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Baller-Gerold (BGS, MIM#218600) and Roberts (RBS, MIM#268300) syndromes are

rare autosomal recessive disorders caused, respectively, by biallelic alterations in

RECQL4 (MIM∗603780) and ESCO2 (MIM∗609353) genes. Common features are severe

growth retardation, limbs shortening and craniofacial abnormalities which may include

craniosynostosis. We aimed at unveiling the genetic lesions underpinning the phenotype

of two unrelated children with a presumptive BGS diagnosis: patient 1 is a Turkish girl with

short stature, microcephaly, craniosynostosis, seizures, intellectual disability, midface

hemangioma, bilateral radial and thumb aplasia, tibial hypoplasia, and pes equinovarus.

Patient 2 is an Iranian girl born to consanguineous parents with craniosynostosis,

micrognathism, bilateral radial aplasia, thumbs, and foot deformity in the context of

developmental delay. Upon negative RECQL4 test, whole exome sequencing (WES)

analysis performed on the two trios led to the identification of two different ESCO2

homozygous inactivating variants: a previously described c.1131+1G>A transition in

patient 1 and an unreported deletion, c.417del, in patient 2, thus turning the diagnosis

into Roberts syndrome. The occurrence of a Baller-Gerold phenotype in two unrelated

patients that were ultimately diagnosed with RBS demonstrates the strength of WES

in redefining the nosological landscape of rare congenital malformation syndromes,

a premise to yield optimized patients management and family counseling.
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BACKGROUND

Baller-Gerold syndrome (BGS, OMIM#218600) (1) and
Roberts syndrome (RBS, OMIM#268300) (2) are two rare
autosomal recessive congenital disorders with clinical overlap
and a broad phenotypic variability.

The major clinical findings of BGS involve the skeleton: all
patients display craniosynostosis of any or all cranial sutures
and pre-axial upper limb defects, mainly hypoplasia/aplasia
of radii, ulnae, and/or thumbs and malformation or absence
of some carpal and metacarpal bones. The spectrum of BGS
manifestations includes also growth delay, anomalies of lower
limbs (absent patellae, genu valgum, club feet), imperforate or
anteriorly placed anus, rectovaginal fistula, renal and cardiac
(tetralogy of Fallot, ventricular septal defects) malformations,
skin alterations (poikiloderma, hyper- and hypopigmentation,
hemangioma, nevus flammeus), facial dysmorphisms
(telecanthus, malpositioned ears, prominent/depressed nasal
bridge, high-arched/cleft palate, micrognathia), and occasionally
intellectual disability. Many BGS patients die within the first year
of life and a few may develop malignancies early in life (3, 4).

About 70 clinically diagnosed BGS patients are reported in
the literature but, subsequently to further in-depth analysis,
a different diagnosis has been formulated for almost 20 of
them (3, 5–9). To date, biallelic alterations in RECQL4 gene
(OMIM∗603780), encoding a protein of the RECQ helicase
family with multiple functions in the maintenance of genome
integrity, have been found in a subgroup of 11 BGS patients
from 7 families (1, 4, 10–12). To note, 4 out of 5 BGS patients,
who could be evaluated, present with poikiloderma, a chronic
cutaneous alteration manifesting in the first years of life in most
of the RECQL4-mutated patients (4, 10, 11).

Roberts syndrome, which includes SC Phocomelia syndrome
(OMIM#269000), is a multiple malformation syndrome (2)
described in at least 230 patients belonging to 167 different
families. Its main clinical features include severe pre- and
post-natal growth retardation, symmetrical tetra-limb reduction
of various degree (usually more severe in upper limbs) associated
to skeletal defects including absence or reduction in length of
humeri, radii and thumbs, ulna deformity, oligodactyly, and
neurological signs, such as mild to severe intellectual disability
and seizures. Craniofacial dysmorphisms (hypertelorism, cleft
lip, cleft palate, nose and ears anomalies), microcephaly, facial
hemangioma, congenital heart defects, polycystic or dysplastic
kidneys, and enlarged genitalia are frequently observed in RBS
patients. The most severe phenotypes usually lead to fetal death
or in the first months of life. SC Phocomelia is considered
the mild clinical variant of RBS (13) and is characterized
by mild symmetric limb reductions, joint contractures,
microcephaly, midfacial hemangioma, cloudy corneas, and
mild or borderline intellectual disability. Survival to adulthood is
common (14).

At the cellular level, the chromosomal instability hallmark
of premature centromere separation and splitting of the
heterochromatic regions, also termed “heterochromatic
repulsion” (HR), characterize metaphase spreads of RBS-SC
Phocomelia cells (15).

Biallelic pathogenic variants in ESCO2 (establishment of
cohesion 1 homolog 2; OMIM∗609353) gene located at 8p21.1,
have been identified in RBS and SC Phocomelia (2). ESCO2
encodes an acetyltransferase of the cohesion establishing
complex involved in sister chromatids cohesion during DNA
replication and double-strand breaks repair (16). No genotype-
phenotype correlation has been established so far. A variable
clinical presentation between sibs, including both RBS and
SC Phocomelia phenotypes, suggests that modifier genes and
epigenetic factors contribute to this uncommon variability
among autosomal recessive disorders (2). Mildly affected
children are probably overrepresented in the published clinical
descriptions since they are more likely to survive and to come to
medical attention.

We herein report on two unrelated cases of RBS who were
first clinically diagnosed as BGS and, upon negative RECQL4
test, were found by whole exome sequencing (WES) to harbor
homozygous mutations in ESCO2 gene. One of the observed
variants, yet unreported, expands ESCO2mutational spectrum.

CASE PRESENTATION

We describe two affected patients of two unrelated families
(1 and 2) with a syndromic phenotype suggestive of BGS
referred to our laboratory by clinical geneticists and pediatricians.
Appropriate written informed consent to genetic analysis and
authorization to photos collection were obtained from the
parents of the patients for the publication of the case report
and any potentially-identifying information/images. The study
protocol was approved by the Research Ethics Board of Istituto
Auxologico Italiano, Milan, Italy.

Clinical Report of Family 1
Proband 1 is the second child of Turkish parents originating from
the same geographical area. She was born in 2005 at full-term
after an uneventful pregnancy and presented with mesomelic
shortening of limbs and bilateral thumb aplasia. She has an elder
brother who suffered from epilepsy, motor delay and intellectual
disability, and a 1-year-old sister who had an epileptic attack at 8
months of age (Figure 1A).

Early in infancy, bilateral corneal clouding was noted and
surgically removed. Due to eye proptosis and cranial deformity,
she underwent a skull radiograph and CT scan that indicated
sagittal and coronal premature fusion. She manifested motor and
developmental delay. Language was delayed and limited to a few
words without the ability to construct sentences.

Generalized seizures, responsive to levetiracetam, occurred
when she was 8-year old; her height was at −8.5 SD (80 cm),
weight at−4.8 SD (10 kg), and OFC at−7 SD (43 cm).

On clinical examination at 12 years, she could not follow an
object with her eyes nor speak or respond to questions. Facial
dysmorphisms included low anterior and posterior hairlines,
arched eyebrows, telecanthus, epicanthal folds, eye proptosis,
left exotropia, cutaneous hemangioma on the frontal region
expanding to the nose which is small and flared, a short philtrum,
wide mouth with downturned corners and high-arched palate
(Figure 1B). Her upper limbs were extremely short, thumbs
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FIGURE 1 | Clinical and molecular features of patients 1 and 2. (A) Pedigree of family 1: the arrow indicates the proband. (B) Face of patient 1 at 12 years showing

arched eyebrows, telecanthus, epicanthal folds, hemangioma on the frontal region, small and flared nose, short philtrum, and a wide mouth with downturned corners.

(C) Forearm aplasia, manus varus deformity, and thumb aplasia. (D) Close-up of the left leg showing short cruris, flexion deformity on knees, and pes equinovarus. (E)

Overall photo of patient 1 showing dysmorphisms of the face and malformations of arms and legs. (F) Coronal cross-sectional areas obtained with cranial MR T2

showing asymmetric colpocephalic expansion of lateral ventricles occipital horns. (G,H) X-rays images of arms showing bilaterally aplasia of radius, ulna and thumb,

(Continued)
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FIGURE 1 | hypoplasia of middle phalanx, fusion of 4–5 metacarpals and carpal bones. (I) Sagittal cross-sectional areas obtained with cranial MR T2 showing partial

corpus callosum agenesis. (J,K) X-rays images of the legs evidencing bilaterally fibular aplasia, femoral-tibial synostosis, fusion of tarsal bones, short and bowed

tibias. (L) Chromatograms of ESCO2 sequence around c.1131+1G>A in intron 6 of the affected girl (top) and her obligate carriers parents (middle and bottom). Fex6

(5
′
-gaggaccaggatttgagtgtt-3

′
) and Rex6 (5

′
-accacctacaactcccattct-3

′
) primers were used to amplify this region. (M) C-banded metaphase spread showing

premature centromere separation with puffing at the centromere and heterochromatic regions (arrowed). (N) Pedigree of family 2 with RBS-affected patient arrowed.

(O) Photograph of patient 2, showing forearm aplasia, varus deformity of hands, thumb aplasia, extended capillary malformation, and sparse hair. Magnifications

showing the protruding cupped ear (P) and the short nose with underdeveloped alae nasi and narrow and sharp nasal ridge (Q). (R) Coronal craniosynostosis and

brachycephaly profile view of head X-rays. (S) Chromatograms of ESCO2 sequence around c.417del alteration in exon 3 in the affected girl (top) and her obligate

carriers parents. The exon 3-specific amplicons were obtained using primers Fex3 (5
′
-gcaaatcaaggctcacca-3

′
) and Rex3 (5

′
-ttttggctcagaacccga-3

′
).

absent while fingers were long and tibias short and bowed
(Figures 1C,E). There was an equinovarus deformity of the right
foot and calcaneus valgus deformity on the left foot, overriding
toes and major joints contractures (Figures 1D,E). The skeletal
survey showed bilateral aplasia of radius, ulna, and thumb
(Figures 1G,H,J,K) while brain MRI evidenced asymmetric
dilatation of lateral ventricles and agenesis of corpus callosum
(Figures 1F,I). Karyotype was 46,XX on peripheral lymphocytes.
Array-CGH was normal.

Clinical Report of Family 2
Proband 2 is a 2-year-old Iranian girl born to consanguineous
parents, presenting with a malformation syndrome comprising
craniosynostosis, bilateral radial ray hypoplasia and absent
thumbs (Figures 1N,O,R). The pregnancy was unremarkable
till 6 months of gestation when ultrasonographic examination
revealed oligohydramnios and bilateral club feet. The baby
was born at 29 weeks of gestation and her birth weight
was 720 g. A large frontal hemangioma and craniofacial
dysmorphisms including large alae nasi, small nose with deep
nasal bridge, arched palate, micrognathia, simple ears, and
short neck were observed since birth (Figures 1O–Q). She
had bilateral hypoplastic radius, oligodactyly, and knee joints
stiffness. Bilateral glaucoma and hypotonia were also noted.
Neurodevelopmental delay and hypothyroidism were recorded.

LABORATORY INVESTIGATIONS

A provisional clinical diagnosis of Baller-Gerold syndrome
was made for both patients based on the association of
craniosynostosis and radial ray defects. However, RECQL4
Sanger sequencing carried on as previously described (17) didn’t
evidence any significant sequence alteration.

For both families, WES was performed on 50 ng of genomic
DNA of each member of the trio (index patient and parents)
prepared using the Illumina R© Nextera R© Rapid Capture Exome
kit (Illumina) and sequenced on Illumina HiSeq2500 sequencer
(Illumina). Reads were aligned against the human reference
genome (hg 19/GRCh37) using the Burrows-Wheeler Alignment
tool (18). The variant calling was performed with the SAM tool
(19) and the variant annotation with GATK (20).

Given the rarity of the suspected disease, the variant list was
filtered according to an allele frequency ≤0.1% according to
the ExAC Browser of Broad Institute (21) and 1,000 Genomes
(22) databases. Subsequent filtering steps sorted out variants
following the autosomal recessive inheritance model as well as

their functional impact (i.e., non-sense, affecting the canonical
splice-site regions or non-synonymous) and the prediction of
Polyphen (23) and SIFT (24) bioinformatics tools.

Filtering about 43,500 variants in each sample led to
the identification of two different ESCO2 (NG_008117.1)
homozygous alterations in the probands: c.1131+1G>A in
intron 6 of patient 1 and c.417del in exon 3 of patient 2 [sequence
variants were termed according to HGVS recommendations
(25)]. Sanger sequencing confirmed the biallelic pathogenic
alterations in the probands and the carrier status of their parents
(Figures 1L,S) and of the elder brother of patient 1. The splice
donor variant c.1131+1G>A has a MAF < 0.01 and has been
previously reported (13, 26–28) while the c.417del is absent from
public databases, has not been described to date and has been
submitted to LOVD database (https://databases.lovd.nl/shared/
genes/ESCO2).

The final diagnosis of Roberts syndrome was done in
both cases. Moreover, C-banding chromosome analysis of
patient 1 showed the premature centromere separation and
heterochromatin repulsion known to be pathognomonic for
RBS (Figure 1M).

DISCUSSION

To better compare the characteristics of our patients with those
of the RBS-SC Phocomelia patients reported in the literature
with the same recurrent mutation of case 1 or with a different
mutation but affecting the same nucleotide of case 2, we provide
an overview of all known ESCO2 pathogenic variants. As can
be seen at glance in Figure 2 there is no hot spot as the
mutations are scattered throughout the gene. To date, out of
33 different pathogenic variants described in 49 families, 31 are
inactivating mutations leading to protein truncation and lack
of the evolutionarily conserved C-terminal domain where the
acetyltransferase activity is harbored.

The c.1131+1G>A alteration of family 1 has been previously
reported in literature both in homozygous (13, 26, 27) and
compound heterozygous (28) state and it has been demonstrated
that the mutated allele codifies for an aberrant transcript lacking
exon 6 (r.1014_1131del118) and exposing a premature stop
codon (p.Arg338fs∗17) (13). The clinical phenotype of the three
patients with the c.1131+1G>A homozygous splicing mutation
is, although variable, ranging from the mildest phenotype of
the adult patient with SC Phocomelia syndrome (13) to the
most severe of RBS in an infant prematurely died (27). All
patients share dysmorphisms, microcephaly, and skeletal defects.
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FIGURE 2 | ESCO2 pathogenic alterations. Schematic diagram of full-length ESCO2 gene: exons are depicted as boxes while introns as thin bars. Exons encoding

the acetyltransferase domain are in dark gray. The two mutations carried by the patients herein described are over the gene schematic while all the 32 known

pathogenic alterations found in RBS-SC Phocomelia patients are listed below. The only 3 “non-inactivating” mutations (2 missense mutations and a three-nucleotide

deletion) are bolded. The horizontal dashed lines indicate intronic mutations leading to miss-splicing.

Compound heterozygosity for this splice site alteration and the
c.954_955+2del sequence alteration was also described in a
female RBS fetus with multiple malformations (limbs alterations,
hygroma, and intrauterine growth retardation) deceased at 18
weeks of gestation (28). At difference from our patient, none
of the described patients was reported to suffer from epilepsy
as well as craniosynostosis, which are rarely described in RBS
patients (13, 15, 29, 30). However, one may suppose that epilepsy
in our RBS patient may represent a comorbid condition due to
segregation of a common recessive epilepsy gene from the likely
related parents, given that also proband’s siblings suffer from
seizures but do not have RBS.

As regards the single nucleotide c.417del deletion (Figure 2)
identified in patient 2, it has not been reported in the literature
so far. It is worth noting that a duplication involving the same
nucleotide has been observed (31) in a Turkish fetus with
RBS (29).

Our RBS patients masqueraded as Baller-Gerold syndrome
patients due to craniosynostosis, uncommon in RBS, and radial
ray hypoplasia, a major BGS sign which in RBS presents in
the general context of upper limb reductions. In addition, both
patients had a severe developmental delay, midface hemangioma,
striking facial dysmorphism more severe than that usually
observed in coronal or sagittal craniosynostosis. Overall, these
clinical signs and symptoms encompass and surpass the classical
Baller-Gerold clinical picture.

Table 1 summarizes the distinctive clinical features of
BGS and RBS individuals whose clinical phenotype could be
confirmed by molecular analysis of the respective RECQL4 and
ESCO2 genes. Craniosynostosis is a distinctive sign of BGS as it
has been reported in 82% (9/11) of BGS patients with RECQL4
alterations (4, 10–12, 32, 33) but in RBS with ESCO2 pathogenic
variants only in the 2 patients herein described and in 2 patients
of the literature, for whom no details or images are provided (29).
Conversely, hemangioma on the face, recorded in 30 ESCO2+
patients (29, 34, 35) and in only one RECQL4+ patient (10, 32),
as well as intellectual disability, assessed in 23 ESCO2+ patients
(29, 34) and in 1 RECQL4+ patient (4), are prominent in RBS.

TABLE 1 | Summary of the major clinical signs of BGS and RBS according to the

clinically and molecularly investigated patients with either syndrome.

BGS

RECQL4+

RBS

ESCO2+

N◦ of patients (n◦ of fetuses) 11 (5) 61 (13)

Pre/post-natal growth delay 4 52

Craniosynostosis 9 4

Craniofacial dysmorphisms 4 38

Hemangioma 1 30

Upper limbs malformations 11 61

Lower limbs malformations 7 61

Intellectual disability/developmental delay 1 23

In addition, cognitive impairment is more severe in RBS than
BGS: most RBS patients show not only developmental delay but
also a severe intellectual disability even if marked variability exists
between RBS and SC Phocomelia (2).

Moreover, 90% (10/11) BGS (10–12, 32, 33, 36) and all
RBS (14, 27–29, 34, 35, 37, 38) patients present with radial
alterations (hypo/aplasia) and most of them manifest additional
upper and lower limb malformations. Pre-axial upper limb
defects are similar in BGS and RBS: ulnae hypoplasia, club
hands, thumbs aplasia/hypoplasia, clinodactyly, and oligodactyly,
though humeral reduction can be also present in RBS.

Conversely, marked differences in lower limb malformations
exist between BGS and RBS (Table 1): hip and knee joint
dislocation, patellar aplasia, or hypoplasia, hypoplasia of great
toe, club feet have been reported in BGS while in RBS lower
limbmalformations include femoral, tibial and fibular hypoplasia
or aplasia, club feet, and knee joint dislocation. As known, RBS
malformations of upper limbs are more severe than those of
lower limbs, and some patients present skeletal defects only in
the arms (2).

Several additional anomalies have been observed in BGS
and RBS patients with a severe phenotype, who can present
multiple additional abnormalities coupling only with one
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syndrome. Poikiloderma (4, 10, 11, 33), imperforate and/or
anteriorly positioned anus (4, 10, 32), feeding difficulties (10,
11, 33), hypospadias and undescended testes (33), and osseous
demineralization (11, 33) have been recorded only in BGS
patients, while heart defects (14, 27, 29, 34, 35, 38) and
enlargement of phallus/clitoris (29) have been reported only in
RBS. Before the availability of the molecular test, heart defects
as well as seizure, have been included in the spectrum of BGS
signs (39) but none of BGS patients with RECQL4 alterations
manifested these clinical findings, a data raising the possibility
that many patients described in the past had received the wrong
diagnosis of BGS, as it has been confirmed in a few cases (7–9).

The clinical overlap of BGS, a RECQL4-associated disease,
and RBS cohesinopathy is accounted for by the interconnected
pathways of the respective genes, as evidenced by the inclusion
of RECQL4 among the accessory proteins acting in the cohesin
pathway (40) and by downregulation of RECQL4 in Cornelia
de Lange (OMIM#122470) patients (41). Both RECQL4 and
ESCO2 contribute to the maintenance of correct chromosomal
segregation and syndrome-specific hallmarks of chromosomal
instability are observed when both alleles of these key genes are
deranged (42, 43).

Switching back to BGS-RBS phenotypic similarity one has
to note that this analysis suffers from the limited number of
survived and clinically evaluated BGS individuals (out of 11 cases
there are five terminated pregnancies (10, 11, 36) and one death
occurred few minutes after birth (10, 32) vs. the much higher
number of RBS patients (29 patients >1 year) (14, 29, 34). Such
disproportion makes hard to compare the frequency of especially
rare clinical findings, such as craniosynostosis, between RBS and
BGS patients. A further difficulty arises from the wide clinical
expressivity of both syndromes, deserving a consistent number
of described patients, not yet available for BGS, to classify signs
recorded only in one or few patients.

CONCLUDING REMARKS

The similarity in upper limb malformations and pre/post-natal
growth delay in BGS and RBS joined to the peculiarity of
additional syndrome-specific malformations, can help clinicians
in the clinical diagnosis.

However, the diagnosis of ultra-rare syndromes characterized
by a huge clinical spectrum, such as BGS and RBS, is quite
challenging and benefits enormously from the application of
contemporary molecular genomics techniques allowing the
unequivocal identification of the genetic lesion behind the
disease. The suspected diagnosis can be confirmed/excluded,
hence enhancing optimized patient management/follow-up,
family counseling and appropriate therapy provision.
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