Molecular Biology Reports (2022) 49:5057-5074
https://doi.org/10.1007/s11033-022-07188-5

REVIEW q

Check for
updates

Aberrant expression of miRNAs in epilepsy
Soudeh Ghafouri-Fard' - Bashdar Mahmud Hussen?3 - Atefe Abak* - Mohammad Taheri*>® - Reza Jalili Khoshnoud’

Received: 9 November 2021 / Accepted: 21 January 2022 / Published online: 28 January 2022
© The Author(s) 2022

Abstract

Epilepsy is manifested by intermittent convulsions and alterations in consciousness. This disorder has serious effects on daily
functions and physical and mental health of affected patients. A variety of temporary irregularities in the function of brain
can results in epilepsy. The molecular mechanism of epilepsy and the underlying causes of abnormal apoptotic responses
in neurons, dysregulation of regenerative mechanisms in glial cells and abnormal immune reactions in the context of epi-
lepsy are not clear. microRNAs (miRNAs) as important regulators of cell apoptosis as well as regenerative and immune
responses have been shown to affect pathologic events in epilepsy. In the current review, we aimed at defining the role of
miRNAs in the pathophysiology of epilepsy. We have listed dysregulated miRNAs in animal models of epilepsy and human
subjects. miR-25-3p, miR-494, miR-139-5p, miR-101a-3p, miR-344a, miR-129, miR-298 and miR-187 are among down-
regulated miRNAs in epilepsy. Moreover, expressions of miR-132, miR-146a, miR-181a and miR-155 have been reported
to be increased in epilepsy. A number of genetic variants within miRNAs can affect risk of epilepsy. We discuss the role of

miRNAs in the development of epilepsy.
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Introduction

Epilepsy is resulted from a variety of temporary irregulari-
ties in the function of brain due to an anomalous, extremely
synchronous discharge of neuronal cells. Clinically, it is
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tions and physical and mental health of affected patients
[1]. Alterations in various gene patterns in the neurons can
lead to the abnormal protein metabolism detected in the
neurons of patients with this disorder [2, 3]. The molecular
mechanism of epilepsy and the underlying causes of abnor-
mal apoptotic responses in neurons, dysregulation of regen-
erative mechanisms in glial cells and abnormal immune
reactions need to be clarified. microRNAs (miRNAs) as
important regulators of cell apoptosis as well as regenera-
tive and immune responses [4], are putative contributors in
the pathogenesis of epilepsy. These small noncoding RNAs
are approximately 19-22 nucleotides long and regulate gene
expression through silencing mechanisms at posttranscrip-
tional level [4]. It is estimated that more than one third of
the human genome is under influence of regulatory roles of
miRNAs [4]. Notably, nearly all regulatory mechanisms of
expression of genes such as transcription factors as well as

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-022-07188-5&domain=pdf

5058

Molecular Biology Reports (2022) 49:5057-5074

epigenetic factors have been found to act irregularly in the
course of epilepsy [5]. As miRNAs can affect expression of
transcription factors, dysregulation of miRNAs can influence
epilepsy from different direct and indirect routes. In the cur-
rent paper, we discuss the impact of dysregulation of miR-
NAs on development of epilepsy. We have searched PubMed
and Google Scholar databases with key words "microRNA"
or "miRNA" AND "epilepsy" or "seizure". After assess-
ment of Abstracts and full texts of retrieved articles, we have
included all relevant original papers in animal models and
human subjects.

Down-regulated miRNAs in epilepsy
Refractory epilepsy

miR-139-5p is another miRNA with possible protective role
against epilepsy. Expression of this miRNA has been found
to be reduced in the sera of children with refractory epilepsy,
parallel with up-regulation of expression of multidrug resist-
ance-associated protein 1 (MRP1). The same expression pat-
tern has been detected in the brain samples of rat models of
refractory epilepsy. Functional studies have confirmed that
MRP1 is targeted by miR-139-5p. Transfection of plasmids
into the hippocampus of drug-resistant rats has verified the
effects of miR-139-5p up-regulation or MRP1 silencing in
reduction of neuron apoptosis, enhancement of neuron sur-
vival, and amendment of neuron injury. Thus, miR-139-5p/
MRP1 axis can reduce resistance of refractory epilepsy to
antiepileptic medications [6]. Expression of miR-34c-5p has
also been reported to be decreased in patients with refrac-
tory epilepsy compared to controls. This miRNA targets the
inflammation-related mediator gene HMGB 1. Experiments
in rat models of kainic acid (KA)-induced epilepsy have
shown down-regulation of miR-34c-5p and up-regulation
of HMGBI1 and IL-1f in drug-resistant epileptic animals
compared to drug-sensitive epileptic animals. Moreover,
hippocampal neuron loss has been more prominent in drug-
resistant epileptic animals. Thus, down-regulation of miR-
34c¢-5p in refractory epilepsy aggravates neuroinflammatory
responses, which exacerbates hippocampal neuron loss.
These findings indicate that miR-34c-5p might be a possi-
ble noninvasive marker for refractory epilepsy [7]. miR-153
is another miRNA whose dysregulation is implicated in the
pathogenesis of refractory epilepsy. This miRNA possibly
acts through regulation of HIF-1a expression (8).

Other types of epilepsy
Li et al. have examined expression levels of miR-15a-5p

in serum samples of children with temporal lobe epilepsy
(TLE). They have also cultured primary hippocampal cells
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in magnesium-deficient condition to simulate TLE. Their
experiments have demonstrated down-regulation of miR-
15a-5p in sera of children with TLE. Notably, miR-15a-5p
has been confirmed to be an appropriate marker with proper
specificity and specificity values for diagnosis of TLE in
children. Moreover, magnesium-deficient condition has
reduced expression levels of miR-15a-5p in hippocampal
cells. On the other hand, up-regulation of miR-15a-5p has
ameliorated TLE-associated decrease in cell viability, and
attenuated the TLE-induced apoptosis. Therefore, miR-
15a-5p has been suggested a promising marker for the detec-
tion of TLE in children [9].

Another experiment in a rat model of epilepsy has
shown that miR-21-5p can bind to STAT3. Expressions of
caspase-3 and Bax have been higher, while expression of
Bcl-2 has been lower in animals that received miR-21-5p
inhibitor. miR-21-5p inhibitor has also resulted in loss of
hippocampal neurons and induction of apoptosis in these
cells, while suppression of STAT3 expression has led to
opposite effects. Moreover, IL-6 levels have been higher in
those received miR-21-5p inhibitor. Therefore, miR-21-5p
is able to suppress expression of STAT3, decrease IL-6 lev-
els and reduce loss of hippocampal neurons, thus protecting
hippocampal neurons from deteriorating effects of epilepsy
[10]. Table 1 shows the list of down-regulated miRNAs in
epilepsy. Figure 1 illustrates the role of several miRNAs in
epilepsy through regulating the NF-«xB signaling pathway.

Up-regulated miRNAs in epilepsy

Another experiment in epileptic rats has shown elevation
of miR-103a and GFAP levels, higher quantity of apoptotic
neurons, down-regulation of BDNF and reduction in the
numbers of surviving neurons in hippocampal tissues of
epileptic rats. Suppression of miR-103a has led to down-
regulation of GFAP, up-regulation of BDNF and reduction
in the number of apoptotic neurons, while enhancing the
proportion of surviving neurons. Therefore, suppression
of miR-103a results in the activation of astrocytes in hip-
pocampus and amends neuronal damage in epileptic rats
through regulation of expression of BDNF [23]. In addi-
tion, miR-27a-3p has been shown to be over-expressed in
the hippocampal cells of epileptic rats and in KA-treated
neurons. Notably, miR-27a-3p silencing has relieved epi-
leptic seizures in animal models. In addition, miR-27a-3p
silencing has suppressed apoptosis of hippocampal neurons
in rat models of epilepsy, increased expression of Bcl2, and
reduced levels of Bax and Caspase3. Moreover, miR-27a-3p
silencing has efficiently decreased expressions of IL-18,
IL-6, and TNF-a in hippocampal neurons. These effects are
mediated through modulation of expression of MAP2K4,
since this gene is a direct target of miR-27a-3p. miR-27a-3p
silencing has also enhanced survival of KA-treated neurons,
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Fig. 1 A schematic representation of the role of various miRNAs in
modulating the NF-kB signaling cascade in epilepsy. After the bind-
ing of TNF to its receptor and stimulating it, TNFR1 could undergo a
conformational alteration and recruit various proteins to create com-
plex I, including TRADD, TRAF2/5, RIPK1, cIAP1/2, SHARPIN,
HOIL-1, and HOIP. In complex I, the K63-linked ubiquitination of
RIPK1 via cIAP1/2, leading to the binding of TAB2/3 and NEMO,
modulating the recruitment of the TAK1/TAB complex and the
IKKo/IKKB/NEMO complex that could result in inducing the NF-xB
cascade and cell survival. Eventually, the ubiquitinated RIPK1 could
trigger the ubiquitination and proteasomal degradation of IkB, lead-
ing to nuclear transition of the released NF-kB and its upregulation.
Besides, RIPK1 could regulate the overexpression of MAPKs, ERK,
P38 and JNK that are induced via TNF-a. Destabilization of complex
I leads to the creation of complex Ila, that includes TRADD, FADD
and caspase-8. Furthermore, complex Ila contains the adaptor FADD,

suppressed their apoptosis, increased expression of Bcl-
2, and reduced expressions of Bax and Caspase3 through
modulation of MAP2K4. Therefore, miR-27a-3p silencing
protects against epilepsy-associated inflammatory responses
and apoptosis of hippocampal neurons through influencing
expression of MAP2K4 [24]. miR-132 is one of the most
frequently upregulated miRNAs in animal models of TLE.
This miRNA can affect functions of both neurons [25] and
glial cells [26]. Expression of miR-132 has been found to be
elevated in the hippocampal cells of human and rat epilep-
tic subjects, principally in glial cells. Ectopic expression of
miR-132 in human primary astrocytes has led to reduction

caspase 8, and RIPK1, and regulates the upregulation of caspase 8,
then caspase 3, and caspase 7, resulting in apoptosis. When caspase
8 is suppressed, RIPK1 could merge with RHIM in RIPK3 to create
complex IIb, creating RIPK3 oligomerization and autophosphoryla-
tion. Then, RIP3 could play an effective role in recruiting and phos-
phorylating MLKL, resulting in the necrosome [21, 22]. Growing
evidences confirm that aberrant expression of miRNAs could have a
crucial role in epilepsy. As an illustration, recent study has detected
that upregulation of miR-494 could downregulate the expression level
of RIPKI, triggering a suppression of the NF-kB signaling cascade
and promotion of cell proliferation, and inhibition of apoptosis of hip-
pocampal neurons in epilepsy, therefore attenuating the neuron injury
and epilepsy development [12]. Furthermore, another research has
illustrated that NF-xB could be modulated via miR-146a which has
an important role in the pathogenesis of epilepsy development [16]

of expression of a number of pro-epileptogenic genes,
namely COX-2, IL-1p, TGF-p2, CCL2, and MMP3 [26].
The interaction between miR-132 and p250GAP/Cdc42 axis
has been found as the uderlying mechanism of contribution
of this miRNA in the epileptogenesis, based on the experi-
ments performed in the hippocampal neurons cultures [25].
Another study has revealed a significant elevation in the
levels of miR-132 and BDNF transcripts in the hippocam-
pal neurons culture model of status epilepticus produced by
Mg(2+)-deficient medium. Activation of TrkB.FL by pre-
treatment with BDNF has partially suppressed the Mg(2+)-
free associated unremitting high-frequency epileptiform
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discharges, whereas up-regulation of miR-132 has aggra-
vated epileptiform discharges. miR-132 has also been found
to partake in the postepileptic augmentation of high voltage
dependent calcium channels. Therefore, miR-132 has pro-
epileptic effects via modulating BDNF/TrkB pathway in the
hippocampal neuron culture model of status epilepticus [27].
miR-146a is another up-regulated miRNA in the course of
epilepsy. Experiments in a rat model of TLE have shown
up-regulation of miR-146a in the hippocampal tissues. miR-
146a knock down has remarkably amended neuron injury
and cell apoptosis in rat hippocampus, reduced MDA, IL-18,
IL-6, and IL-18 expressions and enhanced SOD levels in
this tissue. Moreover, miR-146a silencing has reduced
expressions of caspase-9, GFAP, Notch-1, and Hes-1 in the
hippocampus of animal models of TLE. Functional studies
have shown Notch-1 as the target of miR-146a. Thus, miR-
146a silencing alleviates neuron injury in the hippocampus
of animal models of TLE through inhibiting expression of
Notch-1 [28]. Another study has demonstrated high levels
of miR-146a in the lithium-pilocarpine- induced model of
epilepsy. miR-146 silencing has led to reduction of IL-1p,
IL-6 and TNF-a levels. Moreover, expressions of P-gp and
p-P65/P65 have been decreased after miR-146a silenc-
ing, while expressions of Bcl-2/Bax have been increased
following this intervention [16]. miR-181a is another up-
regulated miRNA in epilepsy. Its inhibition has resulted in
protective effects against epilepsy, reduced apoptosis and
decreased activation of microglia and astrocyte by upregu-
lating SIRT1 [29]. Moreover, its silencing has constrained
apoptosis in hippocampal neurons [30]. Expression levels
of miR-21-5p and mTOR have been shown to be increased
in rats during acute, latent, and chronic phases of epilepsy
parallel with down-regulation of PTEN. In vivo suppression
of miR-21-5p has led to down-regulation of mTOR and up-
regulation of PTEN. miR-21-5p silencing has also reduced
the quantity of abnormal spikes in EEG and diminished the
neuron defects. Moreover, this intervention has ameliorated
epilepsy-induced cognitive and memory damages in vivo.
Targeting PTEN-mTOR axis by miR-21-5p has been iden-
tified as the molecular mechanism of participation of this
miRNA in the pathogenesis of epilepsy [31]. Table 2 shows
up-regulated miRNAs in epilepsy. Figure 2 represents the
role of various miRNAs via regulating the Notch signaling
cascade in epilepsy.

Diagnostic/prognostic role of miRNAs in epilepsy

Several miRNAs have been found to have potential applica-
bility as diagnostic or prognostic markers in epilepsy. For
instance, miR-15a-5p has diagnostic power of 0.908 with
82.5% sensitivity and 88.1% specificity in diagnosis of TLE
children from healthy matched controls [9]. Expression of
hsa-miR-134 has been found to be deceased in patients with

@ Springer

mesial TLE (MTLE) but not in patients with focal cortical
dysplasia (FCD) when compared to healthy subjects. hsa-
miR-134 could separate MTLE patients from controls with
diagnostic power of 0.75. This result has been validated an
independent cohort of patients with MTLE including both
refractory and drug-responsive patients. Therefore, hsa-
miR-134 has been suggested as a marker for MTLE in an
independent manner from their response antiepileptic drugs
or existence of MRI signs of hippocampal sclerosis [57].
Another study has investigated the role of miR-27a-3p, miR-
328-3p and miR-654-3p as putative circulating biomarkers
for epilepsy diagnosis and prediction of outcome of surgi-
cal intervention in a cohort of MTLE with hippocampal
sclerosis (MTLE-HS) including those with good surgical
prognosis (Engel I) and those with unfavorable surgical
prognosis (Engel III-IV). miR-27a-3p has not been vali-
dated as a circulatory marker for diagnostic or prognostic
purposes. However, miR-328-3p could differentiate controls
from Engel I, controls from Engel III-IV and controls from
Engel I+Engel III-IV patients with diagnostic power values
of 90.3%, 96.8% and 93.5%, respectively. In addition, miR-
654-3p could differentiate controls from Engel I patients as
well as patients with unfavorable from favorable surgical
outcome with lower values [58].

Although the diagnostic power of several miRNAs has
been assessed in epilepsy, a major drawback of the major-
ity of studies is lack of confirmation of the obtained results
in independent cohorts of patients. Moreover, only few
miRNAs have been assessed in more than one study. For
instance, miR-134 could differentiate patients with MTLE
from controls with diagnostic power of 0.75 [57]. It could
also predict development of drug-resistance with power of
0.61 [59]. Since studies in this regard are not ample, it is not
possible to find the impact of sample size, variations in the
methodology, or geographic origin of the cohorts studied on
the obtained results.

Table 3 shows the diagnostic and prognostic role of miR-
NAs in epilepsy.

miRNAs polymorphisms in epilepsy

Association between single nucleotide polymorphisms
within miR-146a and risk of epilepsy has been appraised in
Brazilian, Chinese and Italian patients (Table 4). GC geno-
type of 152910164 has been associated with higher risk of
drug-resistant epilepsy among Brazilians. In addition, GC
and CC genotypes of this SNP has been associated with low
expression of miR-146a in epileptogenic tissues compared
to GG genotype [67]. rs57095329 within this gene has also
been correlated with risk of drug resistant epilepsy among
Chinese patients [68]. In addition, A allele of rs57095329
has been associated with decreased frequency of seizures in
drug resistant epilepsy patients [68]. However, rs2910164
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Signal-sending cell (APCs, stromal cells)

miR-34a \ -
Notchl
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miR-139-5p -
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metalloprotease Kl
=€,

Signal-receiving cell

Nucleus

Fig.2 A schematic diagram of the role of several miRNAs in regu-
lating the Notch signaling pathway in epilepsy. Interaction between
Notch and Delta or Jagged that exist on the surface of signal-sending
cells could modulate the cleavage of Notch protein via ADAMI10
metalloproteases and y-secretase to create NICD. NICD could trans-
fer to the nucleus to create a heterotrimer with RBP-J and MAML
to promote transcription of various target genes, including HES1
and HESS [56]. Mounting evidence indicates that overexpression of
various miRNAs could have a significant role in triggering epilepsy
through Notch signaling cascade. Recent research has represented

has not been associated with risk of TLE among Italians
[69].

Discussion

miRNAs have been shown to affect several aspects of
epliptogenesis. Modulation of apoptosis and survival of
neurons and regulation of inflammatory responses are the
most appreciated mechanisms of involvement of miRNAs
in the pathogenesis of epilepsy. In addition to direct effects
of miRNAs on molecular pathways in neurons, they can

@ Springer

Jagged-1
Jagged-2
DLL1
DLL3
DLL4

-Secretase
complex

miR-139-5p
miR-34a

HES1, HESS

HES1, HES5

that downexpression of miRNA-34a could have a crucial role in sup-
pressing epileptiform discharges via modulating Notch signaling and
apoptosis in the rat hippocampal neuronal model of SREDs. In fact,
SREDs could Induce the promotion of miR-34a expression level and
decrease of the expression of Notch signaling (including Notchl,
Notch2, Hesl and Hes5) [45]. In addition, another study has demon-
strated that overexpression of miR-139-5p could suppress spontane-
ous recurrent epileptiform discharge-induced oxidative stress and
apoptosis through modulating the Notch pathway [13]

affect functions of reactive glial cells which potentially
regulate inflammatory responses in the brain and remod-
eling of the extracellular matrix [26]. miR-132 and miR-
146a are among the mostly assessed miRNAs in the animal
models of epilepsy. These miRNAs have been found to
affect several targets and pathways during epileptogenesis.
For instance, miR-132 has interactions with TGF-f and
BDNF/TrkB signaling pathways in glial cells and neu-
rons, respectively. miR-146a affects activity of Notch and
NF-xB pathways in this context. SIRT1 and BDNF have
been identified as molecular targets of several miRNAs in
the context of epilepsy.
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Table 4 miRNAs polymorphisms in epilepsy

Reference

Results

Population Assay method

Samples

Polymorphism

microRNA

[67]

152910164 GC genotype was associated

TaqMan real-time PCR

Brazilian

SNP (1557095329, rs2910164) 61 paraffin-embedded tissue specimens

miR-146a

with augmented risk of drug-resistant
epilepsy. Also GC and CC genotypes
of this SNP was associated with low

from patients with drug-resistant epilepsy

and blood samples from 276 control

subjects

expression of miR-146a in epileptogenic
tissues compared to GG genotype
1rs57095329 was correlated with risk of

[68]

ABI PRISM SNapShot

SNP (152910464, rs57095329) Blood samples from 249 epilepsy patients  Chinese

miR-146a

drug resistant epilepsy. Also A allele
of 1s57095329 was associated with

and 249 healthy volunteers

decreased frequency of seizures in drug

resistant epilepsy patients

TagMan allelic discrimination There was no association between this [69]

Italian

357 patients with TLE and 543 healthy

pre-miR-146a SNP (1s2910164)

variant and risk of TLE

TagMan allelic discrimination rs57095329 polymorphism was associated

individuals as controls

[70]

Chinese

Blood samples from 267 childhood epi-

SNP (rs57095329)

miR-146a

with increased risk of drug-resistance
development in epilepsy patients

lepsy patients and 267 age and gender

matched normal individuals

miRNAs have also diagnostic and prognostic functions in
epilepsy. Some miRNAs such as miR-15a-5p, miR-328-3p,
miR-129-2-3p and miR-106b-5p have been suggested as
appropriate diagnostic markers in epilepsy, while miR-146
and miR-134 has been proposed as prognostic markers with
mediocre performance. Moreover, miRNAs can modulate
response of patients with refractory epilepsy to antiepileptic
medications [6]. Therefore, miRNA-modulating therapeutic
options might be used as alternative therapies for enhanc-
ing efficacy of antiepileptic drugs. Moreover, animal studies
have shown that miRNA-targeting modalities might amend
epilepsy-induced cognitive and behavioral impairments.

As the effects of miRNAs on glial cells and neurons
might be exerted through different routes and even in dif-
ferent directions, miRNA-modulating therapies should be
assessed in different cell types to validate their beneficial
effects in each cell types.

Conclusion

In brief, several miRNAs have been shown to be dysregu-
lated in brain tissues and serum samples of patients with
epilepsy and different animal models of this neurological
condition. Abnormal levels of these miRNAs in the serum
samples show their potential as biomarkers for prediction
of epilepsy. However, the results of these studies should be
verified in independent cohorts from different stages of epi-
lepsy. Contribution of genetic variants within miRNA cod-
ing genes in risk of epilepsy or resistance to antiepileptic
drugs is another research area which should be explored in
future.
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