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Introduction
The primary cilium (PC) is a microtubule-based structure that 

protrudes from the surface of most vertebrate cells. It generally 

comprises a membrane-bound 9 + 0 ciliary axoneme, which 

consists of nine outer doublet microtubules but lacks both the 

central microtubule pair and dynein arms. Thus, with few ex-

ceptions, PC are nonmotile and instead function as sensory or-

ganelles (Pazour and Witman, 2003; Singla and Reiter, 2006; 

Satir and Christensen, 2007). They play important roles during 

development, particularly with regard to the establishment of 

left–right asymmetry, as well as later in life when they are re-

quired for the processing of mechanical or chemical signals in 

many organs (Ibañez-Tallon et al., 2003; Praetorius and Spring, 

2005). For instance, in kidney epithelial cells, PC sense fl uids 

fl ow within the lumen of the nephron, which is critical for nor-

mal epithelial development and function. Proteins localizing to 

the ciliary membrane, known as polycystins, play an important 

role in mediating this mechanosensory function, and mutations 

in the corresponding genes cause polycystic kidney disease 

(Boucher and Sandford, 2004). Similarly, retinal degeneration can 

be caused by dysfunction of the connecting cilium, a highly spe-

cialized PC connecting the inner and outer segments in vertebrate 

photoreceptors (Badano et al., 2006; Singla and Reiter, 2006). 

Moreover, recent studies implicate PC in various signal trans-

duction pathways, including sonic hedgehog, platelet-derived 

growth factor receptor α, and Wnt signaling (Singla and Reiter, 

2006; Satir and Christensen, 2007). Ciliary defects have also been 

causally linked to several pleiotropic disorders, including Bardet-

Biedl syndrome (BBS), Alstrom syndrome (ALMS), oral-facial-

digital syndrome type I, and nephronophthisis (Badano et al., 

2006; Hildebrandt and Zhou, 2007; Zariwala et al., 2007).

The assembly of the PC requires a basal body, which in 

turn is derived from one of the two centrioles that constitute the 

centrosome. During ciliogenesis, this basal body is positioned 

close to the plasma membrane and ciliary microtubules elongate 

from its distal end. Ciliogenesis requires the assembly of multiple 

soluble and membranous protein complexes. In particular, the 

so-called intrafl agellar transport (IFT) system is then responsible 

for moving cargo (IFT particles) to and from the tip of the grow-

ing axoneme. IFT, fi rst described in the algae Chlamydomonas 
reinhardtii (Kozminski et al., 1993), is now known to be mediated 

by the association of IFT particles with kinesin II and dynein 

microtubule–based motors for antero- and retrograde movement, 

respectively (Rosenbaum and Witman, 2002; Scholey, 2003). 
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rimary cilia (PC) function as microtubule-based sen-

sory antennae projecting from the surface of many 

eukaryotic cells. They play important roles in mechano- 

and chemosensory perception and their dysfunction is im-

plicated in developmental disorders and severe diseases. 

The basal body that functions in PC assembly is derived 

from the mature centriole, a component of the centrosome. 

Through a small interfering RNA screen we found several 

centrosomal proteins (Ceps) to be involved in PC formation. 

One newly identifi ed protein, Cep164, was indispensable 

for PC formation and hence characterized in detail. 

By immunogold electron microscopy, Cep164 could be 

localized to the distal appendages of mature centrioles. 

In contrast to ninein and Cep170, two components of sub-

distal appendages, Cep164 persisted at centrioles through-

out mitosis. Moreover, the localizations of Cep164 and 

ninein/Cep170 were mutually independent during inter-

phase. These data implicate distal appendages in PC 

formation and identify Cep164 as an excellent marker for 

these structures.
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The signaling networks that control PC function during cell 

cycle progression remain to be elucidated, but several studies 

concur to identify a key role for the von Hippel-Lindau tumor 

suppressor in PC formation (Lutz and Burk, 2006; Schermer 

et al., 2006; Thoma et al., 2007). Furthermore, Aurora A kinase 

has recently been implicated in PC resorption (Pugacheva 

et al., 2007).

In this study, we have sought to identify centrosomal pro-

teins (Ceps) that are required for ciliogenesis. Taking advantage 

of the fact that PC formation can be induced in cultured cells 

by serum starvation (Tucker et al., 1979; Vorobjev and Chentsov, 

1982), we depleted individual centrosomal proteins by siRNA 

and examined the consequences on subsequent PC formation. 

This siRNA screen identifi ed several proteins that affected PC 

formation, albeit to different degrees. A very strong effect was 

observed upon depletion of Cep164, a protein that had not pre-

viously been studied. Our characterization of Cep164 leads to 

conclude that this protein is not only required for PC formation 

but also constitutes an excellent marker for distal appendages 

on mature centrioles or basal bodies.

Results
Identifi cation of centrosomal proteins 
involved in PC formation
To search for proteins involved in PC formation, an siRNA 

screen focusing on centrosomal proteins (Andersen et al., 2003) 

was performed. After the depletion of individual proteins from 

retinal pigment epithelial (hTERT-RPE1) cells, PC formation 

was induced by serum starvation (Vorobjev and Chentsov, 1982) 

and monitored by staining with antibodies against acetylated 

tubulin (Piperno and Fuller, 1985). Depletion effi ciency was 

assessed by quantitative real-time PCR (qRT-PCR) and, whenever 

possible, immunofl uorescence (IF) microscopy and/or Western 

blot analysis (Table S1, available at http://www.jcb.org/cgi/

content/full/jcb.200707181/DC1). Because depletion of outer 

dense fi ber (Odf) 2 and pericentrin had previously been found to 

impair PC formation (Jurczyk et al., 2004; Ishikawa et al., 2005), 

these proteins were reexamined to provide points of reference 

for classifying phenotypes. Of 41 proteins analyzed, depletion 

of 25 proteins produced clear phenotypes, suggesting that these 

proteins might be involved in PC formation and/or maintenance 

(Fig. 1). Depletion of 23 proteins (including Odf2 and peri-

centrin) considerably reduced the proportion of cells that assembled 

PCs in response to serum starvation, from 90–95% in controls 

to 25–60% in depleted cells (Fig. 1, B and C; and not depicted). 

Furthermore, the depletion of Cep57 or ALMS1 led to the 

formation of morphologically abnormal, stunted cilia without 

considerably reducing the effi ciency of ciliogenesis (Fig. 1 A), 

whereas the depletion of Cep131 and Cep152 resulted in both a 

clear reduction in ciliogenesis and morphological aberrations in 

those cilia that did form (Fig. 1, A and C). In contrast, no quali-

tative or quantitative effects on PC formation were observed 

upon siRNA-mediated depletion of 16 other proteins analyzed, 

including fi broblast growth factor receptor 1 oncogene partner, 

rootletin, and centrosomal Nek2-associated protein 1 (C-Nap1; 

Fig. 1 C, gray; and not depicted).

To exclude the possibility that depletion of centrosomal pro-

teins might have infl uenced cell cycle profi les, FACS analyses were 

performed 48 or 72 h after siRNA treatments (unpublished data). 

These analyses provided no evidence for major deviations from 

controls, except for an increase in the proportion of G2/M cells 

upon depletion of Plk4 and other proteins implicated in centriole 

duplication, as expected (Habedanck et al., 2005). Although 

the depletion of several centrosomal proteins has recently been 

reported to induce a p53-dependent G1 arrest (Mikule et al., 

2007), we found no evidence to indicate that depletion of any of 

the centrosomal proteins analyzed here produced a G1 arrest. 

Interestingly, in the course of the siRNA screen we occasionally 

observed splitting of centrosomes, concomitant with the im-

pairment of PC formation (Fig. 1 B, right [inset]; note that centro -

some splitting is defi ned here as the separation of parental 

centrioles by >2 μm). However, this splitting was only seen in 

serum-deprived cells and not in cycling cells. Furthermore, there 

was no strict correlation between centrosome splitting and PC 

formation. The depletion of BBS4 did not induce splitting 

although this protein was required for ciliogenesis, whereas 

the depletion of proteins implicated in centrosome cohesion 

(rootletin and C-Nap1) induced splitting without detectably 

impairing PC formation. Thus, the functional relationship, if any, 

between cell cycle–dependent centrosome splitting and the inhi-

bition of PC formation is not presently clear.

This screen points to the involvement of many proteins in 

the biogenesis and/or maintenance of the PC, which is consis-

tent with the known complexity of this structure (Ostrowski 

et al., 2002; Avidor-Reiss et al., 2004; Blacque et al., 2005). With 

regard to several proteins previously implicated in centriole du-

plication, we note that depletion of hSas-6 considerably reduced 

PC formation, in agreement with a recent independent paper 

(Vladar and Stearns, 2007). In contrast, the depletion of other 

proteins required for centriole biogenesis, notably Plk4, Cep135, 

or CPAP (Kleylein-Sohn et al., 2007), produced little adverse 

effects on PC formation, presumably because the limited dura-

tion of the present siRNA experiments prevented a marked 

reduction in centriole numbers. Remarkably, depletion of only 

three proteins almost completely prevented PC formation in 

our screen. The three proteins identifi ed here as essential for 

ciliogenesis were pericentrin, Cep290, and Cep164. A key role 

of pericentrin in PC formation has previously been reported 

(Jurczyk et al., 2004) and a requirement for Cep290 in ciliogen-

esis falls in line with the implication of this protein in cilia-related 

diseases, including Joubert syndrome, Senior-Loken syndrome, 

and Meckel syndrome (Valente et al., 2006; Baala et al., 2007; 

Hildebrandt and Zhou, 2007). In contrast, Cep164, the focus of 

this paper, has not previously been analyzed.

The availability of anti-Cep164 antibodies (Fig. 2 B) made it 

possible to monitor the depletion of Cep164 in siRNA experi-

ments. Focusing on cells that were effectively depleted of Cep164, 

we found that only 3.6% of cells formed a PC compared with 95% 

of GL2-treated control cells, clearly demonstrating that Cep164 is 

indispensable for PC formation (Fig. 1 D). Cep164 was originally 

identifi ed in a proteomic inventory of human centrosomes 

(Andersen et al., 2003). The corresponding gene maps to human 

chromosome 11q23.3 (GenBank/EMBL/DDBJ accession nos. 
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NM_014956 and NP_055771) and database analyses suggest the 

existence of potential isoforms. The Cep164 protein studied here 

is made up of 1,460 residues, resulting in a predicted molecular 

mass of 164 kD. As predicted by the SMART protein domain 

database (Schultz et al., 2000), the protein comprises a putative 

N-terminal WW domain (57–89) as well as three coiled-coil 

regions (589–810, 836–1047, and 1054–1200; Fig. 2 A). Ortho-

logues of Cep164 clearly exist in other vertebrates (e.g., mouse 

[XP_929307] and zebrafi sh [XP_697015]) and potentially also in 

Drosophila melanogaster (NP_611787; Gherman et al., 2006). 

No obvious structural homologues could be identifi ed in C. rein-
hardtii, Paramecium tetraurelia, or Tetrahymena termophila, but 

this does not exclude the existence of functional homologues. 

Considering the importance of fl agellated and ciliated single-cell 

eukaryotes for the study of basal body function (Marshall and 

Rosenbaum, 2000; Beisson and Wright, 2003; Dutcher, 2003), 

the identifi cation of Cep164-related proteins in a genetically 

tractable organism would be of obvious interest.

Figure 1. siRNA screen for proteins implicated in PC formation. hTERT-RPE1 cells were transfected for 48 h with control (GL2) or protein-specifi c oligo-
nucleotide duplexes, followed by serum starvation to induce PC formation. Cells were analyzed by IF microscopy using antibodies against acetylated tubulin 
(red) and C-Nap1 (green), used to mark cilia and centrioles, respectively. (A) Normal cilia in control cells (GL2) and stunted cilia after siRNA targeting 
Cep57, ALMS1, Cep131, or Cep152. (B) Normal cilia in control cells (GL2) and suppressed cilia formation after siRNA targeting BBS4 or Cep164. Insets 
show magnifi cations of the boxed areas. (C) Infl uence of various siRNA treatments on the percentage of cells showing PC formation. A reduction in PC 
formation was considered substantial if siRNA-mediated depletion of a particular centrosomal protein showed a comparable effect as depletion of either 
pericentrin or Odf2, two proteins previously implicated in PC formation (Jurczyk et al., 2004; Ishikawa et al., 2005). No effects were seen upon siRNA 
treatments targeting fi broblast growth factor receptor 1 oncogene partner (FOP), rootletin, or C-Nap1. (D) hTERT-RPE1 cells were transfected for 48 h with 
control (GL2) or Cep164-specifi c oligonucleotide duplexes. PC formation was monitored specifi cally in those cells that had been effi ciently depleted of 
Cep164 as determined by staining with anti-Cep164 antibodies. This focus on effi ciently depleted cells explains the higher impact of Cep164 depletion 
on PC formation in these experiments, as compared with the screen (C), in which all cells had been analyzed regardless of siRNA effi ciency. At least 250 
cells were counted for each bar in four experiments and error bars denote SD. Bars: (A) 5 μm; (B) 10 μm; (B, inset) 5 μm.
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Cep164 localizes specifi cally to 
mature centrioles
Antibodies raised against an N-terminal fragment (1–298) of recom-

binant Cep164 recognized a band of �200 kD on Western blots 

performed on either centrosomes purifi ed from KE37 lympho-

blastoid cells or lysates from HeLaS3, hTERT-RPE1, and 293T 

cells, whereas preimmune sera showed no specifi c reactivity 

(Fig. 2 B). The reason for the unexpectedly slow migration of 

Figure 2. Characterization of anti-Cep164 antibodies. (A) Schematic illustrating primary structure of human Cep164. The protein is predicted to comprise 
an N-terminal WW domain (WW) and three coiled-coil domains (CC). The horizontal line underneath the scheme denotes the region used for antibody 
production. (B) Antibodies directed against Cep164 and corresponding preimmune serum were tested by Western blotting on centrosome preparations 
from KE37 cells (left) and total lysates of HeLaS3, U2OS, and 293T cells as well as 293T cells overexpressing myc-Cep164 (right). Affi nity-purifi ed antibody 
was used at 1 μg/ml. Arrowhead indicates Cep164. Note that in the centrosome sample Cep164 shows a retarded electrophoretic mobility caused by a 
high sucrose concentration. (C) Antibodies directed against Cep164 and corresponding preimmune serum were used in IF microscopy on U2OS cells. 
The anti-Cep164 antibody (green) recognizes only one of two centrioles, as indicated by colocalization with γ-tubulin (red). This staining was abolished 
upon siRNA-mediated depletion of Cep164, and preimmune serum showed no specifi c staining. (insets) Enlarged centrosome areas. (D) Western blot on 
U2OS cells illustrating effi cient depletion of Cep164 by siRNA. Transfections were performed for 48 h using two different Cep164-specifi c oligonucleotide 
duplexes (278 and 279) or GL2 for control. Blotting for α-tubulin is shown to control for equal loading. (E) Cep164 localizes to mature centrioles at the 
base of the PC but not along the length of the axoneme. hTERT-RPE1 cells were serum starved for 48 h to induce PC formation and stained with antibodies 
against Cep164 (green) and acetylated tubulin (red). The four representative examples show bar- and ringlike staining of Cep164 at the base of the PC in 
close association with the mature centriole. Bars: (C) 10 μm; (E) 5 μm.
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Cep164 is not entirely clear but may relate to the relatively acidic 

isoelectric point of the protein (5.32). In any case, we empha-

size that a myc-tagged Cep164 protein expressed in human 

293T cells showed a similarly retarded migration (Fig. 2 B). 

Moreover, siRNA-mediated depletion of Cep164 (using two 

different siRNA oligonucleotide duplexes) abolished immuno-

reactivity (Fig. 2 D), making us confi dent that the 200-kD protein 

detected by the anti-Cep164 antibody represents endogenous 

Cep164. IF microscopy demonstrated that Cep164 localizes to 

the centrosome (Fig. 2 C), confi rming earlier results based on 

the localization of GFP- and myc-tagged Cep164 constructs 

(Andersen et al., 2003). Interestingly, when compared with the 

staining produced by antibodies against γ-tubulin (Fig. 2 C), the 

anti-Cep164 antibody stained only one of two centrioles (Fig. 2 C, 

middle, inset). Preimmune serum did not produce any centro-

somal staining (Fig. 2 C, top) and Cep164 staining was abolished 

by siRNA-mediated depletion of Cep164 (Fig. 2 C, bottom), attest-

ing to the antibody’s specifi city.

To determine whether the localization of Cep164 to only 

one centriole relates to the known difference in maturity be-

tween the two centrioles, we performed costaining with Cep170, 

an appendage-associated protein and established marker for the 

mature parental centriole (Guarguaglini et al., 2005). Although 

Cep164 and Cep170 did not colocalize exactly (a point to which 

we will return later), the two proteins clearly localized to the 

same single centrioles (Fig. S1, A and B [GL2 controls], avail-

able at http://www.jcb.org/cgi/content/full/jcb.200707181/DC1). 

This indicates that Cep164, like Cep170, associates specifi cally 

with mature centrioles. To corroborate this conclusion, we also 

examined the localization of Cep164 in hTERT-RPE1 cells that 

had been induced to form a PC by serum starvation (Fig. 2 E). 

Costaining of the PC with antibodies against acetylated tubulin 

revealed that Cep164 was always associated with the one centri-

ole that was located at the base of the PC, in agreement with the 

fact that only the mature centriole is able to initiate PC forma-

tion (Vorobjev and Chentsov, 1982). Interestingly, anti-Cep164 

antibodies stained bar- or ringlike Cep164-positive structures 

at the base of the PC, depending on the angle of viewing (Fig. 2 E), 

whereas the axoneme itself was unstained.

Next, we examined Cep164 localization during cell cycle 

progression. The protein was detectable at centrioles at all stages, 

including mitosis, although staining was more intense during inter-

phase (Fig. S2 A, available at http://www.jcb.org/cgi/content/full/

jcb.200707181/DC1). When compared with centrin, which is a 

marker for individual centrioles (Salisbury et al., 2002), Cep164 

was restricted to only one centriole within both G1 and dupli-

cated G2 centrosomes as expected (Fig. 3 A). Increased staining 

of a second parental centriole could then be detected at the onset 

of centrosome separation during prophase (Fig. S2 A, prophase), 

supporting the conclusion that Cep164 associates with structures 

that form concomitant with centriole maturation. During sub-

sequent stages of mitosis, Cep164 was associated at similar levels 

with one centriole at each spindle pole (Figs. 3 A and S2 A). This 

is in stark contrast to Cep170 and ninein, both of which were dis-

placed from centrioles during mitosis (Fig. S2, B and C).

We also examined Cep164 expression during the cell cy-

cle using biochemical approaches. As determined by qRT-PCR, 

Cep164 mRNA levels showed little change throughout G1 and 

S phase, but levels increased beginning in G2 and peaked in 

mitotic cells, reaching a twofold increase compared with inter-

phase (Fig. 3 B). A similar fl uctuation was also seen at the protein 

level. Whereas Cep164 protein was present at a low level 

throughout interphase, it became slightly more abundant in mitosis 

(Fig. 3 C). Furthermore, in mitotic samples Cep164 displayed a 

retarded electrophoretic mobility, suggestive of a mitotic modi-

fi cation (most likely phosphorylation).

Cep164 and known appendage proteins 
localize to distinct structures
Most proteins that specifi cally localize to mature centrioles, 

including Cep170 (Guarguaglini et al., 2005), ninein (Mogensen 

et al., 2000), centriolin/CEP110 (Ou et al., 2002; Gromley et al., 

2003), ε-tubulin (Chang et al., 2003), and Odf2 (Ishikawa et al., 

2005), are known to associate with appendage structures. 

To examine whether Cep164 might similarly localize to append-

ages, we fi rst asked to what extent Cep164 colocalizes with 

some of these proteins. Although Cep164 and ninein stained 

the same centriole, they did not colocalize exactly (Fig. 4 A). 

As already noted in the previous section, the same was true for 

Cep164 and Cep170 (Fig. S1). In contrast, ninein and Cep170 

showed extensive colocalization as expected (Fig. 4 B). Next, 

we asked whether these proteins depend on each other for cor-

rect localization. siRNA-mediated depletion of Cep164 did not 

detectably affect the localization of ninein, Cep170, or ninein-

like protein (Figs. 4 A and S1 A; and not depicted). Conversely, 

depletion of ninein did not affect Cep164, although it caused the 

loss of Cep170 from the mature centriole (Fig. 4 B), and deple-

tion of Cep170 did not detectably infl uence Cep164 localization 

(Fig. S1 B). These data suggest that Cep164 does not directly 

interact with any of the appendage proteins investigated here, 

raising the possibility that it localizes to a distinct appendage 

structure altogether.

To explore this possibility, immunogold electron micros-

copy (immuno-EM) was performed. This study revealed that 

Cep164 localizes specifi cally to the appendages of mature 

parental centrioles, whereas immature parental centrioles as well 

as progeny centrioles were unstained (Fig. 5 A), which is con-

sistent with the IF results. In the past, two distinct sets of ap-

pendages, distal and subdistal, have been described (Bornens, 

2002). To the best of our knowledge, most appendage proteins 

characterized so far localize primarily to subdistal appendages, 

although depletion of Odf2 was found to abolish distal as well 

as subdistal appendages (Ishikawa et al., 2005). In contrast, our 

data suggest that Cep164 is a genuine component of distal rather 

than subdistal appendages. In support of this interpretation, 

immunogold labeling of Cep164 decorated structures at the very 

tip of centrioles (Fig. 5, A and B, arrowheads), whereas electron-

dense material possibly representing subdistal appendages 

could occasionally be seen at the proximal side of Cep164-positive 

structures (Fig. 5, A and B, arrows). Furthermore, whereas 

siRNA-mediated depletion of Cep164 abolished Cep164 stain-

ing, attesting to its specifi city (Fig. 5 B), the immunolocaliza-

tion of ninein was not detectably affected in Cep164-depleted 

cells (Fig. 5 C; compare with Bouckson-Castaing et al. [1996] 
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and Mogensen et al. [2000]). Collectively, these data suggest 

that Cep164 is indispensable for PC formation and represents a 

genuine marker for distal appendages.

Discussion
The present study identifi ed several proteins whose depletion 

interfered with PC formation, confi rming the view that cilio-

genesis is a complex process (Ostrowski et al., 2002; Avidor-

Reiss et al., 2004; Blacque et al., 2005). In addition to proteins 

identifi ed in independent studies, notably pericentrin, Odf2, 

PCM-1, and BBS4 (Jurczyk et al., 2004; Ishikawa et al., 2005; 

Nachury et al., 2007), we observed a role in PC assembly for 

ninein, a protein involved in microtubule nucleation and an-

choring (Delgehyr et al., 2005), chTOG, a protein required for 

stabilizing microtubules and spindle pole organization (Gergely 

et al., 2003), and Cep290 (also called NPHP6), mutations in 

which have been linked to several human disease syndromes 

(den Hollander et al., 2006; Valente et al., 2006; Baala et al., 

2007; Hildebrandt and Zhou, 2007). The exact roles of these 

proteins in ciliogenesis remain to be elucidated, but they are 

likely to relate to intracellular transport processes that depend 

Figure 3. Cell cycle profi le of Cep164 expression. (A) U2OS cells 
were costained with antibodies against Cep164 (green) and cen-
trin as a marker for individual centrioles (red). Note that Cep164 
(green) localizes to only one centriole in both G1 centrosomes (top 
left) and duplicated G2 centrosomes (bottom left). During mitosis, 
one of the two centrioles present at each spindle pole is positive 
for Cep164 (right). (insets) Magnifi cations of the spindle poles. 
Bars: (interphase cells) 2 μm; (metaphase cell) 10 μm. (B) Cep164 
mRNA levels across the cell cycle were determined in synchro-
nized HeLaS3 cells using qRT-PCR. (C) Cep164 protein levels 
across the cell cycle. HeLaS3 cells were arrested at the G1/S 
boundary by a double thymidine block or in M phase by a thymi-
dine block followed by nocodazole treatment and released into 
fresh medium. Samples were harvested at the indicated time points 
and subjected to immunoblotting using the indicated antibodies.
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on functional centrosome–microtubule interactions. In addition, 

we identifi ed several proteins, notably Cep57, Cep131, Cep152, 

and ALMS1, whose depletion resulted in the formation of short 

or stunted cilia (Li et al., 2007). Little is presently known about 

the functions of Cep57, Cep131, and Cep152, but ALMS1 is 

attracting considerable interest because of its implication in 

ALMS (Collin et al., 2002; Hearn et al., 2002). What precise 

molecular defects lead to stunted cilia remains to be elucidated, 

but it is plausible that the functions of Cep57, Cep131, Cep152, 

and ALMS1 relate to IFT. In support of this proposal, we 

em phasize that truncated cilia have frequently been seen in 

C. reinhardtii and C. elegans mutants carrying defects in the 

IFT machinery (Rosenbaum and Witman, 2002; Scholey, 2003).

The main focus of the present study was the characteriza-

tion of Cep164, a novel protein of previously unknown function 

whose depletion severely impaired PC formation. By both IF 

microscopy and immuno-EM we were able to show that Cep164 

localizes specifi cally to very distally located appendage struc-

tures on the mature centriole. On the basis of morphological 

analyses, centriolar appendages have in the past been classifi ed 

as distal or subdistal (Vorobjev and Chentsov, 1982). From this 

perspective, it is remarkable that Cep164 did not colocalize ex-

actly with proteins previously shown to associate with subdistal 

appendages, notably ninein and Cep170. Furthermore, no recip-

rocal dependencies for centriolar localization could be observed 

Figure 4. Localizations and mutual dependencies of appendage proteins. 
(A) U2OS cells were transfected with control (GL2), ninein-specifi c, or 
Cep164-specifi c siRNA duplexes and costained for ninein (red) and 
Cep164 (green). (inset) Enlarged centrosome area. (B) U2OS cells were 
transfected with control (GL2) or ninein-specifi c siRNA duplexes and co-
stained for ninein (red) and Cep170 (green). (inset) Enlarged centrosome 
area. Bars, 10 μm.

Figure 5. Immuno-EM localization of Cep164. (A) U2OS cells were sub-
jected to preembedding immuno-EM. Cells were labeled with anti-Cep164 
antibody R171 followed by Nanogold-coupled secondary antibody. Note 
that Cep164 localizes to very distal appendage structures on parental cen-
trioles (arrowheads, also see B), and sometimes electron-dense material 
(presumably refl ecting subdistal appendages) can be seen proximal to the 
Cep164 staining (arrows in second panel and in B [top]). The schematic 
diagrams (dotted lines) in the two top panels illustrate the positions of 
“mother” (MC) and ”daughter” centrioles (DC), along with the presumed 
positions of distal and subdistal appendages. (B and C) U2OS cells were 
transfected for 48 h with control (GL2) or Cep164-specifi c siRNA duplexes 
and subjected to preembedding immuno-EM. Cells were labeled with 
either anti-Cep164 or anti-ninein antibody followed by Nanogold-coupled 
secondary antibody. Bars, 250 nm.
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between Cep164 and ninein or Cep170 and, unlike ninein and 

Cep170, Cep164 persisted at the mature centriole throughout 

mitosis. Collectively, these data strongly indicate that Cep164 

constitutes a genuine component of distal appendages.

A priori, Cep164 could be required for PC assembly or 

maintenance. Considering that Cep164 does not localize to the 

axoneme, it is unlikely to play a direct role in IFT, although it is 

possible that it contributes to intracellular transport between the 

interior of the cell and the cilium. Perhaps more likely, Cep164 

may form part of a terminal plate (Anderson, 1972), which medi-

ates the interaction between the basal body and the plasma mem-

brane, or provide a docking site for the formation of transition 

fi bers. Further insight into the molecular function of Cep164 will 

require identifi cation of its interaction partners. In particular, it will 

be interesting to search for proteins binding to the WW domain 

that is present within the N-terminal end domain of the protein. 

One possibility is that Cep164 might contribute to the mediation of 

interactions with the cytoskeleton. Such interactions may in turn 

be critical for basal body positioning during PC formation. Alter-

natively, Cep164 may be indispensable for the formation of distal 

appendages. Careful ultrastructural analyses of Cep164-depleted 

centrioles will be required to explore this intriguing possibility.

In conclusion, our study identifi es a novel protein, Cep164, 

as being critically required for PC formation. Furthermore, our 

results indicate that Cep164 provides an excellent marker for 

distal (rather than subdistal) appendages, strengthening the con-

clusion that centriolar appendage proteins are crucial for cilio-

genesis (Ishikawa et al., 2005). Finally, considering the rapid 

emergence of data emphasizing the importance of PC formation 

and function for human health, it will be interesting to explore a 

possible relationship between Cep164 and ciliary disease syn-

dromes. In this context, it is intriguing that the Cep164 gene locus 

(11q23.3) maps close to a region implicated in Jacobsen syndrome 

(Grossfeld et al., 2004). Thus, it may be rewarding to explore a 

possible connection between impaired functionality of Cep164 

and diseases possibly related to defective ciliogenesis.

Materials and methods
Plasmid preparation and recombinant proteins
PCR was used to amplify a full-length human Cep164 cDNA from clone 
KIAA1052 (Kazusa DNA Research Institute). The cDNA was subcloned 
into a mammalian expression vector providing a C-terminal myc tag 
and the construct was verifi ed by sequencing. For expression of a re-
combinant Cep164 protein fragment, bp 1–894 of the coding sequence 
were amplifi ed by PCR, inserted into the expression vector pET28b+ 
(Novagen), and verifi ed by sequencing. His6-tagged N-terminal Cep164 
was expressed in E. coli strain BL21 (DE3) and purifi ed under denat -
uring conditions according to standard protocols (QIAexpressionist-
system; QIAGEN).

Antibody production
Rabbit anti-Cep164 antisera (R171 and R172) were raised against an 
N-terminal fragment spanning aa 1–298 (Charles River Laboratories). Similar 
results were obtained with both sera but R171 was used for most experi-
ments. Antibody R171 was affi nity purifi ed using Affi gel according to 
standard protocols (Affi gel-10; Bio-Rad Laboratories). The anti-Cep170 
mAb (77-419-2) and anti-ninein mAb (79–160) were produced by immuni-
zation of BALB/c mice with recombinant fragments of human Cep170 
(aa 15–754) and ninein (aa 1,110–2,662) purifi ed from E. coli. Spleen 
cells were fused with PAIB3Ag81 mouse myeloma cells, and positive hy-
bridoma clones were subcloned by limiting dilution. The anti-Cep170 mAb 
is an IgG1 and the anti-ninein mAb is an IgG2a.

Cell culture and transfections
Cells were grown at 37°C under 5% CO2. U2OS, HeLaS3, and 293T cells 
were grown in DME and supplemented with 100 IU/ml of 10% FCS and 
100 μg/ml penicillin-streptomycin. hTERT-RPE1 cells were grown in DME 
nutrient mixture, Ham’s F12 (Sigma-Aldrich) supplemented with 10% FCS, 
penicillin-streptomycin, 2 mM glutamine, and 0.348% sodium bicarbonate. 
293T cells were transfected using the calcium phosphate precipitation method 
(Krek and Nigg, 1991).

Immuno-EM
For preembedding immuno-EM, U2OS cells were grown on coverslips, 
fi xed with 4% formaldehyde for 10 min, and permeabilized with PBS + 
0.5% Triton X-100 (Roth) for 2 min. Blocking and primary antibody incuba-
tions were then performed as described for IF microscopy followed by incu-
bation with goat anti–rabbit IgG-Nanogold (1:50; Nanoprobes). Nanogold 
was silver enhanced with HQ Silver (Nanoprobes) and cells were further 
processed as described previously (Fry et al., 1998; Bahe et al., 2005).

IF microscopy and immunoblotting
Cells were prepared for IF microscopy as described previously (Bahe 
et al., 2005). The primary antibodies used were 1 μg/ml affi nity-purifi ed 
rabbit anti-Cep164 IgG (R171) and anti–C-Nap1 IgG (Mayor et al., 
2000), mouse anti-Cep170 mAb (77-419-2), anti–γ-tubulin mAb (1:1,000, 
GTU-88; Sigma-Aldrich), anti-centrin mAb (1:3,000, 20H5; provided by 
J.L. Salisbury, Mayo Clinic, Rochester, MN; Salisbury et al., 2002), and 
anti-acetylated tubulin mAb (1:2,000; 6-11B-1; Sigma-Aldrich). Secondary 
antibodies were Alexa Fluor 488/555–conjugated (1:1,000; Invitrogen) 
and cy2/cy3-conjugated donkey IgGs (1:1,000; Dianova). DNA was stained 
with 0.2 μg/ml DAPI.

Cells were analyzed using a microscope (Axioskop-2; Carl Zeiss 
MicroImaging, Inc.) equipped with a 63× NA 1.4 plan apochromat oil 
immersion objective and standard fi lter sets (Carl Zeiss MicroImaging, 
Inc.), a 1,300 × 1,030 pixel cooled charge-coupled device camera (CCD-
1300-Y; Princeton Instruments), and Metavue software (Visitron Systems). 
Alternatively, for the data shown in Figs. 2 E and 3 A, a microscope (Delta-
vision) on a base (Olympus IX71; Applied Precision) equipped with an apo 
100× 1.35 oil immersion objective, a camera (CoolSnap HQ; Photometrics), 
and a 37°C chamber were used for collecting 0.18–0.2-μm-distanced optical 
sections in the z axis.

Images at single focal planes were processed with a deconvolution 
algorithm (100×: Olympus_100X_140_10103.otf). Settings were “enhanced 
ratio,” with noise fi ltering set to medium and 10 deconvolution cycles. 
The number of z stacks collected was variable (between 6 and 14), depending 
on the height of the individual cell. Images were projected into one picture 
using softWoRx 3.5.0 (Applied Precision). Exposure times and settings for 
image processing (deconvolution) were constant for all samples to be com-
pared within any given experiment. Images were opened in Photoshop CS 
(Adobe) and sized and placed in fi gures with Illustrator CS2 (Adobe).

Immunoblotting was performed as described previously (Fry et al., 
1998; Mayor et al., 2000; Bahe et al., 2005). Primary antibodies were 
used at the following concentrations: 1 μg/ml rabbit anti–Cep164 affi nity-
purifi ed IgG (R171) or corresponding preimmune serum (1:1,000), mouse 
anti–α-tubulin mAb (1:5,000; DM1A; Sigma-Aldrich), anti–polo-like kinase 1 
mAb (1:5; Yamaguchi et al., 2005), anti-cyclin E mAb (1:5; HE-12; pro-
vided by J. Bartek, Danish Cancer Society, Copenhagen, Denmark). Sec-
ondary antibodies were HRP-conjugated goat anti–rabbit (1:7,000; Bio-Rad 
Laboratories) or anti–mouse (1:7,000; Bio-Rad Laboratories) IgGs.

siRNA experiments and PC growth assays
Proteins to be tested in the siRNA screen were depleted using siRNA 
duplex oligonucleotides (Qiagen and Dharmacon) targeting the sequences 
described in Table S1. Cep164 was effi ciently depleted using two dif-
ferent siRNA duplex oligonucleotides (278 and 279). A duplex target-
ing luciferase (GL2; Elbashir et al., 2001) was used for control. RNA 
oligonucleotides were used at 20 μM, and cells were analyzed 48 
or 72 h later.

hTERT-RPE1 cells (provided by L. Kohen, Universiätsklinikum Leipzig, 
Leipzig, Germany) were grown on acid-treated, sterilized glass coverslips 
and transfected for 48 h with different siRNA duplexes. PC formation was 
induced by continued culturing in serum-free medium for another 48 h. Before 
methanol fi xation, cells were incubated for 45 min on ice to depolymerize 
the microtubules.

qRT-PCR
RNA for qRT-PCR analysis was prepared as described in the text. cDNA was 
synthesized from RNA samples using random hexamers and Superscript II 
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reverse transcriptase (Invitrogen) according to the manufacturer’s instruc-
tions. PCR reactions contained cDNA, Power SYBR Green Master Mix 
(Applied Biosystems) and 300 nM of forward and reverse primers. Primers 
were designed with Primer Express software (Applied Biosystems) and the 
amplifi ed fragment corresponded to an exon–exon junction. qRT-PCR was 
performed in optical 384-well plates and fl uorescence was quantifi ed with 
a sequence detection system (Prism 7900 HT; Applied Biosystems). Sam-
ples were analyzed in triplicate and the raw data consisted of PCR cycle 
numbers required to reach a fl uorescence threshold cycle. Raw fl uores-
cence threshold cycle values were obtained using SDS 2.0 (Applied Biosys-
tems). The relative expression level of target genes was normalized with 
geNorm software (Primer Design Ltd.; Vandesompele et al., 2002) using 
eukaryotic translation elongation factor a-1 and β-glucuronidase genes as 
references to determine the normalization factor. The thermal profi le recom-
mended by Applied Biosystems was used for amplifi cation (50°C for 
2 min, 95°C for 10 min, 40 cycles of 95°C for 15 s, and 60°C for 1 min). 
To verify the specifi city of amplifi cation, a melting curve analysis was included 
according to the thermal profi le suggested by the manufacturer (95°C for 
15 s, 60°C for 15 s, and 95°C for 15 s). The generated data were analyzed 
with SDS 2.2 software.

Miscellaneous techniques
Human centrosomes were isolated from KE37 cells as described previously 
(Andersen et al., 2003).

To monitor Cep164 levels during cell cycle progression, HeLaS3 
cells were synchronized using double thymidine block or a thymidine–
nocodazole treatment, followed by release into fresh medium. To analyze 
expression levels of CEP164 transcripts, total RNA was extracted from 
HeLaS3 cells at various cell cycle stages using an RNeasy Mini kit (QIAGEN). 
Transcript levels were determined by qRT-PCR. For the analysis of siRNA 
effi ciency, total RNA was extracted from HeLa S3 cells treated for 72 h 
with siRNA oligonucleotide duplexes targeting individual centrosomal 
proteins (Table S1).

Online supplemental material
Table S1 indicates the siRNA oligonucleotide sequences used for protein 
depletion. Figs. S1 and S2 illustrate the localizations and dependencies of 
appendage proteins. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200707181/DC1.
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