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1 | BACKGROUND

Postbariatric hypoglycaemia (PBH) is an increasingly recognized late

complication of bariatric surgery, particularly Roux-en-Y gastric

bypass (RYGB).1,2 Between 20% and 80% of patients after RYGB may

develop the condition, which is characterized by postprandial hypo-

glycaemic episodes with increased severity after ingestion of carbohy-

drates with a high glycaemic impact.3 Prevalence estimates range

widely, because of the current lack of standardized diagnostic criteria.

Although incompletely understood, accelerated nutrient absorption

alongside with excessive postprandial incretin and insulin exposure

are key pathophysiological features.4

In the absence of an approved pharmacotherapy, dietary manage-

ment is the first-line treatment of PBH.5 Dietary measures, however,

can be very restrictive, insufficiently effective and challenging to

implement in the long-term. Given these limitations, continuous glu-

cose monitoring (CGM) devices, which provide real-time

(RT) information on current glucose levels and rate of change, have

the potential to support PBH management.6 CGM can be leveraged

to develop RT predictive algorithms allowing for preventive or timely

corrective actions (e.g. carbohydrate intake), which may be particularly

useful for the frequently encountered patients with PBH with

hypoglycaemia unawareness and related safety concerns.7,8

While hypoglycaemia forecasting has been widely studied in type

1 diabetes (T1D),9 the topic remains understudied in the PBH popula-

tion. The first and only contribution in this field was the development

of a heuristic-based predictive algorithm for a glucose-responsive glu-

cagon delivery system in an experimental inpatient session.10,11

To address this gap, the purpose of this work was to assess the

feasibility of forecasting PBH episodes by exploiting three different

predictive algorithms using only CGM data.

2 | METHODS

2.1 | Dataset and postbariatric hypoglycaemia
event definition

Data were generated by 39 adults with confirmed PBH after RYGB

(defined as symptomatic plasma or sensor glucose <54 mg/dl relieved

by glucose administration) wearing the Dexcom G6 (Dexcom Inc., San

Diego, CA, USA) CGM sensor for a median of 10 days (IQR 9-30) in†These authors contributed equally to this work.
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daily life conditions. Data were obtained from usual care and

research settings (NCT04330196, NCT04334161, NCT04332289).

Overall, the percentage of days using CGM in blinded, unblinded,

unknown mode is: 14.5%, 62.7% and 22.8%, respectively. Based on

a PBH event definition of sensor glucose <54 mg/dl for at least

15 min,7,12 we identified, in total, 542 PBH episodes (≈4 every

10 days per subject) with an average duration of 25 min. Partici-

pants' details are summarized in Table S1 (see Supplementary Mate-

rial, Appendix A). Following preprocessing for anomalies and noise

(for more details see Supplementary Material, Appendix A), the

dataset was split into a training (31 subjects and 489 PBH events)

and a test (eight remaining subjects and 53 PBH events) set. In addi-

tion, given that the CGM length may significantly vary between indi-

viduals, to create a test set that is as balanced as possible and to

avoid any bias on the results, we applied the following criteria to

include/exclude a subject in/from the test set: (a) the patient has >5

and <20 consecutive monitoring days, and (b) the patient showed at

least one PBH episode over four monitoring days.

Clinical and demographic information about the training-test par-

tition are detailed in Table S1 (Supplementary Material, Appendix A).

2.2 | Predictive algorithms

Based on our previous work on the prediction of hypoglycaemia in

T1D,13 we considered the following three algorithms: an autoregressive

model with recursive parameter estimation (AR1),14 which represents a

good example of consolidated adaptive method; an autoregressive inte-

grated moving average (ARIMA) model,13 which turned out to be the

best linear predictor in T1D; and a feed-forward neural network (NN),15

as representative of non-linear methodologies. These methods, besides

being considered as state-of-art glucose predictive algorithms for T1D,

were also shown to be the best performing for short-term prediction

when CGM data are the only available source of information.13

Regarding the prediction horizon (PH; i.e. how far ahead the

method predicts the event), we considered 15, 20, 25 and 30 min.

For each combination of algorithm and PH, model parameters

and/or hyperparameters were estimated in the training set. Then, the

algorithms were applied to the test set, simulating the acquisition of

CGM data in RT (see Supplementary Material, Appendix B). Two

examples of RT PBH forecasting using the proposed algorithms with

PH = 20 min are visualized in Figure 1.

F IGURE 1 Examples of real-
time forecasting of postbariatric
hypoglycaemia (PBH) events and
preventive alert generation using
the three model-based algorithms
fed by the past continuous
glucose monitoring (CGM) values
(blue dotted line, sampling time
5 min). Green circles indicate
future CGM samples. Top panel:
at time 21:15 (actual time), the
three algorithms fed by the past
CGM values, predict the next four
CGM values. Red asterisks,
ARIMA; magenta triangles, AR1;
black squares, neural network
(NN). As the last predicted CGM
values is below thPBH and there
are no recent alarms, a preventive
PBH alarm (red, black and
magenta arrow for ARIMA, NN
and AR1, respectively) is
triggered. Bottom panel: at time
16:07 (actual time), AR1 predicts
a value below thPBH and raises a
false alarm (magenta arrow),
whereas ARIMA and NN correctly
predict the increase in glucose
concentration and do not

generate any alert
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Algorithm performance was evaluated as the ability to predict/

detect PBH events (see Supplementary Appendix B for details). (This

work does not consider Dexcom Urgent Low Soon alerts algorithm

and it does not provide any evaluation of its performance.) For each

raised PBH alarm, we counted: a true positive (TP) if a PBH event

occurred in the following 45 min; a false positive (FP) if no PBH

events occurred in the following 45 min. A false negative was counted

when no alarms were generated despite the occurrence of a PBH

event.13 Based on TP, FP and false negative, the following aggregated

metrics were calculated: precision (P), recall (R), F1 score (F1).

P can be seen as the percentage of the correct alarms over the

total number of raised alarms. R, also known as the sensitivity or TP

ratio, is the ratio of correctly predicted hypoglycaemic events over

the total number of events. F1 is the harmonic mean of the two previ-

ous metrics. In addition, we evaluated the daily number of false alarms

(FP/day) raised by the algorithms, and the time gain (TG) defined as

the temporal distance between a TP alarm and the corresponding

PBH event onset, thus representing the time window for a preventive

intervention.

Because of the short CGM recording period of the test set

(median 10 days) and consequently low prevalence of PBH events,

the value of hypoglycaemic prediction metrics was obtained by con-

sidering all hypoglycaemic events of different subjects according to a

population-based approach. The results are expressed as a single

value for all the considered metrics except for TG, which is expressed

as median [25th-75th], as it can be computed for each TP.

To contrast our results with the previously published work, we

reimplemented and trained the PBH Detection System (PBH-DS)

algorithm developed by Laguna Sanz et al.,10 in particular we referred

to the version denoted as PBH-DS v002 in that study.10 All the imple-

mentations were done in MATLAB (2021a version).

3 | RESULTS

Performance metrics of the AR1, ARIMA and NN algorithms for each

considered PH as well as of the previously published PBH-DS are

shown in Table 1 (for details on parameter identification see Supple-

mentary Material, Appendix C). The ARIMA configuration with

PH = 20 min performed best, achieving P = 79.10%, R = 100%,

F1 = 88.33%, FP/day = 0.17 and median TG = 20 min. In practical

terms, provided that CGM reflects blood glucose precisely and accu-

rately, this means that PBH episodes can be predicted 20 min

beforehand, with no missed events and generating only one false alert

every 6 days.

ARIMA predictors with PH = 25 and 30 min, despite achieving a

larger TG (i.e. window for intervention), resulted in inferior P, R and

FP/day. This is illustrated by the F1 trend, which decreased as the PH

horizon increased (F1 = 83.21%, 70.20%, 58.76%) because of the crit-

ical decrease of P (P = 72.15%, 54.08%, 41.94%).

Compared with ARIMA, AR1 was inferior for all PHs, particularly

in terms of P (P = 36.11%, 35.97%, 42.24% and 44.45% for PH = 15,

20, 25 and 30 min, respectively). In addition, AR1 provides the largest

FP/day = 1.15, in line with its known susceptibility for unstable pre-

dictions.14 The NN configuration performed similarly to ARIMA but

yielded lower TG.

Reimplementation of the previously published PBH-DS resulted

in R = 100% with median TG of 25 min and P = 23.87%. Conse-

quently, the FP/day was 2.11, which is 10 times the number of FP

raised by ARIMA for PH = 20 min (FP/day = 0.17).

In addition, we analysed the performance of the predictive algo-

rithms for individuals wearing the CGM sensor in blinded and

unblinded mode (full results are reported in the Supplementary Mate-

rial, Appendix D). In particular, the test set comprises four patients

TABLE 1 PBH prediction metrics for
the algorithms under investigation
(ARIMA, AR1, NN and PBH-DS)
according to different PHs based on a

test set containing 53 PBH events

Algorithm PH (min)
Metrics

P (%) R (%) F1 (%) FP/day TG (min)

ARIMA 15 72.15 98.28 83.21 0.27 15 [15-15]

AR1 36.11 98.11 52.79 1.15 10 [10-15]

NN 68.29 96.55 80 0.32 15 [10-15]

ARIMA 20 79.10 100 88.33 0.17 20 [15-20]

AR1 35.97 94.34 52.08 1.11 10 [5-10]

NN 82.26 96.23 88.70 0.14 15 [15-20]

ARIMA 25 54.08 100 70.20 0.56 25 [20-25]

AR1 42.24 92.45 57.99 0.84 10 [5-10]

NN 62.32 81.13 70.49 0.32 20 [15-25]

ARIMA 30 41.94 98.11 58.76 0.89 25 [20-30]

AR1 44.45 90.57 59.63 0.76 10 [5-10]

NN 54.67 77.36 64.06 0.43 25 [20-30]

PBH-DS — 23.87 100 38.55 2.11 25 [20-30]

Abbreviations: AR1, autoregressive model; ARIMA, autoregressive integrated moving average; F1,

F1-score; FP/day, false positives per day; NN, neural network; P, precision; PBH-DS, postbariatric

hypoglycaemia detection system; PH, prediction horizon; R, recall; TG, time gain.

Note: Results of TG are reported as median [25th-75th] percentile.
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with blinded recordings (for a total of 24 hypoglycaemic episodes) and

four patients with unblinded recordings (for a total of 29 hypoglycaemic

episodes). The results are consistent with those reported for the com-

plete dataset (Table 1): (a) the best performing algorithm is confirmed to

be ARIMA with a PH = 20 min, granting high precision (77.42% and

80.56% for blinded and unblinded subsets, respectively), high recall

(100% in both cases) and low FP/day (0.17 vs 0.18 for blinded and

unblinded sets, respectively); (b) AR1 is inferior to ARIMA for all the PHs

for both blinded and unblinded subsets; and (c) NN performed similarly

to ARIMA but it yields to a slightly inferior median TG (15 min) both in

blinded and unblinded subsets. Of note, the number of FP/day is slightly

larger in the unblinded than in the blinded subset.

4 | CONCLUSIONS

In this proof-of-concept study, we assessed the feasibility to forecast

PBH events in RT using various linear and non-linear black-box pre-

dictive algorithms fed by CGM data only. The highest performance

was achieved with ARIMA approach using a PH of 20 min, which was

able to predict PBH events with a median lead time of 20 min, with

no missed events and only one false alert every 6 days. The ARIMA

approach outperformed the previously published hypoglycaemia pre-

diction algorithm, which yielded two false alarms per day when

applied on our data.10,11 Apart from usability aspects, avoidance of

false alarms is particularly important for the PBH population as unnec-

essary corrective ingestion carbohydrates can cause rebound hypogly-

caemia and predispose to weight regain.1 Although comparability is

limited, the herein achieved performance metrics for hypoglycaemia

prediction can even compete with those reached in T1D and T2D

populations using similar methods.13 Thus, our findings are encourag-

ing and support the feasibility to forecast PBH episodes by leveraging

CGM data in combination with an ARIMA-based predictor. Of note,

compared with models used in Prendin et al.,13 the proposed ARIMA

model shows an inferior number of parameters to describe the glu-

cose dynamics (i.e. the autoregressive model order). Thus, suggesting

that glucose dynamics are faster in PBH than the T1D population.

4.1 | Limitations of the study

Despite the promising and encouraging results obtained in this study we

acknowledge various limitations. First, the model assessment on original

non-processed CGM data would have been interesting, but not solid

because of noise, which could have negatively impacted the identifica-

tion and training procedure of the algorithms. However, it is worth not-

ing that, despite the offline data preprocessing aimed at removing noise/

anomalies that could have introduced a bias in the evaluation, all predic-

tive algorithms have been applied simulating an RT application.

Another potential bias in the analysis may be the presence of

CGM recordings acquired in unblinded modality. In fact, we found

that the number of FPs is higher in the unblinded subset, which might

be explained as follows: low glucose alarms generated by the

unblinded CGM sensor and/or the possibility of reading in RT CGM

values may have triggered a preventive carbohydrate intake, thereby

mitigating against the impending PBH episode. Unfortunately, lack of

information on either alert settings or preventive carbohydrate

intakes in the dataset precludes a definitive confirmation. Still, it is

important to note that the inclusion of unblinded CGM recordings

could have generated an underestimation of the performance of our

algorithms because of FPs.

Finally, we acknowledge that previously a time-lag of about

10-15 min16 between interstitial and blood glucose concentrations,

could reduce the actual time anticipation of PBH events via CGM sen-

sor data to 5-10 min. As intravascular sensors are currently not a via-

ble option, further studies are required to provide an estimation of

the blood-to-interstitial fluid time lag during the rapid dynamics of a

PBH episode and thus assess the true effectiveness of PBH CGM-

based predictive algorithms.

4.2 | Future developments

Future work will focus on the development of subject-specific algo-

rithms, which allows considering the large heterogeneity that character-

izes the PBH population. This will only be possible once large CGM

longitudinal datasets are available. A further and natural extension of

this work will assess the improvement in forecasting PBH events by

increasing the input data by additional information such as meal and

physical activity. A more thorough understanding of the correlation/

causation between the PBH episodes and adverse clinical events will

further help to determine practical clinical impact of PBH RT prediction.

In conclusion, CGM data can be leveraged to forecast PBH and

future research and clinical validation trials will unravel whether the

technology translates into patient benefits.
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