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Abstract: We present TOLOMEO (TOpoLogical netwOrk Maximum Entropy Optimization), a pro-
gram implemented in C and Python that exploits a maximum entropy algorithm to evaluate network
topological information. TOLOMEO can study any system defined on a connected network where
nodes can assume N discrete values by approximating the system probability distribution with a
Pottz Hamiltonian on a graph. The software computes entropy through a thermodynamic integration
from the mean-field solution to the final distribution. The nature of the algorithm guarantees that the
evaluated entropy is variational (i.e., it always provides an upper bound to the exact entropy). The
program also performs machine learning, inferring the system’s behavior providing the probability
of unknown states of the network. These features make our method very general and applicable
to a broad class of problems. Here, we focus on three different cases of study: (i) an agent-based
model of a minimal ecosystem defined on a square lattice, where we show how topological en-
tropy captures a crossover between hunting behaviors; (ii) an example of image processing, where
starting from discretized pictures of cell populations we extract information about the ordering
and interactions between cell types and reconstruct the most likely positions of cells when data are
missing; and (iii) an application to recurrent neural networks, in which we measure the information
stored in different realizations of the Hopfield model, extending our method to describe dynamical
out-of-equilibrium processes.

Keywords: entropy; maximum entropy; hopfield model; machine learning

1. Introduction

Predictability is often the ultimate goal that drives the study of various physical
phenomena [1]. For example, when we investigate the dynamics of a falling body or the
interactions between two molecules, we understand the phenomena when we are able
to foretell the body’s trajectory or the effect of a novel medical drug. Our capability of
making predictions is linked with the quantity of information we gather about the system
we are considering. In this respect, the connection between entropy and information is
regarded as a milestone of information theory [2]. In a very general way, entropy quantifies
our knowledge of the probability of the system to assume its states [3,4]. Consequently,
knowing the entropy allows us to set the limit to the information that we can extract from
observations and, more generally, to the predictability of the system.

The concept of entropy was first introduced in thermodynamics, but its application
ranges in many fields, such as physics [5], economics [4,6], or biology [3,7–11]. Indeed,
the general formulation of statistical mechanics and information theory opened the way
for the understanding of many features of complex systems. Among many possible
examples, entropy has been employed even in economics, where the awareness of markets
entropy allows one to maximize the investment profits [4]. Despite its broad applicability,
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measuring the entropy of a complex system has proven to be quite challenging [8]. In
fact, the Shannon definition of entropy relies on the system probability function P , whose
degrees of freedom grow exponentially as a function of the number of possible states
the system can access, often making its computation unfeasible. The maximum entropy
(MaxEnt) approach helped to solve this problem [3]. In fact, given a constrain on a set
of observables {xi}, MaxEnt finds the less biased probability function for the system that
describes the observables, i.e., the probability distribution that maximizes entropy among
all possible distributions that satisfy the constraints on the chosen observables. Thanks to
the variational principle, the entropy associated with the MaxEnt distribution is always an
upper bound to the exact entropy. Furthermore, the arbitrariness of the observables set
makes it possible to control the accuracy of the approximation: increasing the number of
constraints, we reduce the space accessible to the possible probability distributions.

Over the past decade, many works employed MaxEnt to analyze different biolog-
ical problems, ranging from the study of neural populations to the determination of
macromolecular structures, and the inference of regulatory networks [12–17]. From the
identification of DNA specific binding sites [18] to the comprehension of collective behavior
in large animal groups [19,20], and to the modeling of ecological systems [21,22].

Given the vast applicability of the maximum entropy principle, here, we present
TOLOMEO (TOpoLogical netwOrk Maximum Entropy Optimization), a program able to
solve the MaxEnt algorithm for generic networks whose nodes can assume a certain, finite,
number of states. In practice, TOLOMEO finds the less-biased probability distribution
that constrains the average density of states of the network nodes and the number of
near-neighbor couples for each possible set of states. Once trained, TOLOMEO is able to
reconstruct missing data from a source like a machine learning approach. In addition, the
strong inference power of the maximum entropy principle allows one to train the system
on a limited set of data, which can also be a small portion of the source we want to study.
The method is very general and applicable to any network topology. Examples are linear
chains, 2D lattices (such as images), multidimensional lattices, or complex networks.

We first present the theoretical background and describe the algorithm; then, we
discuss three different cases of study: (i) we investigate a model of a minimal ecosystem
composed of two interacting species in a 2D lattice; (ii) we apply TOLOMEO , for the first
time, to measure order and information stored in biological images of cell populations,
where different kinds of cells are colored with distinct fluorescence markers. Finally,
(iii) we analyze the dynamics of the Hopfield model, a recurrent neural network (RNN)
whose connectivity matrix may present different degrees of asymmetry and dilution [23,24].
TOLOMEO is released as a web server app freely accessible at http://circe.iit.uniroma1.it:
9205 (25 August 2021).

2. Method Overview

TOLOMEO is an inferential protocol capable of learning the probability distribution
that maximizes the entropy of a system composed (i) by a set of nodes, assuming discrete
states, and (ii) defined on a symmetric (if node A is linked to B, then B is linked to A),
not-weighted network. In particular, TOLOMEO looks for the Hamiltonian that reproduces
a certain set of observables while maximizing the system’s entropy. Indeed, to encode
the system network topology in the Hamiltonian, TOLOMEO constrains mean-field ob-
servables (average number of nodes in each possible state) and near-neighbor pairwise
correlations (between all possible couples of states). The resulting Hamiltonian, that maxi-
mizes entropy, is a Potts Hamiltonian on the same network [21]. The entropy maximization
ensures that the solution found by TOLOMEO is the least-biased solution that satisfies the
imposed constraints on the average observables [25]. Thus, it confers robustness to the
method with respect to over-fitting. Figure 1 provides a schematic representation of the
TOLOMEO protocol.

http://circe.iit.uniroma1.it:9205
http://circe.iit.uniroma1.it:9205
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Figure 1. Sketch of the TOLOMEO protocol. (a) TOLOMEO requires in input a set of configurations of the real system. The
input data must be provided as a network with nodes that can assume a discrete number of states and a connectivity matrix
specifying the topological connections between the nodes. In the sketch, configurations are 2D images of cell populations,
with cells colored with different fluorescence dyes. The image is divided into a 2D uniform grid. Each point in the grid
is a node; the color of the image in each node represents the state, while the connectivity matrix is a near-neighbor 2D
lattice. (b) TOLOMEO takes as input the set of configurations and returns the maximum entropy probability distribution, P,
that better reproduces a set of chosen observables. (c) Starting from the optimiization path, the MaxEnt entropy, S, can be
evaluated using Equation (12). (d) The obtained probability distribution can be used to generate novel configurations and
to predict the spatial disposition of some states, keeping fixed the others.

The training procedure, which determines the parameter of the Hamiltonian that
best reproduces the average values of the constraints, is the pivotal part of the algorithm
and works in the following way: (i) we start from a non-interacting Hamiltonian that
reproduces only the average number of nodes of the network in each state. (ii) We perform
a Monte Carlo calculation and find the direction for the parameters of the trial interact-
ing Hamiltonian (including pairwise interaction between neighbor sites) to improve the
agreement with the average observables in the training set. (iii) We update the interacting
Hamiltonian and iterate from step (ii) until convergence (the TOLOMEO’s observables
and those in the training set are compatible within the stochastic accuracy). In Section 3,
we provide the details of how the algorithm is implemented. At the end of the training,
TOLOMEO provides the entropy of the system without any extra computation. The entropy
is a score of the method and a measurement of the predictability of the system (if low,
predictions are accurate; if high, predictions have high uncertainty). The obtained entropy
is always an upper bound to the exact entropy of the process that generated the training
set. Thus, it provides an essential insight into the studied process.

TOLOMEO is computationally heavier to train than other machine learning approaches
(such as neural networks). In fact, to evaluate the cost function, we need to run a Metropolis
algorithm. However, thanks to the much smaller number of parameters on which it
depends with respect to neural networks, the cost function usually has only one well-
defined minimum, making the parameter optimization straightforward. Besides, the
final converged result carries physical insight into the process under study, as it provides
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effective interaction between states in the system. Notably, this insight proved to be enough
to infer protein residue contacts within sets of homologous proteins [15].

Moreover, differently from commonly used machine learning approaches, TOLOMEO does
not learn specific patterns in the training data set, but, given a set of observables, it con-
structs the least-biased probability distribution that reproduces an ensemble with the
same average values of the chosen observable set as those in the training set. Thus, the
outcome of TOLOMEO is not the prediction of a feature learned from the training data,
but an effective Hamiltonian that allows one to extract configurations of the systems with
the same probability as the original process that generated the training data. Therefore,
TOLOMEO can predict the status of the network when some information is missing. A typi-
cal example is a case when we have a network whose nodes can assume several states, and
our data cannot distinguish between two or more states. TOLOMEO solves the problem by
simulating the missing states, finding the most probable solution.

TOLOMEO is robust against over-fitting and typical learning patterns of the training
set and requires a small training set and no test set, contrarily to many other machine
learning approaches. In particular, of all the information in the training set, TOLOMEO only
extracts the average number of states in the whole network and the near-neighbor’s
correlations between all possible states. By construction, TOLOMEO correctly reproduces
all these features, within the stochastic error easily measurable directly from the training
set. Moreover, since TOLOMEO never sees the actual configurations of the training set
(but only the average value of the chosen observables), it is possible to reuse the same
training set to test the method’s validity on different observables not employed in the
training procedure.

3. Materials and Methods

TOLOMEO takes in input an ensemble of configurations of the system we want to
analyze. The system must be defined as a network with a certain number of nodes (Nnodes),
each assuming one of Nstates possible states, and a static connectivity matrix, defining
the topological connections between couples of nodes. Such configurations constitute the
training set. In the following, we refer to σ as a specific network configuration, and with σk
to the status of the k-th node of σ configuration. The discrete states, each node can assume,
are represented by integer numbers between 0 and Nstates − 1.

TOLOMEO trains a specific model to reproduce the probability distribution of finding
a configuration σ produced by the same source that generated the training set. This proba-
bility distribution P(σ) can be represented by an auxiliary Hamiltonian, H(σ) defined as

P(σ) =
exp[−H(σ)]

Z
, with Z = ∑

σ

exp[−H(σ)] . (1)

For each configuration of the system, we evaluate two different kinds of observables.
The density of states i on a configuration σ of the network, defined as

si(σ) =
1

Nnodes

Nnodes

∑
k=1

δσk ,i, (2)

and the density of near neighbor couples between state i and j,

cij(σ) =
1

Nlinks

Nnodes

∑
k,h=1

h,k near neighbors

δσh ,iδσk ,j . (3)

Here, δ indicates the Kronecker delta, Nlinks corresponds to the total number of couples of
connected nodes, and the sum in the cij expression is performed only on couples of nodes
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that are connected by a link in the network (near neighbors). The average values of these
observables on the whole training set are given by:

〈si〉 =
1

Ntrain
∑

σk∈training set
si(σk) , and 〈cij〉 =

1
Ntrain

∑
σk∈training set

cij(σk) , (4)

where Ntrain is the number of configurations in the training set.
To simplify the notation, we introduce a vector x to describe the status of the system,

which is given by the average value of the target observables over an ensemble:

x =
(
〈s1〉 · · · 〈sNstates〉 〈c11〉 · · · 〈cNstates,Nstates〉

)
. (5)

At present, TOLOMEO restricts to distributions that only reproduce 〈si〉 and 〈cij〉
correctly in the training set. Therefore, the training set is used only to extract the aver-
age number of states in each configuration and the near neighbor’s correlations between
states. Among all the possible probability distributions P(σ) that satisfy these constraints,
TOLOMEO chooses the one that maximizes the entropy, providing the least-biased solu-
tion [25]. It is possible to prove [26] that this probability distribution is obtained with an
auxiliary Hamiltonian H(σ) with near-neighbor interaction (a Potts Hamiltonian, i.e., a
multi-state Ising model) of the form

Hh,J(σ) =
Nstates

∑
i=1

hisi(σ) +
Nstates

∑
i,j=1

Jijcij(σ) . (6)

The Hamiltonian depends on the vector h and the symmetric matrix J. Those are the
parameters that TOLOMEO trains to enforce 〈si〉 and 〈cij〉 to reproduce the values obtained
from the training set.

We indicate with xh,J the expression in Equation (5) when the averages are computed
with the ensemble extracted from the Hamiltonian defined by h and J. Conversely, drop-
ping the indices, we refer to averages taken on the training set, i.e., the vector of features
that the trained Hamiltonian must reproduce.

It is important to note that not all the values of hi and Jij are independent, as the
Hamiltonian has gauge freedom. Indeed, the observables have linear dependencies be-
tween themselves. For example, the sum of all possible states in the network is equal to the
total number of nodes, which in terms of densities translates in:

Nstates

∑
i=1

si(σ) = 1 . (7)

From Equation (7), we obtain an arbitrary gauge choice on the hi values: all hi values
shifted by a constant ∆ produce the same probability distribution:

H(h + ∆, J) = ∆ + H(h, J) . (8)

Analogous relations hold for the 〈cij〉 coefficients and between 〈si〉 and 〈cij〉.
In order to fix the gauge, we compute the covariance matrix Σ of the target observables

on the training set. Then, we diagonalize Σ, and project out the subspace defined by the
kernel of Σ. We described this procedure in more detail in Ref. [21].

The optimization of the parameters proceeds by successive Monte Carlo–Metropolis
simulations: for a fixed choice of h and J, TOLOMEO runs a Metropolis simulation and
extracts an ensemble of equilibrium configurations. This ensemble is used to compute the
average of the constrained observables over the auxiliary Hamiltonian (xh,J). Next, we
define a χ2 variable (note that we project out the kernel of Σ from (x− xh,J) as

χ2 =
(
x− xh,J

)
Σ−1(x− xh,J

)
. (9)
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The values of h and J are optimized with a conjugate gradient algorithm to minimize
χ2. The explicit expression of the gradients of Equation (9) is reported and derived in
Ref. [21].

To avoid performing a new Metropolis–Monte Carlo at each step of the optimiza-
tion, we employ an importance sampling technique that consists of reusing the ensemble
generated by a certain Hamiltonian assigning a weight for each configurations equal to

ρi =
exp

[
−Hh,J(σi) + Hh0,J0

(σi)
]

∑j exp
[
−Hh,J(σ j) + Hh0,J0

(σ j)
] . (10)

where h0, J0 are the values on which we run the last Monte Carlo–Metropolis simulation.
Unlike the procedure introduced in Ref. [21], here, we employ a more robust criterion

to check whether the ensemble still provides reliable averages. We measure the effective
sample size ratio and check if it is above a user-defined threshold η (usually about 0.5):

Nconf ∑i ρ2
i

(∑i ρi)
2 > η , (11)

where Nconf is the number of configurations in the extracted ensemble. If the inequality (11)
is not satisfied, a new Monte Carlo–Metropolis algorithm is performed with the last h, J
values and the ensemble is updated. The use of Equation (11) to evaluate the importance
sampling proved to be very efficient in similar algorithms [27,28].

The program converges when the χ2 divided by the number of degrees of freedom is
lower than a user-given threshold (below 1). The complete flowchart of the TOLOMEO al-
gorithm is reported in Figure 2.

Figure 2. Flowchart of the TOLOMEO algorithm. The red cell, namely the Metropolis simulation of
Hamiltonian, H, is the most computationally expensive part of the calculation, while, in comparison,
all the other procedures are almost instantaneous. For this reason, the overall computational cost of
the algorithm depends only on the number of times the flowchart passes through that cell.
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During the minimization of the χ2 (Equation (9)), TOLOMEO saves the full path of
the Hamiltonian parameters h, J and the corresponding average observables, xh,J . Thus,
without any additional computational effort, we can compute the entropy of the probability
distribution as

S [h, J] = SSF + 〈Hh,J〉 − 〈Hh(0),J(0)〉 −∑
i

∫ 1

0
xih(ξ),J(ξ)dξ , (12)

where ξ is a variable that parametrizes the evolution of the Hamiltonian from the starting
guess h(ξ = 0), J(ξ = 0) to the converged values h(ξ = 1), J(ξ = 1). The first term of the
entropy corresponds to the Shannon–Fano entropy for non-interacting states:

SSF = −Nnodes

Nstates

∑
i=1
〈si〉 log 〈si〉 . (13)

This equation holds as long as the starting condition is the non-interacting solution, where

hi(0) = − ln(〈si〉) J(0) = 0 .

Equation (12) is obtained from thermodynamic integration along the training path,
and it was derived in Ref. [21].

Dynamical Maximum Entropy

The procedure applied so far describes time-independent processes: it models the
probability of being in a state that does not depend on past conditions.

It is easy to extend the maximum entropy principle to deal with time sequences of
configurations {σ}t. In fact, all the properties of the dynamical system are encoded in the
probability P({σ}t) of finding any particular time sequence of states {σ}t.

As we did for the static maximum entropy, we can define an auxiliary functionH to
determine the probability distribution

P({σ}t) =
exp[−H({σ}t)]

Z
. (14)

We can then repeat both the theoretical and the computational procedure to model
H({σ}t) as we did for the static case, just replacing σ with {σ}t. This choice increases
the variety of the constrained observables in the training set (which is composed of time-
sequences of states). By choosing only time-independent observables, i.e., observables that
do not couple configurations of different timesteps, we obtain the same final result as the
static maximum entropy (the observables are averaged in time). On the opposite side, if
we introduce observables that depend on time, we obtain a new dynamical representation
of the system. TOLOMEO, as it is implemented right now, allows one to constrain self-
time correlations: i.e., the probability of changing the state of a system in two subsequent
timesteps. A similar approach is presented in Ref. [29]. As for the static maximum entropy,
also in the dynamical case, TOLOMEO can variationally compute the dynamical entropy,
defined as:

SD = − ∑
{σ}t

P({σ}t) ln P({σ}t) . (15)

One of the important features of TOLOMEO is the ability to train the probability
distribution from a very limited training set, which allows one to train a full dynamical
probability distribution of time sequences even from a single time sequence. We show the
performances of TOLOMEO in dynamical maximum entropy, computing the dynamical
entropy of the Hopfield model in Section 4.3.
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4. Results and Discussion

We present three different case studies that highlight the broad applicability of TOLOMEO.

4.1. Agent Based Model on 2D Lattice: The EcoLat Model

As the first example of possible application, we discuss the case of an agent-based
model defined on a 2D lattice; we note that the generalization to the 3D lattice is straightfor-
ward. Agent-based models consist of (i) a set of individuals (the agents) which can assume
a determined number of possible states, (ii) a set of rules that dictates the activity of each
agent and the interactions with other agents, (iii) a network that identifies which agent
interacts to each other. Notably, one can represent many important complex systems on a
lattice conserving their essential features [30].

Here, we considered the EcoLat model [21,26] where a minimal ecosystem composed
of two species is defined on a 2D lattice. Each site can assume three possible states (i.e., 0, 1,
or 2) representing the environment, a prey (fish), or a predator (shark), respectively. A set
of rules governs the dynamics of each agent, which can move, breed, or die according to a
certain probability (see Ref. [21] for more details).

Depending on the choice of the parameters (i.e., the set of probabilities), the system
evolves toward either an absorbing state (fish saturation or complete life extinction) or toward
a Non-Equilibrium Steady-State (NESS), in which fish and shark densities fluctuate around a
constant value. A snapshot of an ‘EcoLat’ NESS configuration is shown in Figure 3a.

In this framework, TOLOMEO can be easily applied by selecting a three-state setup
with the ‘lattice’ topology and passing in input a set of NESS configurations. As one can
see from the ‘MaxEnt’ snapshot in Figure 3a, the general aspect of the system is well
reproduced using near-neighbor MaxEnt. Moreover, it is possible to study the behavior of
the configurational entropy as a function of the species’ relevant phenotypes. For example,
Figure 3b displays the entropy per site of the system normalized by its maximal value (ln 3)
as a function of the predator mobility. Blue triangles represent the mean-field Shannon–
Fano entropy, while red circles show the entropy obtained via the MaxEnt approximation
considering near-neighbor correlations. The MaxEnt entropy estimation is always lower
than the mean-field result, as expected due to the variational nature of the least entropy
principle. We can see a qualitative difference between Shannon–Fano and MaxEnt entropy
trends. MaxEnt entropy displays a maximum around pm

s = 0.7, while Shannon–Fano
entropy reaches a plateau. An increased difference between Shannon–Fano and MaxEnt
entropy is a clear sign that structural ordering occurs, and that MaxEnt entropy effectively
considers spatial correlations even beyond near-neighbor ones (see Ref. [21] for more
detailed discussions).

4.2. Biological Image Processing

As a second application of TOLOMEO, we discuss the case of biological images, where
the progression of microscopy and multiplexed fluorescence imaging techniques allows
one to take snapshots with enough resolution to distinguish cell populations [31–34] or
even cellular compounds [35,36] and their respective spatial organization [37].

We applied TOLOMEO considering the case of different cellular populations, where
cells are labeled with different fluorescent markers. In particular, we started from an
image proposed in Chevrier et al. [31], who, using fluorescent imaging on a tumor section,
identified different types of macrophages and T cells present in the microenvironment of
kidney cancer samples. We report the results in Figure 4.
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Figure 3. Measuring entropy in a minimal model ecosystem. (a) Comparison between the in silico
ecosystem (EcoLat) and the maximum entropy (MaxEnt) result. On the left, representation of an
EcoLat snapshot in the steady-state regime. Fish are colored in green, sharks in red, while blue
represents the environment. On the right, we report a configuration extracted from the MaxEnt
probability distribution constraining the numbers of prey, predators, and near-neighbor couples.
Both simulations ran on a lattice of edge, L = 110. (b) Entropy per site as a function of predator
mobility parameter. Blue triangles indicate the Shannon–Fano entropy, while red circles represent the
MaxEnt entropy. Obliques lines underline the ranges of the parameter that lead species to extinction.
A difference in behavior of the two entropies manifests in the region pm

s ∈ (0.7, 0.9). These differences
outline that structural ordering occurs in the system.

Figure 4. Biological imaging analysis. (a) Starting from a snapshot of the cell population taken from [31], four states are
identified: environment (black), CD8-labeled cells (blue), CD38-positive cells (red), CD68-marked cells (green) and the
TOLOMEO method can be trained. (b) From left to right: (i) snapshot of the cell population without blue cells. (ii) Spatial
probability distribution of finding a blue-labeled cell and (iii) spatial distribution of blue-labeled cells in the real image.
(c) Same as in (b) but considering red-labeled cells in place of blue ones.
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Sampled tissues were stained with several fluorescence markers; in particular, the
published image showed fluorescent signals for CD68 (green), CD38 (red), and CD8 (blue).
The authors state that the samples used for imaging were highly enriched for macrophage
and T cell phenotypes. Thus, cells expressing CD68 and CD8 fluorescences markers likely
correspond to macrophage and T cells, respectively. On the other hand, CD38 (red marker)
was co-expressed on both CD68 and CD8 cells, and these cells could co-localize.

To apply our method to the proposed image, we first segmented the picture, creating
a grid of 57 × 57 cells. Then, we assigned each grid cell to one of four possible states
according to the average color of the image pixels lying inside the grid cell. Black cells were
considered the tumor microenvironment; green cells were considered macrophage cells,
blue ones correspond to T cells, and red ones were considered control cells (see Figure 4a).
While we expected a biologically relevant interaction between green and blue cells, red ones
should be less correlated as they can be either macrophages or T cells. Once the grid states
were properly assigned, we ran TOLOMEO, with four states and the ‘lattice’ topology.

The final Hamiltonian we obtain is (states are ordered as black, green, red, blue):

h =
(
0.64 1.54 4.30 2.23

)
, J =


−0.112 0.320 −0.036 0.532
0.320 −0.442 0.318 0.247
−0.036 0.318 0.047 0.060
0.532 0.247 0.060 −0.927

 . (16)

Interpreting the values of h and J directly is dangerous, since they have the gauge
freedom we discussed in Section 3. However, comparing the relative values of the h and J,
we still can extract useful information.

For example, red cells do not interact with most of the other cells, as represented by
the third column of J, where the values for the red interactions are one order of magnitude
smaller than the others. The only exception is the interaction between red and green cells,
which is positive (repulsion), indicating that red and green cells prefer not to stay close. On
the other side, we have the blue cells (last column), which interact the most with themselves
(tend to form clusters). When inside the microtumoral environment (first column, black),
the blue cells prefer to stay close to green cells as J41 > J42.

As we explained in Section 3, TOLOMEO can be applied to infer the position of the
cells when information is missing. To show this feature of the program, in Figure 4b,
we removed the blue cells from the image. Then, we run the Metropolis algorithm with
the final Hamiltonian (H) found by TOLOMEO, fixing the red and green cells and only
simulating blue and black states. The software extracts Nconf configurations, and we
predict the probability of finding the blue cells in each position. The comparison with
the correct location of the blue cells is very good, confirming that TOLOMEO can be
actively employed to predict the system’s status. On the other hand, in Figure 4c, we
remove the red cells, which are less correlated with the other cells. The prediction of the
TOLOMEO algorithm for the most likely location of red cells is much more uniform in the
space, in qualitative accordance to the biological interpretation of the data (red cells can be
either T cells or macrophages).

After the training, TOLOMEO provides the entropy without any additional Metropolis
calculation. The final entropy is S = 0.54 ln 4. The mean-field SSF contribution to the
entropy is 0.58 ln 4. Thus, the correlations between species reduces the entropy by a 7%.
This is a measure of the predictability of the system, where S = ln 4 means complete
randomness, while if S = 0, TOLOMEO performs a perfect prediction.

4.3. General Network Models: The Hopfield Neural Network

Finally, we apply our method to study the Hopfield model, a deterministic recurrent
neural network (RNN) that describes the dynamics of a set of binary neurons [38,39]. In
particular, we consider a network of N (= 20) binary neurons interacting via a connectivity
matrix J, with matrix elements Jij for i, j = 1, . . . , N. The matrix element Jij represents the
strength of the connection between the pre-synaptic neuron j and the post-synaptic neuron
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i. The state of each neuron is represented by a binary state variable, σi, that takes values
either −1 or 1 if the neuron is, respectively, at rest (inactive) or firing (active). At each
timestep, all neurons are updated synchronously [23,40] according to the discrete-time
RNN evolution rule:

σi(t + 1) = θ

(
N

∑
j

Jijσ j(t)− ηi

)
, (17)

where

θ(t) =


−1 if t < 0
U ([−1, 1]) if t = 0
1 if t > 0

, (18)

with U ([−1, 1]) meaning that when t = 0, the function assumes value−1 or 1 with uniform
distribution, while ηi is a certain firing threshold. At the next step t + 1, the neuron i
fires (i.e., σi(t + 1) = 1), if the summation of its synaptic inputs is above the threshold ηi;
otherwise, the neuron is inactive (i.e., σi(t + 1) = −1). Here, we set ηi = 0 for all neurons.
The vector σ(t) = (σ1(t), σ2(t), . . . , σN(t)) represents the activation profile of all neurons
at time t.

Finally, Jij quantifies the strength of the connection between neuron i and j. Following
Folli et al. [23], we generate random connectivity matrices, J, as a function of two crucial
network features, i.e., the level of network dilution d and coupling asymmetry ε. The
network dilution measures the fraction of connected neuron couples, while the network
asymmetry quantifies to what extent the underlying connectivity matrix is asymmetric.
Operatively, we build the connectivity matrix, J, as:

J =
(

1− ε

2

)
S +

ε

2
A, (19)

where S (resp. A) is a symmetric (resp. asymmetric) matrix, whose off-diagonal elements
are randomly sampled from a uniform distribution in the interval [−1,+1], while the
diagonal elements are set to zeros (i.e., no autapse are present in the network [24]). The
ε parameter can assume values in the interval [0,+2], measuring to what extent the
underlying connectivity matrix is asymmetric. For ε = 0, only the symmetric term of the J
matrix remains, and thus neurons interact symmetrically with each other; if ε = 2, J is fully
asymmetric. Here, we explore the interval [0, 1] along the lines of Folli et al. [23], i.e., we
range from symmetrical to moderately asymmetrical networks. To account for network
dilution, elements of the J matrix are set to zero, with probability d in such a way that the
average number of links in a network with dilution d is Nd = d N(N−1)

2 . Figure 5a shows
three kinds of realizations of the Hopfield dynamics of single neurons, which start from
random initial activation profiles (~σ(t = 0)) and different connectivity matrices, J. As one
can see, there can be nodes that remain active (or inactive) during the whole dynamics, can
oscillate from active to inactive with a fixed period, or can give rise to chaotic dynamics.

To compactly assess the mean behavior of the network in different regimes of dilution
and asymmetry, we generate random connectivity matrices varying both the dilution
and asymmetry parameters. Then, we apply TOLOMEO over the obtained single-neuron
trajectories and estimate the mean entropies (Equation (15)) both in the Shannon–Fano
and MaxEnt approximations (see Figure 5b,c). As one can see, both entropy maps show
an increase in the entropy as the network becomes more asymmetric (ε → 1) and fully
connected (d → 0). In particular, if we look at low dilutions and move along the asym-
metry direction, the MaxEnt entropy exhibits an abrupt change, passing from an ordered
region (low entropy) to a highly disordered one (high entropy) for ε∼0.8. This region is
characterized by chaotic neuron dynamics [41] and, indeed, recurrent neural networks in
the fully connected and fully asymmetric region exhibit a very low storage capacity with
large basins of attraction, indicating the incapability of the network to distinguish different
external stimuli [23]. It is worth noticing that, from a biological point of view, when an
RNN drifts out of its optimal state from external causes such as the insurgence of a disease,
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the network becomes less effective in separating different stimuli and discriminating errors
from signals. In line with these observations, it has been reported that the brain of patients
affected by autism spectrum disorders presents an altered dilution compared to healthy
individuals [42].

Figure 5. Entropy of the Hopfield neural network. (a) Examples of possible single neuron activation profiles. From top to
bottom: always active neuron, oscillating neuron with period one, chaotic neuron. (b) Mean MaxEnt normalised entropy
obtained as a function of the network asymmetry, ε and ailution, d for a Hopfield network of 20 nodes obtained in the
Shannon–Fano approximation. Averages are performed over 10 independent realizations of the Hopfield dynamics for each
couple of dilution and asymmetry parameters. (c) Same as in (b) but using the TOLOMEO algorithm.

On the other hand, asymmetric and diluted connectivity matrices exhibit optimal
storage capacity, meaning that a significant fraction of elements in the connectivity matrix
are zero. Such connectivity features are observed in biological cases, such as in the neocortex
and hippocampus regions, and are implicated in memory storage and retrial [43–45].

Here, we showed that the dynamical entropy computed with TOLOMEO correctly
describes the quantity of information a recurrent neural network can store.

5. Conclusions

We presented TOLOMEO, a novel algorithm able to infer the maximum entropy
probability distribution of the discrete states of a network. The method can be applied
to a wide variety of systems. We revised its application in ecosystem dynamics and
presented for the first time its application in image processing. Indeed, we employed
TOLOMEO to infer the effective interaction between macrophages and T cells in kidney
cancer samples and showed how to infer the most likely arrangement of cells in the
absence of markers. Then, we employed the dynamic extension of maximum entropy
to study the complexity transition in the trajectory of the Hopfield model. The method
efficiently models even out-of-equilibrium processes and transient dynamics, enabling the
characterization of the transition between chaotic trajectory and attractors. Furthermore,
we showed how the dynamical entropy computed with TOLOMEO correctly indicates
the quantity of information a recurrent neural network can store, paving the way for the
systematic employment of the method to assess the quality of the network.

The TOLOMEO method is released as a web server app, freely accessible at http:
//circe.iit.uniroma1.it:9205/ (25 August 2021).

http://circe.iit.uniroma1.it:9205/
http://circe.iit.uniroma1.it:9205/
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