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Abstract: Synthetic lethality describes situations in which defects in two different genes or pathways
together result in cell death. This concept has been applied to drug development for cancer treatment,
as represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. In the current study, we
performed a computational screening to discover new PARP inhibitors. Among the 11,247 compounds
analyzed, one natural product, ZINC67913374, stood out by its superior performance in the simulation
analyses. Compared with the FDA approved PARP1 inhibitor, olaparib, our results demonstrated
that the ZINC67913374 compound achieved a better grid score (´86.8) and amber score (´51.42).
Molecular dynamics simulations suggested that the PARP1-ZINC67913374 complex was more stable
than olaparib. The binding free energy for ZINC67913374 was ´177.28 kJ/mol while that of olaparib
was ´159.16 kJ/mol. These results indicated ZINC67913374 bound to PARP1 with a higher affinity,
which suggest ZINC67913374 has promising potential for cancer drug development.
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1. Introduction

The concept of synthetic lethality has recently emerged in the field of cancer treatment. This
concept was borrowed from classical genetics to describe situations in which defects in two different
genes or pathways together result in cell death, while a defect in one of the two does not affect
viability [1,2]. Because the deficiency of certain DNA damage response (DDR) gene(s) or pathway(s) are
observed in virtually all types of cancer, drugs targeting the complementary pathway of the defective
DDR function would be an ideal strategy for cancer treatment with desired high specificity [3].

Poly (ADP-ribose) polymerases (PARPs) inhibitors are a group of chemical compounds that are
being developed for cancer treatment under the concept of synthetic lethality. PARPs are enzymes
that transfer ADP-ribose moieties to a variety of protein substrates [4]. The physiological function
of ADP-ribosylation is best characterized in the context of genome stability maintenance, in which
ADP-ribose polymers facilitate the recruitment of the proteins to sites of DNA damage [4]. Inhibition
of PARP-1 leads to the accumulation of single-strand breaks (SSBs) that are converted to double
strand-strand breaks (DSBs) during DNA replication. The generated DSBs can be repaired either by
homologous recombination (HR) or non-homologous end joining (NHEJ) [5,6]. The inhibition of PARP
has been shown to be synthetically lethal with loss of BRCA1 and BRCA2, which play essential roles
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in HR-mediated DSB repair [7–9]. Moreover, defects in the DNA damage response proteins, such as
NBS1, MRE11, ATR, ATM, FANCD2, FANCA, FANCC, Chk1, Chk2, and ERCC1, also confer selective
sensitivity to PARP inhibition [10–14].

The therapeutic potential of PARP inhibitors may extend to a larger cohort of patients than initially
indicated. It is of great significance to identify potent PARP1 inhibitors to target the complementary
pathways in these synthetic lethal pairs. In the current study, we performed a computational screening
to discover new PARP inhibitors with drug development potential. Among the 11,247 compounds
analyzed, one natural product, ZINC67913374, was identified as a potential PARP1 inhibitor, because
of its superior performance in the simulation analyses.

2. Results

2.1. Docking Performance

The receiver operating characteristic (ROC) curves for the grid scoring and amber scoring
functions were plotted. As shown in Figure 1, the area under curve (AUC) of grid score and amber
score were 0.606 and 0.669, respectively. Both are higher than the random condition, which only gave
a 0.500 AUC value.

Figure 1. ROC evaluation of grid and amber scoring functions. Corresponding AUC values for each
ROC curve are labeled above the line. Color code: Red—amber scoring function; Blue—grid scoring
function; Gray—random.

2.2. Potential PARP1 Inhibitor

The reference drug, olaparib, achieved a grid score of ´61.41 and amber score of ´51.18 (Table 1),
which was set as the cut-off values for selecting potential PARP1 inhibitors. Compared to olaparib,
631 out of 11,247 natural compounds received a higher grid score. These hits were rescored using the
amber scoring function, and one compound, ZINC67913374, stood out with an amber score of ´51.42
(Table 1). ZINC67913374 was therefore identified as a potential inhibitor against PARP1.
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Table 1. Candidate PARP1 inhibitors from virtual screening.

Compound Structure Grid Score Amber Score

ZINC67913374 ´86.8 ´51.42

Olaparib ´61.41 ´51.18

2.3. Binding Modes

As shown in Figure 2, both olaparib and ZINC67913374 bound to PARP1 in its binding pocket.
They interact with PARP1 through hydrophobic interaction and hydrogen bonds formation. Olaparib
bound to PARP1 by forming three hydrogen bonds (Figure 2a): its O3 formed two hydrogen bonds
with the NE and NH2 of Arg878 at a distance of 3.1 and 2.9 Å, respectively; N2 of olaparib formed
another hydrogen bond with the O of Gly863 at a 2.8 Å distance.

Figure 2. Binding modes of inhibitors towards PARP1 at the binding site. (a) Binding mode of olaparib;
(b) binding mode of ZINC67913374. The surface of PARP1 is presented as gray with 70% transparency.
Inhibitors are shown as yellow stick. Corresponding residues of PRAP1 forming hydrogen bonds with
ligands are displayed as tan stick. Color code for elements: tan—C of PARP1; yellow—C of inhibitor;
blue—N; red—O; green—H.

ZINC67913374 formed four hydrogen bonds with PARP1 (Figure 2b). Similar to olaparib, the O9
of ZINC67913374 formed one hydrogen bond with the N of Arg878 at a distance of 3 Å. ZINC67913374
formed another hydrogen bond at 2.8 Å between its O4 and NE2 of His909. OD2 of ZINC67913374
formed two hydrogen bonds with Asp770, one with O10 (2.6 Å) and another with O11 (2.5 Å).

2.4. Stability of Receptor-Ligand Complex

MD simulation is exploited to evaluate the stability of a protein-ligand system. As shown in
Figure 3, the RMSD of olaparib-PARP1 complex has gradually increased to about 0.34 nm by 7 ns.
Afterwards, it plunged to about 0.16 nm at 8 ns and then jumped to the highest point (0.35 nm) at
around 10 ns. The RMSD value fluctuated in the following 6 ns and stabilized at 0.25 nm by 16 ns. In
terms of PARP1-ZINC67913374 complex, the RMSD reached around 0.3 nm in just 1 ns. After that, it
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plummeted by 2 ns and then experienced a rise trend till 4 ns. Then, the RMSD fell and fluctuated at
around 0.2 nm over the next 4 ns. It began fluctuating markedly at 8 ns. The equilibrium (0.2 nm) was
reached by 14 ns, which lasted for 6 ns until the end of the simulation.

Figure 3. Backbone RMSD of PARP1®C inhibitor complexes. Black line denotes RMSD of the olaparib
system while red line represents the PARP1-ZINC67913374 complex.

2.5. Binding Free Energy

The binding free energy of ZINC67913374 and olaparib towards PARP1 were listed in Table 2.
Compared with olaparib (´159.16 kJ/mol), ZINC67913374 (´177.28 kJ/mol) had a smaller binding
energy value. For both inhibitors, their gas-phase contribution, namely the combination of van
der Waals energy and electrostatic energy, was favorable for inhibitor binding. Their solvation
contribution was positive and unfavorable, which may result from strong unfavorable polar energy
and weak favorable nonpolar energy. After scrutinizing the four contributing factors, we found both
inhibitors had similar van der Waals energy (´293.07 kJ/mol for ZINC67913374 and ´210.36 kJ/mol
for olaparib) and nonpolar contribution (´29.22 kJ/mol for ZINC67913374 and ´21.09 kJ/mol for
olaparib). However, remarkable differences were observed in electrostatic energy (´327.42 kJ/mol
for ZINC67913374 and ´89.19 kJ/mol for olaparib) and polar solvation energy (472.47 kJ/mol for
ZINC67913374 and 161.49 kJ/mol for olaparib).

Table 2. Binding free energy (kJ/mol) of the potential PARP1 inhibitor and olaparib.

Inhibitor Components a ZINC67913374 Olaparib

∆Evdw ´293.07 ˘ 10.25 ´210.36 ˘ 11.77
∆Eele ´327.42 ˘ 27.34 ´89.19 ˘ 15.22

∆Gploar 472.47 ˘ 28.21 161.49 ˘ 13.88
∆Gnonpolar ´29.22 ˘ 0.92 ´21.09 ˘ 0.63

∆Gbind ´177.24 ˘ 24.78 ´159.16 ˘ 15.13
a ∆Evdw, van der Waals energy; ∆Eele, electrostatic contribution; gas-phase energy consists of ∆Evdw and ∆Eele;
∆Gpolar, polar solvation energy; ∆Gnonpolar, nonpolar solvation energy; the solvation free energy is a sum of
∆Gpolar and ∆Gnonpolar; ∆Gbind, binding energy; ∆Gbind = ∆Evdw + ∆Eele + ∆Gpolar + ∆Gnonpolar.

The 2D interaction diagrams generated by LigPlot+ for olaparib- and ZINC67913374-PARP1
complexes were presented in Figure 4 [15]. The two complexes are fairly similar, so that they
can be superimposed on each other. The superposition of the two related diagrams highlighted
conserved interactions within olaparib- and ZINC67913374-PARP1 complexes. As shown in Figure 4,
His862, Tyr907, Tyr896, Aan868, Arg878, Asp766, and Gly863 were conserved residues. Gly863
and Tyr907 had been reported as key amino acid residues for inhibitors–PARP1 interactions [16].
Gly863 participated in hydrogen bonding interaction network, while Tyr907 is involved in pi-pi
stacking. Tyr907 was a key residue, which was not identified in olaparib–PARP1 interaction, but in the
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interaction between ZINC67913374 and PARP1. The other residues, including Ser904, Phe897, Ala898,
Glu763, Leu877, Ile872, Met890, and Gly888, interacted with PARP1 via hydrophobic contacts. All the
data above supported a stronger interaction between ZINC67913374 and PARP1, compared with the
olaparib–PARP1 interaction.

Figure 4. Superimposed 2D interaction diagrams of olaparib (background) and ZINC67913374
(foreground) with PARP1. Ball and stick denotes ligands. Corresponding PARP1 residues are shown
as wires.

Backbone RMSF (root mean square fluctuation) of PARP1 within ZINC67913374-PARP1 complex
was comparable to that of the olaparib-PARP1 system (Figure 5). We scrutinized the contribution of
each residue in the receptor–ligand interaction by binding energy decomposition (Figure 6). In both
PARP1-inhibitor complexes, Glu763, Asp766, Tyr896, Ser904, and Tyr907 were critical residues for the
binding interaction. This observation was consistent with the result that ZINC67913374 and olaparib
share similar features on the RMSF profile when binding to PARP1.

Figure 5. RMSF plots of backbone atoms for PARP1®Cinhibitor systems. Black line is for olaparib and
red line is the PARP1-ZINC67913374 system.
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Figure 6. Binding free energy decomposition on a per-residue basis for olaparib- and
ZINC67913374-PARP1 complexes.

2.6. ADMET Analysis

We predicted ZINC67913374’s ADMET using admetSAR, a free tool for evaluating chemical
ADMET properties [17]. The result (Table A1) shows even with >500 molecular weight, ZINC67913374
can permeate the blood–brain barrier. The prediction also shows it has no AMES toxicity and
no carcinogenicity.

3. Discussion

Currently, the majority of cancer therapies target proliferating cells rather than cancer cells per se.
Cancer cells with a low proliferative index may evade treatment, while highly proliferative normal
cells are also attacked by the same therapies. Taking advantage of the dysregulated DNA damage
response in cancer using the synthetic lethality approach may be one of the most promising prospects
for the future of cancer treatment. Similar to ovarian and breast cancers, some sporadic prostate,
pancreatic and other tumors also possess DNA damage response defects due to mutation or epigenetic
inactivation of HR components, suggesting that PARP inhibitors might be more broadly applicable.

By computational approaches integrating virtual screening, molecular dynamics simulation,
binding free energy calculation and decomposition, we discovered a new potential inhibitor for
PARP1 from natural products. Compared to the currently FDA-approved olaparib, this chemical
exhibited a higher binding affinity to PARP1. It is projected to result in dysregulation of DNA damage
repair, indicating its therapeutic potential for the treatment of cancers. Our results demonstrated
that ZINC67913374 has promising potential as a PARP1 inhibitor for cancer drug development.
Song and colleagues described the identification of four PARP1 inhibitors from a large number of
natural products by in silico screening and in vitro enzymatic assay [18]. The screening performed
in the current study focused on the AnalytiCon Discovery NP database. This database has a high
percentage of unique compounds compared with other databases, which should theoretically increase
the chance for discovering new potential PARP inhibitors. Certainly, the physiological activity of this
compound needs to be validated with in vitro and in vivo studies in the next stage of the study. On
the other hand, it is imperative to report this intriguing result of the researchers work in the field. A
greater understanding of the basis of PARP inhibitor response is required for translational and clinical
development of these agents, and in order to establish which patients may derive the most therapeutic
benefit from this class of inhibitors.

4. Materials and Methods

4.1. Structure Preparation

The 3D structure of PARP1 was downloaded from the RCSB Protein Data Bank (PDB) using
accession number 4UND [19], in which PARP1 is in complex with a known inhibitor named
BMN673.This structure is used for identifying the binding site of PARP1. The molecular graphics of
PARP1 were prepared and analyzed with the UCSF Chimera package [20]. In this process, (i) solvent
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and non-complexed ions were removed from PARP1; and (ii) hydrogens and charges (of amber ff99sb
force field) were added to the protein.

The molecule library of natural compounds from AnalytiCon Discovery NP, containing
11,247 ZINC entries, was downloaded on 25 July 2015 from the ZINC database [21]. All these natural
products have been filtered according to the criteria from ZINC and are provided in ready-to-dock,
3D formats.

On 19 December 2014, the U.S. Food and Drug Administration approved olaparib capsules
(Lynparza, AstraZeneca Pharmaceuticals LP) as a monotherapy for advanced ovarian cancer after
treatment with three or more prior lines of chemotherapy. The FDA approved olaparib was used as a
reference drug for selecting hits and candidate PARP1 inhibitors.

4.2. Dock and Virtual Screening

For the sake of discovering new PARP1 inhibitors with drug development potential, a virtual
screening was carried out by docking natural compounds to the binding site of PARP1 using UCSF
DOCK 6 [22]. The known inhibitor, olaparib, was used as a reference drug to select hits. The DOCK
suite of programs first docked all the natural compounds to PARP1 by assigning them grid scores that
represent to what extent a given ligand would bind to a specific target. The scores were compared
with that of olaparib. The compounds with higher scores were selected as hits for the second round
of screening. Subsequently, the hit compounds were rescored by DOCK amber rescoring function,
which allows small structural rearrangements to reproduce the so-called induced fit while performing
docking. The compounds achieved higher amber scores than that of olaparib were chosen as candidate
PARP1 inhibitors.

The specific running parameters used in our study for DOCK were: (1) change probe radius was
1.0; (2) maximum sphere radius was 3.0 Å; (3) minimum sphere radius was 1.0 Å; (4) the radius used
to select binding site from the position where the known olaparib bound to was 8.0 Å; and (5) extra
margin enclosed in all 6 directions was 3.0.

4.3. Dock Protocol Evaluation

The ROC curve was employed to illustrate the performance of DOCK. For binary classification,
the possible outcomes fall into four categories: true positive (TP, a prediction is positive and the actual
value is also positive), false positive (FP, a prediction is positive but the actual value is negative), true
negative (TN, both the prediction outcome and actual value are negative), and false negative (FN, the
prediction outcome is negative while the actual value is positive). The true positive rate (TPR) known
as sensitivity can be expressed as [23]

TPR “ sensitivity “ TP{pTP ` FNq

The false positive rate (FPR) is also known as the fall-out and can be calculated as

FPR “ 1´ specificity “ 1´TN{pTN ` FPq

At the beginning, actives (positive PARP1 inhibitors) and decoys (negative PARP1 inhibitors)
were downloaded (on 25 July 2015) from the DUD-E database, which provides active compounds and
challenging decoys for molecular docking programs [24]. 742 actives and 3710 decoys were docked to
the binding site of PARP1. These compounds were sequentially analyzed by grid scoring and amber
scoring. pROC library within R was used to plot ROC curves (by plotting the sensitivity against the
specificity at various threshold settings) and calculate values of area under the ROC curve (AUC), by
which the performance of DOCK can be evaluated quantitatively [25].
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4.4. MD Simulation

MD simulations were performed using GROMACS 4.5 [26] package and amber ff99sb force
field [27] with TIP3P water model [28]. Particle Mesh Ewald (PME) [29] was exploited to consider the
long-range electrostatic interactions and the Linear Constraint Solver (LINCS) [30] algorithm was used
to constrain bonds. The receptor-ligand complexes were solvated in a dodecahedron box of water,
with a distance of 1.0 between the solute and the box. All systems were neutralized by adding Na+ and
Cl´ at 0.15 mol/L. Before MD simulations, the complexes were relaxed to <1000 kJ/mol/nm by up to
50,000 cycles of steep descent minimization. After energy minimization, temperature of the system was
controlled in the NVT (constant number of particles, volume, and temperature) ensemble to 300 K over
100 ps. The 100 ps NPT (constant number of particles, pressure, and temperature) equilibration was
then performed with a reference pressure of 1 bar. After that, 20 ns MD simulations were performed
with a time step of 2 fs and the coordinates of the complexes were saved every 8 ps.

4.5. Free Energy Calculation and Decomposition

Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) was applied as a scoring
function in computational drug design to estimate the interaction free energies in biomolecular
interactions [31]. The binding free energy of a protein-ligand system in solvent can be given by [32]:

∆Gbind “ Gcomplex´pGprotein ` Gligandq

where Gcomplex is the total free energy of the protein-ligand complex and Gprotein and Gligand
represent free energies of the isolate protein and ligand, respectively.

In this study, the GROMACS tool g_mmpbsa was used to calculate the binding free energy of the
protein with ligand [33]. The MM-PBSA approach was used to calculate the binding free energy as
follows [33,34]:

∆Gbind “ ∆Egas ` ∆Gsolv “ ∆Evdw ` ∆Eele ` ∆Gpolar ` ∆Gnonpolar

∆Egas is the average molecular mechanics potential energy in a vacuum (i.e., gas-phase
energy), which includes van der Waals (∆Evdw) and electrostatic (∆Eele) interactions; ∆Gsolv denotes
contribution to the solvation free energy that consists of polar solvation (∆Gpolar) and nonpolar
solvation (∆Gnonpolar) energies.

Using the g_mmpbsa, the binding free energy of protein-ligand complex was calculated from
11 snapshots extracted every 0.2 ns from the 18 to 20 ns MD trajectory. Furthermore, the binding
energy was decomposed on a per residue basis to analyze the individual energy contributions of each
residue to the protein-ligand interaction.

5. Conclusions

ZINC67913374 identified in this study is a potent PARP1 inhibitor with drug development
potential, as reveal by the extensive bioinformatics simulation analyses. The FDA approval of
olaparib and other on-going PARP1 inhibition related clinical trials validates synthetic lethality as an
effective therapeutic strategy in cancer drug development. The success of PARP1 inhibitors encourages
the characterization and targeting of other synthetic lethality pairs in DNA damage response and
repair pathways.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/2/
258/s1.
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Abbreviations

DDR DNA damage response
PARP Poly (ADP-ribose) polymerase
SSB single-strand break
DSB double strand-strand break
HR homologous recombination
NHEJ non-homologous end joining
LINCS Linear Constraint Solver
MM-PBSA Molecular mechanics Poisson´Boltzmann surface area

Appendix

Table A1. ADMET properties of ZINC67913374.

Property Value Prabability

Blood-Brain Barrier BBB+ 0.7028
Human Intestinal Absorption HIA´ 0.7104

Caco-2 Permeability Caco2´ 0.824
P-glycoprotein Substrate Substrate 0.6847

P-glycoprotein Inhibitor (I) Non-inhibitor 0.7057
P-glycoprotein Inhibitor (II) Non-inhibitor 0.7339

Renal Organic Cation Transporter Non-inhibitor 0.7435
CYP450 2C9 Substrate Non-substrate 0.8328
CYP450 2D6 Substrate Non-substrate 0.8277
CYP450 3A4 Substrate Non-substrate 0.5479
CYP450 1A2 Inhibitor Non-inhibitor 0.9058
CYP450 2C9 Inhibitor Non-inhibitor 0.8699
CYP450 2D6 Inhibitor Non-inhibitor 0.8892
CYP450 2C19 Inhibitor Non-inhibitor 0.8244
CYP450 3A4 Inhibitor Non-inhibitor 0.9023

CYP Inhibitory Promiscuity Low CYP Inhibitory Promiscuity 0.8839
Human ERG Inhibition (I) Weak inhibitor 0.8461
Human ERG Inhibition (II) Inhibitor 0.5092

AMES Toxicity Non AMES toxic 0.9003
Carcinogens Non-carcinogens 0.9566
Fish Toxicity High FHMT 0.9056

Tetrahymena Pyriformis Toxicity High TPT 0.9662
Honey Bee Toxicity High HBT 0.6725

Biodegradation Not ready biodegradable 0.9337
Acute Oral Toxicity III 0.5751

Carcinogenicity (Three-class) Non-required 0.5401
Model Value Unit

Aqueous solubility ´1.3682 LogS
Caco-2 Permeability ´0.5376 LogPapp, cm/s
Rat Acute Toxicity 2.5494 LD50, mol/kg

Fish Toxicity 1.8239 pLC50, mg/L
Tetrahymena Pyriformis Toxicity 0.4575 pIGC50, ug/L
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