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Linguistic feedback supports rapid
adaptation to acoustically degraded speech

Wenhui Sun,1 Jiajie Zou,2 Tianyi Zhu,2 Zhoujian Sun,1 and Nai Ding2,3,*
SUMMARY

Humans can quickly adapt to recognize acoustically degraded speech, and here we hypothesize that the
quick adaptation is enabled by internal linguistic feedback – Listeners use partially recognized sentences
to adapt the mapping between acoustic features and phonetic labels. We test this hypothesis by quanti-
fying how quickly humans adapt to degraded speech and analyzing whether the adaptation process can
be simulated by adapting an automatic speech recognition (ASR) system based on its own speech recog-
nition results. We consider three types of acoustic degradation, i.e., noise vocoding, time compression,
and local time-reversal. The human speech recognition rate can increase by >20% after exposure to just
a few acoustically degraded sentences. Critically, the ASR system with internal linguistic feedback can
adapt to degraded speech with human-level speed and accuracy. These results suggest that self-super-
vised learning based on linguistic feedback is a plausible strategy for human adaptation to acoustically
degraded speech.

INTRODUCTION

Humans have the capability to rapidly adapt to recognize acoustically degraded speech.1–5 Critically, previous studies have shown that human

listeners can better adapt tomeaningful sentences thanmeaningless utterances, suggesting that top-down linguistic feedback is important for

adaptation to degraded speech.1 In other words, adaptation is enabled only when the brain can map degraded speech onto linguistic units,

e.g., words. Furthermore, although previous research has shown that top-down linguistic feedback can modulate learning, human listeners

could adapt to degraded speech without external linguistic feedback.1,3,6 In the conditions without external linguistic feedback, it is unclear

what are the factors driving adaptation. In this work, we aim to explore the potential computational strategy and hypothesize that human lis-

teners can adapt to degraded speech based on internal linguistic feedback, i.e., what the listener recognizes the degraded speech. Addition-

ally, linguistic feedback, i.e., recognizedwords, is not the only cue that can drive auditory perceptual learning, and other potential cues include

prior knowledge, attention, statistical learning.7–9 If linguistic feedback is computationally insufficient to drive speech adaptation (our alterna-

tive hypothesis), it is evident that the listeners have to integrate multiple cues during speech adaptation. In contrast, if linguistic feedback is

computationally sufficient to drive speech adaptation in the conditions we tested here, it can stimulate future studies to investigate in which

conditions speech adaptation cannot be fully explained by linguistic feedback and what other cues are actually used by human listeners.

Automatic speech recognition (ASR) is an algorithm that automatically transcribes speech, i.e., converts the speech waveform into text.

Here, we consider ASR systems based on deep neural network (DNN), which automatically learns the mapping between speech acoustic fea-

tures and words through manually transcribed speech datasets. To test our hypothesis, we utilize a computational approach by adapting the

ASR system based on its own transcription, which simulates the internal linguistic feedback and it may contain both correctly recognized

words and incorrectly recognized words. After an acoustically degraded sentence is transcribed by the ASR, we let the ASR system learn

the mapping between degraded acoustic features and the words that the ASR system transcribes. If the ASR speech recognition accuracy

significantly improves after adaptation based on its own transcription, it provides strong evidence that linguistic feedback is sufficient to drive

adaptation to degraded speech.

The idea of training an ASR system based on its own transcription is closely related to the widely applied pseudo-labeling method in the

field of ASR, which involves using a model’s own transcription of degraded speech as a supervision signal to adapt the model.10–13 Recent

advances in DNN-based ASR systems have offered a potential tool to investigate the computational strategy underlying speech recognition

behavior, as these systems have reached human-level speech recognition performance in many scenarios.14,15 Therefore, despite dramatic

differences in the implementation of ASR systems and the human brain, we utilize the ASR system to probe the computational-level principle

behind the rapid human adaptation to acoustically degraded speech.16
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Figure 1. Adaptation strategies for the human listeners and automatic speech recognition (ASR) systems

(A) Adaptation strategies for the human experiments with external feedback. In the human experiment without external feedback, the experimental procedure

only involves the transcription task.

(B) Adaptation strategies for the ASR systems using self-supervised learning and supervised learning.
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For the human experiment, we adopted a fine-grained experimental design that enabled us to track speech adaptation on a sentence-by-

sentence basis.3,17 Furthermore, human listeners adapt to acoustically degraded speech either with or without external linguistic feedback,

i.e., the correct transcription (Figure 1). We build computational strategies that can potentially simulate human adaptation with or without

external linguistic feedback. To model human adaptation without external linguistic feedback, the ASR system is fine-tuned based on its

own transcription of degraded speech. To model human adaptation with external linguistic feedback, the ASR system is fine-tuned based

on the correct transcription. We test how well these two computational speech-adaptation strategies can explain human adaptation to

degraded speech.

Specifically, we employed a two (external feedback: without vs. with)3 three (type of degraded speech: noise vocoding vs. time compres-

sion vs. local time-reversal) 3 two (difficulty: easy vs. hard) experimental design. Noise vocoding filters speech into 8 or 4 channels and re-

moves spectral detail from speech.18 Time compression alters the speech rate to 2.5 or 3.0 times, and local time-reversal impairs the time

information within a 50 or 62 ms time window (see STAR Methods: Degraded speech for details). Spectrograms of clear speech and three

easy cases of acoustic degradation are exhibited in Figure 2. In human experiments, we implemented a between-subject design, wherein

each participant was exposed to one of the 12 possible conditions. In the ASR experiments, we employed a Conformer-based ASR system

because of its proven effectiveness in ASR tasks.19 This ASR system comprised a 12-block Conformer19 encoder and a 6-block Bitransformer

decoder.20 It was pre-trained on a 10,000-h Mandarin dataset.21
RESULTS

Automatic speech recognition system using self-supervised learning achieves human-like performance

In the first human experiment, listeners adapted to degraded speech without any external feedback (refer to Figure 1A). The experiment

involved 180 participants divided into six groups of 30, each exposed to single type of acoustic degradation. In the experiment, partici-

pants transcribed a set of 30 different sentences. The first 10 were clear, while the following 20 were subjected to a type of acoustic degra-

dation (see STAR Methods: Human experiment for more details). The same experiment was also applied to the ASR system. Initially, the

ASR system adapted to 10 clear sentences. Then, starting from the 11th sentence, it began to adapt to degraded sentences. Throughout

the process, the ASR system adapted based on its own transcription (self-supervised learning). We measured speech recognition accuracy

from both human listeners and ASR systems. The speech recognition accuracy, changing as a function of the number of exposed degraded

sentences, was fitted by an exponential curve (see STAR Methods: Performance evaluation for details). We analyzed the fitted speech

recognition accuracy at the first and final degraded sentence positions, as well as adaptation speed, to characterize the adaptation

process.

Time course of the speech recognition accuracy is shown in Figure 3. The x axis was the index of the sentencewithin an experiment, and the

y axis displayed both the averaged speech recognition accuracy across a group of participants and the accuracy of an ASR system. The adap-

tation of the self-supervised ASR system mirrored that of humans without external feedback, with both showing substantial improvements in
2 iScience 27, 110055, June 21, 2024



Figure 2. Spectrograms for clear speech and degraded speech conditions for an example sentence, ‘‘公司接到一份国外订单’’ (‘‘The company received a

foreign order’’)
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speech recognition accuracy. Specifically, both the ASR system and humans demonstrate near-perfect accuracy in clear speech, with a notice-

able drop and subsequent recovery in degraded conditions (Figure 3). In all three easy cases of acoustic degradation, the fitted speech recog-

nition accuracy at the final degraded sentenceposition of humanparticipants and the ASR system is comparable, as Figure 3’s top rowdetails.

However, a notable distinction lies in the adaptation speed. The time constant of the exponential curve, indicative of the speed of adaptation

(see STAR Methods: Performance evaluation for details), varies between humans without external feedback and the self-supervised ASR sys-

tem, as shown in the ‘‘t’’ rows of Table 1. Despite this, after adapting to 20 degraded speeches, their speech recognition accuracies converge,

suggesting a similarity in overall adaptation capacity.

In hard cases involving noise vocoding (4 channels) and time compression (speed3 3.0), both humanparticipants and theASR systemeach

exhibit distinct strengths in speech recognition accuracy, as detailed in Figure 3’s bottom row. Specifically, differences in accuracy are notable

at the final degraded sentence position. The adaptation speeds, as indicated by the ‘‘t’’ rows in Table 1, are found to be comparable between

the self-supervised ASR system and humans without external feedback. In the hard case of local time-reversal (62 ms window), the ASR system

demonstrates no discernible signs of adaptation, whereas human listeners exhibit minor adaptation responses (refer to Figure 3).
External linguistic feedback is not critical for human adaptation to acoustically degraded speech

This study further assessed the influence of external linguistic feedback on human adaptation to acoustically degraded speech. In a second

experiment, human participants received external linguistic feedback (refer to Figure 1). The experiment also included 180 participants,

divided into six groups of 30 participants, each group corresponding to a single type of acoustic degradation. These participants, after typing

their responses to the degraded speech, received the correct transcription of the speech as external feedback. They were then able to listen

to the degraded speech again after knowing the correct transcription (see Figure 1).

Unpaired t-test analysis reveals that there is no significant difference between the speech recognition accuracy of humans with or without

receiving external feedback (p > 0.05, unpaired t-test, FDR corrected) in all six tested conditions. This result indicates that human adaptation

to acoustically degraded speech is not affected by external linguistic feedback (Figure 4).
Automatic speech recognition system benefits more from supervised learning than humans do

We subsequently investigated whether the ASR system gains more from supervised learning using correct transcription than humans do,

given the humans’ minimal improvement from external linguistic feedback. Statistical analysis reveals significant differences between self-su-

pervised and supervised learning of ASR systems in four conditions (noise vocoding (4 channels), p = 0.03; time compression (speed 3 3.0),

p = 0.01; local time-reversal (50 ms window), p = 9.60 3 10�6; local time-reversal (62 ms window), p = 1.09 3 10�14, unpaired t-test). For the

other two types of degraded speech, the statistical analysis shows no significant difference between these two learning strategies (noise vo-

coding (8 channels), p = 0.26; time compression (speed 3 2.5), p = 0.14, unpaired t-test).

As shown in Figure 5, the supervised ASR system improves speech recognition accuracy under all tested conditions, even in the hard case

of local time-reversal (62 ms window) that the self-supervised ASR system fails. In this difficult scenario, the supervised ASR system improves
iScience 27, 110055, June 21, 2024 3



Figure 3. Speech recognition accuracy of humans without external feedback and the self-supervised ASR system, as a function of sentence index

Sentence #1 represents the first degraded speech that the human participants hear. The experiment involved two levels of difficulty in degraded conditions,

namely easy (top row) and hard (bottom row). The speech recognition accuracy drops when the stimulus switches from clear speech to degraded speech,

and recovers to some extent when the listener is exposed to more sentences. The recovery of speech recognition accuracy is fitted by an exponential

function (black curve).
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accuracy bymore than 65% compared to the self-supervised ASR system. In comparison, human participants who received external feedback

only achieve approximately a 20% improvement over those who did not. Additionally, the supervised ASR system adapts more rapidly than

the self-supervisedASR system in the hard case of noise vocoding (4 channels) and easy case of local time-reversal (50mswindow), achieving a

similar level of accuracy while requiring fewer sentences (Figure 5).
DISCUSSION

The current study employed a DNN-based ASR system to explore how humans recognize unfamiliar degraded speech at the computational

level, followingMarr’s three levels of analysis.16 Arguably, the DNN-based ASR system has a similar computational goal as the human speech

recognition system.22,23 We have devised and assessed two computational strategies to emulate human adaptation to acoustically degraded

speech, involving with or without external linguistic feedback. We want to test whether linguistic feedback alone is computationally ‘‘suffi-

cient’’ to drive perceptual learning. It certainly does not indicate that linguistic feedback is the only cue to drive perceptual learning or

that it is the only cue that is used by human listeners. It concerns the computationally capacity of linguistic feedback – In the absence of other

feedback, can linguistic feedback alone lead to improvement in speech recognition rate that is comparable to what is observed for human

listeners? As the study shows, the answer to this question is yes.

Our results demonstrate that the self-supervised learning based on linguistic feedback is a plausible principle for human adaptation to

acoustically degraded speech. Humans can quickly learn to recognize acoustic degradation after exposure to just a few sentences, and

external linguistic feedback is not critical for their rapid adaptation. By using self-supervised learning, the ASR system can adapt to acous-

tically degraded speech in most cases. The adaptation speed and speech recognition accuracy are similar to those of humans. The ASR

system’s own transcription of speech functions as the top-down linguistic feedback that drives learning. Furthermore, the ASR system ben-

efits more from supervised learning than humans, indicating that humans are less sensitive to external feedback compared to the ASR

system.

Human speech recognition is robust against diverse forms of acoustic degradation.1,3,24,25 Consistent with previous research,1,3 our results

show that humans can quickly adapt to acoustically degraded speech after exposure to a few sentences. Furthermore, our results suggest that

the adaptation speed of human listeners varies between easy and hard conditions. Apart from locally time-reversed speech, humans adapt

more rapidly in the easy condition than in the hard condition, as shown by the fitted time constant (see Table 1). Conversely, ASR systems

adapt more rapidly in the hard conditions. Since speech with mild degradation is frequently encountered in daily life, it is possible that

the human speech processing system has learned to adapt to these mild changes. Based on the reverse hierarchy theory,26 humans

may only adapt basic auditory processing in the easy conditions but may have to adapt higher-level phonetic processing in the hard condi-

tions, and it is much more time consuming to adapt higher-level speech processing. Unlike the human speech processing system, current
4 iScience 27, 110055, June 21, 2024



Table 1. Fitted parameters of the exponential function of adaptation to acoustically degraded speech

Type Human (without feedback) Model (self-supervised) Human (with feedback) Model (supervised)

t NV (8 channels) 0.37 10.52 0.60 10.71

NV (4 channels) 4.49 3.11 2.79 0.78

TC (speed 3 2.5) 0.98 8.26 0.37 2.41

TC (speed 3 3.0) 2.97 4.43 1.60 5.39

LR (50 ms window) 2.76 155.92 2.93 2.40

LR (62 ms window) 1.35 4.17 1.16 5.77

A NV (8 channels) 90.36 96.69 91.26 96.45

NV (4 channels) 51.72 73.65 56.44 78.08

TC (speed 3 2.5) 89.48 93.61 86.87 92.03

TC (speed 3 3.0) 75.84 61.45 69.62 69.84

LR (50 ms window) 83.63 549 86.85 92.28

LR (62 ms window) 35.02 12.74 48.15 85.73

B NV (8 channels) 451.48 7.95 171.38 9.27

NV (4 channels) 61.70 86.92 76.87 206.92

TC (speed 3 2.5) 58.59 16.27 369.10 22.53

TC (speed 3 3.0) 53. 95 28.07 72.47 32.87

LR (50 ms window) 11.16 523.36 26.11 64.03

LR (62 ms window) 17.68 0.29 48.97 78.15

NV, noise vocoding; TC, time compression; LR, local time-reversal. ‘‘A,’’ ‘‘B,’’ and ‘‘t’’ are the fitted parameters of the exponential curve for a function of the form

z=A - B exp (-i/t), where t indicates the time constant, i represents the sentence position, and z is the fitted speech recognition accuracy at that position. The time

constant is inversely related to the speed of the rapid adaptation: the smaller the time constant, the faster the adaptation speed. See also Table S1.
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DNN-based ASR systems do not have a clearly defined processing hierarchy and the samples in the hard condition deviate more from clear

speech and therefore may drive stronger learning effects in DNN.23

A previous study demonstrates that performance was enhanced through the utilization of external feedback in adaptation to six-channel

noise-vocoded speech.1 A critical difference between the current study and the previous study by Davis et al.1 is that we presented very
Figure 4. Speech recognition accuracy of humans as a function of sentence index, showing minimal effects from external linguistic feedback

Lines and shaded error bars indicate means G SE. Same convention as in Figure 3.

iScience 27, 110055, June 21, 2024 5



Figure 5. Speech recognition accuracy of the ASR systems as a function of sentence index

Human data (dashed lines) are shown for comparison. Same convention as in Figure 3.
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high-context sentences and each sentence has 10 syllables while Davis et al.1 presented unambiguous sentences, each of which has a variable

number of words. It is possible that contextual information can strongly modulate the effects of external feedback. For high-context senten-

ces, the listeners can use contextual information to infer words they cannot recognize based on just auditory information, rendering the

external feedback highly redundant. Therefore, it is quite likely that the benefit of external feedback is weaker for high-context sentences

compared with low-context sentences or word lists. Additionally, the language can also make a difference. Chinese, the language tested

here, has a much smaller number of syllables compared with English, the language tested by Davis et al.,1 the smaller pool of syllables

can also provide a kind of contextual information.

Limitations of the study

Our study only tested Chinese and three types of acoustic degradation. Future studies can test whether the conclusions here generalize to

other languages and other types of speech degradation. Similarly, future studies can test different types of ASR systems and different ways

to fine-tune the systems, and even attempt to design brain-inspired methods that can better explain the human adaptation effects. Addi-

tionally, human speech perception is highly complex and the transition from clear to degraded speech may have violated the listener’s

expectation and therefore distract their attention. Future studies have to analyze whether attention and other factors can influence human

performance. Here, we only used high-context sentences, and the adaptation rate of both humans and ASR systems may vary when

listening to low-context sentences or even word lists. Future studies can explore how context modulates human and ASR adaptation

to degraded sentences.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Human and ASR data This paper https://github.com/1633347510/human-rapid-adaptation/tree/80e7238587f960aa

598285b6b772f614fd68ccc5/Human%20and%20ASR%20data

Software and algorithms

MATLAB R2016a MathWorks RRID:SCR_001622

Conformer model WeNet https://docs.qq.com/form/page/DZnRkVHlnUk5QaFdC

Cognition Cognition. https://www.cognition.run/

pvoc Ellis27 https://www.ee.columbia.edu/�dpwe/resources/matlab/pvoc/
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact, Nai Ding (ding_nai@zju.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Anonymized human behavioral data and ASR experimental data have been deposited onGitHub, with the specific URL listed in the key

resources table.

� The code used in this study can be accessed at GitHub (https://github.com/1633347510/human-rapid-adaptation.git).
� Any additional information required is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Three hundred and seventy-nine (197 females; mean age, 21.34 G 2.60 years old) normal hearing native-Mandarin listeners were recruited.

Experimental data of 19 human listeners were excluded due to unexpected interruptions during the experiment. The experimental protocol

received approval from the Ethics Committee of the College of Biomedical Engineering and Instrument Sciences, Zhejiang University (No.

2022-001). Each participant was informed of the content of the experiment before data collection and received monetary payments after

the experiment for their participation.

METHOD DETAILS

Degraded speech

Three types of degraded speech were used in our experiment, which were representatives of degradation produced by manipulating the

acoustic information in spectral (noise vocoding) and temporal (time compression, local time-reversal) domains.3,18,27 Every type of degraded

speech had two levels of difficulty: easy and hard, resulting in six unique acoustic degradation scenarios. The varying difficulty levels posed

different challenges to speech intelligibility, enabling us to gain amore comprehensive understanding of adaptation to acoustic degradation.

Importantly, since these types of acoustic degradation, especially local time-reversed speech, are relatively uncommon for both human lis-

teners and ASR systems, we leveraged these manipulations to study the adaptation processes of both human listeners and ASR systems.

For the noise vocoding condition,18 speech was first decomposed into 8 or 4 frequency bands with cutoff frequencies equally spaced on

the equivalent rectangular bandwidth scale between 123 and 3951 Hz. Within each frequency band, the amplitude envelope, obtained using

the Hilbert transform, was used to modulate white noise filtered to the same frequency band. The modulated noise from all bands was then

summed to obtain noise-vocoded speech. For the time-compressed speech, speech materials were created using the pvoc method,27 a fast

Fourier transform (FFT) based phase vocoder. The speech rate was set to 2.5 or 3.0, with an FFT window size of 512 samples. For the locally

time-reversed speech, speech materials were obtained by locally time-reversing successive non-overlapping segments of speech without

applying any windowing, with a segmentation duration of 50 or 62 ms. The root mean square (RMS) intensity of degraded speech was

adjusted to match that of clear speech.
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Human experiment

Stimulus

The recordings were extracted from the Mandarin Hearing in Noise Test (MHINT) dataset, which is widely utilized for assessing the ability to

interpret speech in both quiet and noisy conditions.28 Each sentence in theMHINT dataset contains 10 Chinese characters. The sentences are

high-context sentences and are designed to be easily understood by individuals with varying educational backgrounds. The sentence diffi-

culty in the MHINT dataset was equalized.28 All the speeches were recorded by a single native male speaker and resampled at 16 kHz for

further use. These sentences had an average duration of 2.60 s (range, 2.16–3.64; s.d., 0.20 s). Clear speech and six types of degraded speech

were employed in human experiments (see STAR Methods: Degraded speech for details).

Procedure

The online experiment was conducted via a webpage, utilizing the Cognition platform (https://www.cognition.run/). Participants were

informed in advance that they might encounter some degraded speech samples during the course of the experiment. They were directed

to listen carefully and type as many words as they could.

Before the formal session, participants were familiarizedwith three clearMHINT sentences that were not used in the formal session. During

the formal session, participants were presented with 30 non-repetitive sentences. The first 10 were clear sentences, and the last 20 were

degraded sentences of the same type. To control for individual sentence difficulty variability, the sentences were presented following the

Latin Square Design,17 which was applied on the sentences themselves: We generated 30 distinct stimulus sequences from 30 non-repetitive

sentences, applying a cyclic shift to one sentence at a time. Since each group comprised 30 participants, each individual was assigned one of

the resulting 30 orderings consecutively (refer to Figure S1 in supplemental information for more details). At each sentence index, all 30

possible sentences were presented within a listener group. By employing this design, when averaging speech recognition accuracy across

a listener group, the mean scores at each sentence index were not influenced by individual sentence difficulty variations.

Each sentence was preceded by a three-second countdown page, after which an input box appeared. Participants were instructed to type

as many words as they could, or alternatively type ‘‘I didn’t catch that.’’ In the experiment involving external feedback, after participants

finished the transcription task, they heard the same sentence without any degradation, followed by two repetitions of the same degraded

sentence they heard before. Concurrently, the corresponding correct transcription was displayed on-screen during the audio presentation

(refer to Figure 1).
ASR experiment

ASR system

The Conformer-based ASR system employed in this study was trained on the multi-domain WenetSpeech corpus21 using the WeNet tool-

kit.20,29 The dataset comprised over 10,000 hours of labeled data. The ASR system utilized a connectionist temporal classification (CTC)/atten-

tion architecture with Conformer as the Encoder.30 Among the four decoding modes supported by this ASR system, we used the attention-

rescoring mode, which typically yields the best performance.20,29 The link to the training configuration file of the pretrained ASR model is

available in the key resources table.

Data

To mimic human adaptation to acoustically degraded speech, the ASR system underwent 30 fine-tuning iterations. For each iteration, we

created distinct training and test sets. Each training set contained one MHINT speech, while each test set contained 30 MHINT speeches.

These training sets utilized a total of 30 MHINT sentences that differed from those used in the human experiments. The sentences used in

the test set overlapped with those used in the human experiments.

Computational speech-adaptation strategy

Only the weights of encoder-layers were updated during rapid learning of degraded speech. Five epoch sizes were tested: 1, 5, 25, 125, and

625. Three learning rates were tested: 2.003 10-3, 2.003 10-4, and 2.003 10-5. Multiple parameter combinations of learning rate and epoch

size were tested, and only the one with the highest accuracy was reported.

Self-supervised learning. Speech input was initially recognized by an ASR system, and the resulting recognition result, termed ASR tran-

scription, was paired with the original speech input to fine-tune the ASR system in a supervised manner.

Supervised learning. Both paired correct transcription and speech input were used to fine-tune the ASR system in a supervised manner.
QUANTIFICATION AND STATISTICAL ANALYSIS

Performance evaluation

The speech recognition accuracy was used to evaluate the performance of both humans and ASR systems in speech transcription tasks, and it

was calculated as 100% minus character error rate (CER). The CER score indicates the percentage of characters that were incorrectly
10 iScience 27, 110055, June 21, 2024
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recognized. If the speech recognition accuracy was negative, it was set to zero. In the ASR experiment, multiple parameter sets were tested,

and only the highest accuracy among them was reported (refer to Computational speech-adaptation strategy). For parameter comparison,

the average value of the last five degraded speech samples was calculated.

The change in speech recognition accuracy, as a function of the number of degraded speeches presented, was modeled using an expo-

nential curve. Speech recognition accuracy z at ith sentence was formulated as follows:

z = A � B expð� i = tÞ
where, A, B, and t were parameters to be fitted using the least squares method. The coefficient t represents the time constant, which can be

used to describe the speed at which the accuracy improves.
Statistical analysis

MATLAB R2016a (RRID:SCR_001622) was used for statistical analysis. To assess whether there was significant difference in speech recognition

accuracies between human listeners without external feedback and the self-supervised ASR system, as well as between human listeners with

external feedback and the supervised ASR system, we performed the single-sample t-test at each sentence index (from 1st to 20th in

Figures S2 and S3). The speech recognition accuracies of human participants who received external feedback and those who did not,

were compared using an unpaired t-test at each sentence index (from 1st to 20th in Figure 4). Additionally, we conducted unpaired t-test

to compare the speech recognition accuracies of self-supervised and supervised ASR systems (from 1st to 20th in Figure 5). Multiple pairwise

comparisons were corrected using the FDR method.31 In all cases, p values lower than 0.05 were considered statistically significant.
iScience 27, 110055, June 21, 2024 11
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