curves from the predictions 
of D-MPNN with RDKit descriptors. A Validation set. B Test set. The red 
dots in A represent the optimum cutoffs determined by Youden’s J 
statistic on the validation set
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7 achieving the highest (0.83) and cluster 2 the lowest 
(0.63).

Performance of baseline models of classification
We first compared the performance of the D-MPNN 
with RDKit descriptor to the five baseline models on the 
test set of the scaffold split. The AUROC scores for all 
classification models in each individual cluster are shown 
in Fig. 5A, where only the values for the D-MPNN with 
RDKit descriptors are displayed. Regardless of whether 
additional molecular descriptors were concatenated, the 
D-MPNN classifiers topped in the overall performance in 
terms of AUROC. With the assistance of RDKit descrip-
tors, the D-MPNN classifier achieved the highest scores 
in all clusters. In general, the MPNN classifiers are the 
second-best right next to the D-MPNN among clus-
ters, except for cluster 9 and cluster 11. From Fig. 5A, it 
is obvious that all six models had the most difficulties in 
the classification tasks for cluster 7 and cluster 11. Fig-
ure  5B shows the averaged AUROC, AUPRC, accuracy, 
and F1 score over all clusters. the D-MPNN with RDKit 
still outperformed or on par with baselines according 
to the value of AUROC (0.82), accuracy (0.75), and F1 
(0.19). However, the best AUPRC (0.30) occurred in the 
FFN trained by binary Morgan fingerprints. The two FFN 
models trained with different global features achieved 
very close results, acquiring the same AUROC (0.78) and 

F1 (0.17). The performance details for all clusters and 
models can be found in Additional file 1: Table S3.

Besides evaluating the models on the data subsets par-
titioned by the scaffold splitting, we further adopted a 
ten-fold cross-validation (CV) approach with random 
splitting to decrease the noise in the results for compari-
son purposes (Additional file  1: Fig. S3, Table  S4). The 
thresholds of gene clusters were aligned with the values 
obtained from the validation set of the scaffold split. The 
performance results were averaged over the ten-fold 
and the error bound for a population mean (EBM) at 
the 95% confidence level (Student’s t-distribution) were 
calculated. In high agreement with the previous results, 
the D-MPNN with RDKit descriptors has consistently 
exhibited the best performance in all clusters according 
to AUROC (Additional file  1: Fig. S3A). Regarding the 
effect of adding the 200 RDKit descriptors, while the per-
formance improvement of the D-MPNN was observed 
in every gene cluster, the MPNN yielded slightly inferior 
performance with the incorporation of the features. For 
the averaged performance over all clusters and CV folds 
(Additional file  1: Fig. S3B), the D-MPNN with RDKit 
descriptors achieved the highest AUROC (0.79 ± 0.01), 
AUPRC (0.29 ± 0.02), and F1 (0.19 ± 0.01). On the whole, 
with the exception of the accuracy of the FFN trained on 
the binary Morgan fingerprints, the EBM at the 95% con-
fidence level of metrics were all constrained within 0.02, 

Fig. 4  Confusion matrices of the predictions of D-MPNN with RDKit descriptors for each gene cluster on the test set. In each matrix, top left results 
for true negatives (TN), top right results for false positives (FP), bottom left results for false negatives (FN), and bottom right results for true positives 
(TP)
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indicating the results of different folds were well con-
verged and reasonable comparisons can be made.

Discussion
Accurate prediction of the potential bioactivity along 
with the potential target information would empower 
informed compound selection and prioritization, 
eliminating the need for expensive and laborious high 
throughput screening of compound libraries. Here, 
we developed a well-integrated approach for predict-
ing MOA with the use of the large-scale M. tubercu-
losis CGIPs [16]. The clustering employed the gene 
ontologies of annotated homologs in E. coli K12 and a 

graph-based model was trained in an end-to-end man-
ner to predict the cluster-level growth inhibitory activi-
ties from the learned molecular representations. Due 
to the lack of a ground truth for unsupervised clus-
tering, we calculated the pairwise semantic similarity 
scores of clusters using the method proposed by Wang 
et al. [28] and inferred their biological functions of the 
genes within the clusters, in an attempt to validate the 
results and interpret the biological meanings behind 
the clusters. Although it is a more intuitive and sim-
pler way to classify the M. tuberculosis genes based on 
the Wald test Z-scores of the LFC estimate directly, we 
carried out clustering without involving the CGIPs for 

Fig. 5  Classification metrics for the D-MPNN with RDKit descriptors and baseline models on the test set. A AUROC scores in each cluster for all 
models, only the values of the D-MPNN with RDKit descriptors are displayed. B The averaged metrics (AUROC, accuracy, AUPRC, F1) over clusters for 
the D-MPNN with RDKit descriptors and other baseline classifiers
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two reasons. First, we intended to leverage the exter-
nal knowledges to yield biologically meaningful gene 
classes. Second, since we would train growth inhibition 
prediction models on the Z-score, repeated use of these 
values in two phases would amplify the impact of pos-
sible experimental artifacts from the data.

In our experiments, the complexity of models was 
primarily determined by the hidden size and the num-
ber of feed-forward layers, which were both optimized 
by Bayesian optimization. Additional file  1: Table  S5 
lists the summary of hyperparameters and the number 
of model parameters for the compared models. Among 
all models, the FFN with RDKit has the fewest number 
of parameters (~ 0.3  M) while the MPNN with RDKit 
has the largest number of parameters (~ 5.7  M). Nev-
ertheless, the performance advantages of the MPNNs 
do not necessarily come at the expense of models’ com-
plexity. For example, compared to the FFN with Mor-
gan Bits that has about 2.3 M parameters, the baseline 
model D-MPNN contains fewer number of parameters 
(~ 1.5  M), but it consistently outperformed over all 
other baselines in terms of AUROC. The major advan-
tage of the MPNNs over the traditional DL architec-
tures such as FFN is that they can efficiently extract 
relevant representation of molecules tailored to the 
desired properties. For instance, topologically adjacent 
atoms are more likely to interact with each other and 
in some cases can form functional groups. This type of 
information could be potentially reflected on the ini-
tial atom and bond features. By iteratively aggregating 
local information of molecules during the molecular 
representation learning process, the MPNNs are able 
to encode all substructures with greater flexibility, and 
thus form global representation that is essential to the 
target predictions.

According to the evaluation on the test set of the scaf-
fold split and the ten-fold CV, the D-MPNN with RDKit 
classifier achieved greater or comparable performance 
for every cluster compared to baseline models accord-
ing to all computed metrics. It showed the strengths of 
learning molecular representations through graphs with 
directed messages, indicating that the model has learned 
to associate chemical properties to growth inhibition of 
particular clustered hypomorphs, which relates to the 
MOA of the compounds. Despite the average accuracy 
of clusters on the scaffold-based test set was 0.75 after 
we binarized the predictions, it is worth stating that the 
average accuracy could reach to 0.96 if we use 0.5 as the 
thresholds. Still, we chose more lenient cutoffs to reduce 
the number of false negatives in the prediction and mini-
mize the effect of the skewed class distribution of data 
albeit with relatively poorer results in terms of accuracy 
and precision.

To investigate the effectiveness of our method with 
compounds outside of the Johnson et  al. data [16], we 
evaluated additional drugs curated from the literature 
(Additional file  4: Table  S6). These compounds were 
selected based on (1) whole-cell inhibitory activity 
against wild-type M. tuberculosis or M. smegmatis and 
(2) biochemical validation of the molecular target. For 
each compound, we assigned positive labels (1) to the 
cluster in which the M. tuberculosis target-coding gene 
was within that cluster. This assignment was based on 
the hypothetical scenario that the drug affects the sus-
ceptibility of the hypomorph with depletion of the target 
essential protein. Next, we generated the prediction for 
the compounds by the trained D-MPNN classifier. Apply-
ing the cutoffs derived from ROC curves of the validation 
set, we finally assigned binary labels to the prediction. 
In a multi-label classification scenario, a classifier could 
take or generate more than one positive label for each 
sample. Nevertheless, because the complete chemical-
genetic profiles of these selected inhibitors are unknown, 
we were only able to assign true-positivity, as the growth 
inhibitory activity against the other hypomorphs remains 
unknown. Here, we investigate ten examples of such M. 
tuberculosis inhibitors (Fig.  6), including correct and 
incorrect predictions. To better visualize the cluster-level 
labels and results, we show the predicted results of ten 
M. tuberculosis inhibitors predicted by the D-MPNN 
classifier in a form of heatmap with a four colors scheme 
(Fig. 7).

Figure 6A–F displays the structures of the six drugs for 
which the growth inhibitory activities against specific 
genes were correctly identified by the D-MPNN classifier. 
These predictions are shown in the first six rows of the 
heatmap (Fig.  7). Octoclothepin (Fig.  6A) is an antipsy-
chotic drug that has been found to function as an ATPase 
inhibitor of ParA, a chromosome partitioning protein in 
the M. tuberculosis [46]. ParA interacts with the DivIVA 
complex and cell wall metabolism, demonstrating high 
order linkages in the cell cycle [47]. Among all clusters, 
the model predicted octoclothepin to exhibit activity in 
ten groups, including Cluster 5, where parA is located. 
Similarly, amsacrine (Fig. 6B) was predicted to be active 
against all gene clusters, despite the fact that topA (in 
cluster 8) is the only known in vitro target in M. tuber-
culosis [48]. DNA replication is a central process that 
contributes to cell cycle regulation, among other factors 
[49]; therefore, we infer this might be the reason that the 
model predicted octoclothepin and amsacrine as active 
against multiple groups in addition to their ground truth 
targets

The genes leuS and aspS are in Cluster 2 and both 
belong to the same COG category (Translation, J). Com-
pound 14_palencia (Fig.  6C) inhibits LeuS by forming 
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an adduct with AMP and together binding the ATPase 
pocket [50]. The positive labels of prediction for this 
compound not only appeared in Cluster 2, but also in 
the other six clusters (Cluster 1, 5, 8, 9, 10, 13). On the 
basis of the properties of the compound 14_palencia and 
the predictions of the model, we hypothesize that the 

drug might also antagonize ATPases in other classes, 
such as GyrA (Cluster 8), GyrB (Cluster 8), ParA (Clus-
ter 5), MenE (Cluster 9). Three AspS inhibitors GSK85A, 
GSK92A, GSK97C (Fig. 6D–F) [51] were predicted to be 
active in all gene groups. The three inhibitors have lit-
tle in common besides being linear, highly flexible, and 

Fig. 6  The prediction results of the example drugs. Drugs that were correctly predicted by the D-MPNN with RDKit descriptors classifier as growth 
inhibitors of hypomorphs within the target gene groups (Top black box). Name and structure of compounds with false-negative predictions 
(Bottom grey box). A Octoclothepin is an ATPase inhibitor of ParA in Cluster 5. B Amsacrine is an inhibitor of TopA in Cluster 8. C Compound 14_
palencia is an inhibitor of LeuS of in Cluster 2 (D–F) Three AspS (in Cluster 2) inhibitors (GSK85A, GSK92A, GSK97C) were predicted to be active in all 
gene groups. G, H Actinonin and BB-3497 are two inhibitors of Def in Cluster 6. (I, J) SC-6655281 and VCC234718 inhibit GuaB2 in cluster 12
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highly functionalized, which may contribute to their pre-
dicted activity against all gene groups.

Among the curated compounds we collected, we 
also present four examples of false negative predic-
tions (known in  vitro activity, but predicted to be inac-
tive) (Fig.  6G–J, Fig.  7). The compounds actinonin and 
BB-3497 are known to inhibit M. tuberculosis Def in 
Cluster 6 (Fig.  6G, H) [52]. Nevertheless, the model 
missed the ground truth for these compounds. Moreover, 
they were not predicted as active against any other gene 
groups (except Cluster 11 for BB-3497). The two drugs 
share some similarities as they are both small and pep-
tide-like. Additionally, both SC-6655281 and VCC234718 
inhibit M. tuberculosis GuaB2 in Cluster 12 (Fig.  6I, J) 
[53, 54]. However, the D-MPNN classifier predicted that 
neither molecule had activity within any gene cluster. Just 
as any other false negative predictions, this phenomenon 
is very likely due to the fact that there is the absence of 
this type of compounds in our training set or the model 
itself failed to learn enough information to make the cor-
rect prediction.

We note that due to the extremely imbalanced dis-
tribution of classes, we encountered similar difficulties 
in terms of precision for both test set and the curated 
drugs. Data imbalance is a common issue in ML, par-
ticularly for drug discovery, where models inevitably 
learn more characteristics of majority class as well as a 
greater tendency to predict more false positives when 
negative samples dominate positives. A great amount 
of efforts have been devoted to address the problem, 
but the existing methods still have shortcomings and 
the problem has yet to be properly tackled [55]. On the 

other hand, an appropriate threshold can also largely 
affect the prediction results and model performance 
after binarization. However, in the realistic practice 
of finding potential drugs by ML models, it is usually 
unnecessary to binarize the predictions of the classifier. 
In our case, the results of a binary classifier are contin-
uous values that can be interpreted as probabilities, and 
by ranking the predicted scores, we can select the most 
promising compounds for further experiments.

To summarize, a multi-label D-MPNN classifier 
was trained on a set of gene clusters of M. tuberculo-
sis which achieved an excellent performance and out-
performed other baseline models. Besides the subsets 
from the data, we examined the D-MPNN classifier on 
multiple M. tuberculosis gene inhibitors from the exist-
ing literature and explored the possible explanations 
behind the correct and incorrect predictions of the 
ten compounds. Since an outcome of a QSAR/QSPR 
model could be influenced by various factors, such as 
the diversity of compounds in data, the capabilities and 
performance of a ML model, or the choice of thresh-
old in the phase of the decision making, it is hard to 
interpret the latent logic of a ML model rather than 
just simply accept the back-box results. However, it is 
encouragingly possible that both correct or incorrect 
predictions could become an excellent opportunity to 
investigate the MOA of compounds and even use for 
drug repurposing. Therefore, it remains necessary to 
make more efforts to improve not only the capability of 
forecasting, but also the interpretation of the model for 
future research of GCNs in the drug discovery field.

Fig. 7  Results of ten examples of M. tuberculosis inhibitors predicted by the D-MPNN with RDKit descriptors. Applying the cutoffs derived from ROC 
curves of the validation set, the predictions were binarized. In the heatmap, light green represents a positive prediction and light yellow represents 
a negative prediction. If the positive result predicted by the model matches the ground truth, the color is shown as dark green (TP), whereas if the 
result does not coincide with the label, the color appears dark yellow (FN)
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Conclusion
In this study, we provided a comprehensive workflow for 
predicting chemical genetic profiles of drugs in M. tuber-
culosis. The clustering method first matched genes of M. 
tuberculosis with those of E. coli K12 by performing pro-
tein–protein alignments. Then, we calculated the seman-
tic gene similarity of biological process for the homologs 
and performed hierarchical clustering. Utilizing the clus-
tered data, a D-MPNN architecture was employed and 
a prediction of growth inhibitory activity in each gene 
group was made. With the performance of the trained 
network and predicted results of the curated compounds, 
we demonstrate that our approach effectively created M. 
tuberculosis gene clusters, and the trained D-MPNN clas-
sifier was able to match compounds with their essential 
M. tuberculosis targets. With the analysis of gene clusters 
and growth inhibition predictions, we believe this frame-
work offers an innovative paradigm for modeling chem-
ical-genetic data towards the characterization of novel 
drug MOAs.
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