Pr77 and L1TcRz

LETTER TO THE EDITOR

A dual system within the 5-end of L1Tc retrotransposon,
internal promoter and HDV-like ribozyme

Francisco J. Sanchez-Luque,’ Manuel C. Lopez,'* Francisco Macias," Carlos Alonso? and M. Carmen Thomas'*

"Departamento de Biologia Molecular; Instituto de Parasitologia y Biomedicina “Lopez Neyra”; Consejo Superior de Investigaciones Cientificas; Parque Tecnoldgico de Ciencias de
la Salud; Granada, Spain; 2Centro de Biologia Molecular “Severo Ochoa”; Universidad Auténoma de Madrid; Consejo Superior de Investigaciones Cientificas; Madrid, Spain

Keywords: retrotransposons, LINE, SINE, HDV-like ribozyme, promoter, retrotransposition machinery, Trypanosoma cruzi, L1Tc,

trypanosomatid, genetic regulation

The sequence corresponding to the first 77 nucleotides of the L1Tc and NARTc non-LTR retrotransposons from Trypanosoma
cruzi is an internal promoter (Pr77) that generates abundant, although poorly translatable, un-spliced transcripts. It has been
recently described that L1TcRz, an HDV-like ribozyme, resides within the 5-end of the RNA from the L1Tc and NARTc
retrotransposons. Remarkably, the same first 77 nucleotides of L1Tc/NARTc elements comprise both the Pr77 internal
promoter and the HDV-like L1TcRz. The L1TcRz cleaves on the 5-side of the +1 nucleotide of the L1Tc element insuring that
the promoter and the ribozyme functions travel with the transposon during retrotransposition. The ribozyme activity would
prevent the mobilization of upstream sequences and insure the individuality of the L1Tc/NARTc copies transcribed from
associated tandems. The Pr77/L1TcRz sequence is also found in other trypanosomatid’s non-LTR retrotransposons and
degenerated retroposons. The possible conservation of the ribozyme activity in a widely degenerated retrotransposon, as the
Leishmania SIDERs, could indicate that the presence of this element and the catalytic activity could play some favorable
genetic regulation. The functional implications of the Pr77/L1TcRz dual system in the regulation of the L1Tc/NARTc
retrotransposons and in the gene expression of trypanosomatids are also discussed in this paper.

Retrotransposons are DNA sequences able
to mobilize their own copies within a host
genome by transcription and reverse
transcription of an intermediate RNA.
The generation of this intermediate RNA
is a crucial step for the mobilization
mechanism. The LTR retrotransposons
(with long terminal repeats at both ends)
have an external RNA polymerase II
promoter located upstream of the trans-
cription initiation site. A complex and
discontinuous reverse transcription process
that requires two DNA strand transfers
in addition to several enzymatic activities
is necessary to regenerate the promoter’
(Fig. S1A). On the contrary, the retro-
transposition mechanism described for
non-LTR retrotransposons, called Target
Primed Reverse Transcription (TPRT),
consists of a single-step reverse transcrip-
tion of the mRNA element and the
synthesis of a cDNA strand to generate a
new double-stranded DNA copy able to be

inserted into a new position in the genome
(Fig. S1B). Thus, the intermediate RNA
of the non-LTR retrotransposons is likely
to bear within its sequence the informa-
tion required for its own transcription.
Although internal promoters that satisfy
these requirements have been described
in a few elements,”” the way to generate
the mRNAs by many others elements is
still unknown. Eickbush, Luptdk and
coworkers recently described the system
of the Drosophila R2 retrotransposon
for the generation of mRNAs involving
an HDV-like ribozyme coupled to an
upstream host-promoter.®’

Based on their coding capacity, the non-
LTR retrotransposons are classified in
two major groups: those that code for
their own retrotransposition machinery
or LINEs (long interspersed nuclear ele-
ments) and those that lack translation
capability and are thought to mobilize using
LINEs’ machinery in trans, like SINEs

(short interspersed nuclear elements) and
LINE truncated elements. A high copy
number of these elements is present in the
genome of the etiological agent of Chagas
disease, the protozoan parasite 7rypanosoma
cruzi®

The L1Tc (5 kb in length) is a non-
LTR retrotransposon widely distributed
along the 7. cruzi genome. L1Tc is
a LINE element that codes for the
mobilization machinery including AP-
endonuclease,”'® reverse transcriptase,"’
RNase H'? and nucleic acids chaperone
activities.”'¥ In addition, an active
picornavirus-like 2A autoproteolytic motif
resides at the N-terminal end of the
encoded L1Tc polypeptide. The 2A auto-
proteolytic activity is expected to regulate
the composition and abundance of the
enzymatic machinery required for auto-
nomous mobilization of L1Tc."”> NARTc
(263 nt in length) is a non-autonomous
element thought to be mobilized by the
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gen products of L1Tc. L1Tc and
NARTc share 97% and 77% identity at
their first 77 and last 30 nucleotides
(including a short poly-A tail codified in
the DNA), respectively. The conserved
sequence located at their 3'-end is thought
to be recognized by the reverse transcrip-
tase encoded by the L1Tc element. The
sequence corresponding to the first 77
nucleotides (Pr77) of L1Tc and NARTc
has promoter activity and acts as an
internal promoter that generates abundant,
although poorly translatable, transcripts.'”

HDV-Like Ribozymes Associated
with Retrotransposons:
L1TcRz and R2Rz.

The Dual Promoter-Ribozyme
System of L1Tc

We have recently described the L1TcRz,
an hepatitis delta virus (HDV)-like ribo-
zyme that resides within the 5'-end of
the RNA of both the L1Tc and NARTc
retrotransposons of 7. cruzi (Fig. 1A)."®
The ribozyme catalyzes the self-cleavage of

the RNA sugar-phosphate backbone of its
own molecule, leaving a 5'-hydroxyl end
on the downstream product, and it is
expected to leave a 2',3'-clyclic phosphate
end on the upstream cleavage product,
similar to the HDV and other known
HDV-like ribozymes."” The cleavage posi-
tion of L1TcRz is located immediately
upstream of the +1 nucleotide of both
L1Tc and NARTc. L1TcRz, then, is
capable of determining the 5'-end of these
two elements. The 5'-end is such that
the ribozyme and the internal promoter
sequence is present in the mature element
RNA insuring their transmission to the
new retrotransposon copy during TPRT
process.

Co-transcriptional cleavage assays were
used to map the L1TcRz to the first 77nt
(+1 to +77) of L1Tc/NARTc elements.
This 77 nt sequence is predicted to fold
into an HDV-like ribozyme, and can be
fitted to the consensus HDV secondary
structure with minimal divergences.®***'
Assays where L1TcRz sequence is pre-
ceded by various L1Tc target derived

sequences indicate that these sequences
upstream of the L1TcRz have the potential
to modulate the L1TcRz activity. A similar
modulation  phenomenon has been
described for other known HDV-like
ribozymes.””* L1Tc sequences down-
stream of the L1TcRz have also proved
to regulate the ribozyme activity.'® It has
been shown that the 49 nt downstream of
L1TcRz can induce an RNA structural
change to a conformation not capable of
L1TcRz activity (Fig. 1B)."® The sequence
located downstream of L1TcRz in NARTc
does not produce a conformational switch
and consequently the ribozyme activity is
preserved in NARTc RNA. It is possible
that the downregulation effect of L1Tc
downstream sequences may be an artificial
consequence of the transcriptional activity
of the T7 RNA polymerase used in the
in vitro assays. T7 RNA polymerase may
transcribe the downstream sequence so
quickly, prior to ribozyme folding, allow-
ing alternative folding pathways to occur.
The inhibition of the ribozyme activity
may not occur with an eukaryotic RNA
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Figure 1. L1Tc RNA 5’-end region structural switching. The proposed folding of the L1TcRz is shown in (A). The three helixes P1, P2 and P4 and the two
pseudoknots P1.1 and P3 are colored. The arrow points the ribozyme cleavage site. The proposed switching of the folding toward a supposed-IRES after
elongation is shown in (B). RNAfold software proposes for the first 110 nt of the L1Tc RNA a structure involving three stem-loops called SL1, SL2 and SL3.
P1 and P4 helixes are conserved after the folding switching but the two pseudoknots and the P2 helix are not maintained. A 5'-hydroxyl end is expected
for SL1 to be occluded by the GC pair-rich P1 stem. Each ten nucleotides are marked by a dot.
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polymerase, whose polymerase activity is
slower than the T7 phage polymerase.

Other non-LTR retrotransposon has an
HDV-like ribozyme in its 5'-end for the
purpose of processing the retrotransposon
RNA.®” L1Tc was the second reported
case of a non-LTR retrotransposon to be
associated to an HDV-like ribozyme,
being the R2 the first one. R2, unlike
L1Tc, is a site-specific element whose
copies are always found at the same
position in the redundant rDNA genes.
The 5'-end of the R2 retrotransposon lacks
a promoter relying on being co-transcribed
with the rRNA. The R2 encoded HDV-
like ribozyme is used to process the co-
transcript, thus releasing the R2 mRNA.
Like L1TcRz, the R2 encoded HDV-like
ribozyme stays covalently attached to the
R2 RNA.

Non-LTR retrotransposons that lack a
promoter, like R2, necessarily rely on host
promoters and co-transcription to replic-
ate. Target site specificity would ensure
that a promoter-less element like R2
would always insert downstream of a host
promoter. An RNA endonuclease system,
like an element encoded ribozyme or a
signal recognized by a host RNA endo-
nuclease, is required to process the ele-
ment RNA away from the co-transcript.
non-LTR

internal

Conversely,
that promoter may
become more permissive for their inser-

retrotransposons
contain

tion site and may, by the virtue of the
internal promoter, generate unit length
element RNA without the need for pro-
cessing by a ribozyme. L1Tc is the first
described  retrotransposon that carries
both internal promoter function (Pr77)
as well as a ribozyme (L1TcRz) function,
combining features expected for non-
specific and  site-unspecific elements,
respectively. The L1Tc element is widely
distributed  throughout the T
genome but there is some degree of

cruzi

conservation of the sequence upstream
the insertion sites that flanks the L1Tc
element copies.” A similar consensus
sequence has been detected flanking
other retrotransposons belonging to the
ingilL1Tc clade.** Since the conser-
vation of these nucleotides is considered
to be a trace of the insertion site selec-
tion, it may be possible to hypothesize
which retrotransposition machinery of an
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autonomous element is used by each non-
this
hypothesis is only supported by bioinfor-

autonomous element.”® However,
matic data as the function of the upstream
sequence motifs remains unknown. The
implications of the Pr77/L1TcRz dual
function in trypanosomes are explored in

the next section.

Functional Implications
of Pr77/L1TcRz Dual System
in the Regulation of L1Tc
and Trypanosoma Cruzi Gene
Expression

The coexistence of both, ribozyme and
internal promoter systems within L1Tc
and NARTc elements may be related to
the genetic regulation of the host
Trypanosomatid genomes are organized
in large directional polycistronic clusters
that are transcribed by RNA polymerase
II*” and separated by the so-called strand
switch regions (SSRs). The main cluster
transcription is initiated at the SSRs
located between diverging clusters.”®
Monocistronic mRNAs are produced
through #rans-splicing of capped spliced
leader (SL) sequence onto the 5'-end of
the individual coding sequences. Most
likely, the L1TcRz ensures the proper
release of any L1Tc (or NARTc) elements
that were co-transcribed as part of a
polycistronic RNA (Fig. 2A).

The L1Tc Pr77 internal promoter may
guarantee the transcription of the L1Tc
copies present in the antisense orientation
with respect to the polycistronic clusters
(Fig.2B) as well as those that lie outside
them (Fig.2C). The existence of many
SIDER antisense-inserted copies in the
intergenic regions within the clusters of
Leishmania genome supports this idea.”
In addition, only two RNA polymerase
[I-dependent promoters have been des-
cribed in trypanosomatids: the SL RNA
external promoter’® and the L1Tc Pr77
internal one."” It has been suggested that,
due to the high density of L1Tc and
NARTc copies found within SSRs, the
initiation of the polycistronic transcrip-
tion may be a result of the firing from
the Pr77 promoters (Fig. 2D).*" Thus, the
Pr77 promoters may be partially domes-
ticated. Finally, the dispersed copies in
sense orientation could also be preventing
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a decay of the transcription level of distal
regions, ensuring the correct expression of
the last genes of each cluster (Fig. 2E).
The origin of the Pr77-dependent
transcription has been determined by
primer extension using extracted RNA
from epimastigote cells and found to be
located at the +1 nucleotide.'” Since the
L1TcRz 5'-side of the

mentioned +1 nucleotide of the element,

cleaves at the

the result of the primer extension pre-
viously referred above could be a con-
sequence of the L1Tc HDV-like ribozyme
activity. This finding may suggest, there-
fore, that L1TcRz is active in vivo.

In contrast to the hammerhead or
hairpin ribozymes that cleave within their
catalytic core, the particular cleavage
characteristic of the HDV-like ribozymes
allows to keep intact the catalytic core at
the mRNA 3'-product, ensuring its com-
plete preservation within the de novo
synthesized copies given the single reverse
transcription step of the TPRT. Moreover,
the existence of L1TcRz enables the
generation of L1Tc mRNAs from poly-
merase I polycistronic transcripts. The
L1TcRz would preserve the individuality
of each LITc/NARTc¢ copy, guaranteeing
the accurate definition of the 5'-end of
the element and preventing the mobiliza-
tion of host sequences located upstream
of the parental copy.

Taking into account all these data, we
propose that the L1Tc mRNAs lack in
vivo SL sequences, since their 5'-end start
at the nucleotide +1 of the element.'”'®
Presumably the L1Tc mRNAs have an
uncapped 5'-hydroxyl group. Many other
cytoplasmic RNAs are naturally uncapped,
like tRNAs, 5S rRNA or viral RNAs of
pestivirus and narnavirus, among others.
For example, tRNAs are transcribed
as longer precursors, and their 5'- and
3'-ends are maturated by RNase P and
RNase Z, respectively. The 5'-end and the
3'-end of tRNAs and 58 rRNA are usually
constrained in a GC pair rich helix®**** like
the 5'-end of narnavirus RNA.** Actually,
the disruption of the GC pairs of the
5'-stem loop of narnavirus RNA makes
it to be susceptible to exonuclease SK71/
XRNI degradation, thus reducing its
half-life.> The in silico analysis of the
folding of the 5'-UTR of the L1Tc and
ingi RNAs resulting from the L1TcRz
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Figure 2. Functional roles of the ingi/L1Tc clade 77-79 bp signature: promoter-ribozyme duality. (A) Transposable element mRNA is released

from policystronic transcripts by L1TcRz cleavage when the copy is located in sense orientation within a cluster. (B) Pr77-mediated transcription

of antisense-inserted copies of the mobile element. (C) Autonomous Pr77-mediated transcription of the mobile elements inserted outside the clusters.
(D) The bi-directional launching of the RNA polymerase Il (pol Il) for transcription of the large polycistronic clusters may be mediated by the Pr77
promoter from the mobile elements accumulated within the SSRs. (E) Pr77- mediated transcription of sense-inserted copies located within a cluster
could prevent the transcriptional decay level of genes located far from the cluster transcription start site. (F) Mobile element copies inserted in sense
at the 3-UTRs of somatic genes could be downregulating the mRNA level reducing the RNA stability after L1TcRz cleavage (as the SIDER-dependent
downregulation described in Leishmania spp). Code: TE, transposable element; same color boxes (red or green), somatic genes within the same cluster;
blue boxes, copies of transposable elements; black arrows, transcription start site and orientation; black box, SIDER copy. Code for the diagram

of transcriptional reinforcement (E): red, transcriptional level of the pol Il launched from the SSR; blue, transcriptional level of the pol Il launched
from dispersed Pr77; dotted-line, global pol Il transcriptional level.

cleavage predicts that it adopts a 5'-stem
loop rich in GC pairs (SL1 of Fig. 1B
and ref. 36). Thus, the L1TcRz could be
responsible of some kind of 5'-end RNA
maturation to ensure the stability of the
uncapped L1Tc mRNA in vivo.

As previously shown, the Pr77-derived
transcripts lack SL and are abundant
although poorly translatable.'” The con-
firmation of an in vivo 5'-hydroxyl end
in the mature L1Tc mRNAs would
point to a cap-independent translation
in which other sequences, apart from
Pr77, must be involved. The best known
cap-independent translation system is the

IRES (internal ribosome entry site). Some
IRES have been described in many viral
and other retrotransposon RNAs.*”* An
IRES consist of a complex RNA structure
able to mediate a cap-independent ribo-
some recruitment. However, in some
cases, this recruitment may require addi-
tional cellular factors, associated or not, to
cap-dependent translation. We have found
an attenuator sequence downstream of the
L1TcRz in L1Tc (Fig. 1B), but not in
NARTec, revealing that the downstream
sequences of L1Tc and NARTc induce
different refoldings.'® The L1Tc 5'-UTR
RNA, but not the NARTc RNA, adopts a
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tRNA-like structure susceptible of being
cleaved by RNase P. The RNase P is a
natural ribozyme responsible for the
maturation of the 5'-end of tRNAs by
the catalysis of an endonucleolytic cleav-
age that removes the 5'-leader sequence
of pre-tRNAs. The variety of tRNAs
strongly indicates that the recognition
of the substrates is mediated by three-
dimensional (RNA folding. Interestingly,
RNAs of some IRES are also recognized
by RNase P, revealing the existence of
a so-called tRNA-like structure within
them.”"*  Although other tRNA-like
structures unrelated to IRES have been
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described, the identification of one of
them within the 5-UTR RNA of the
coding L1Tc element, and not in the 5'-
RNA region of the non-coding NARTc
element, is consistent with the hypothe-
sis of the existence of an IRES in L1Tc.
Thus, we propose a model in which
after L1TcRz cleavage, the L1Tc mRNA
elongation leads to a RNA refolding
toward an uncapped hidden 5'-end and
an IRES structure (Fig. 1A and B).

The Pr77/L1TcRz Sequence
is Widely Distributed among
Different Trypanosomatid
Retrotransposons:

An Indicator of Pr77/L1TcRz’s
Activity in Self-Mobilization
and Host Genetic Regulation

The Pr77/L1TcRz sequence of 77 nt in
length is also found in other trypanoso-
matid’s non-LTR retrotransposons like
ingi, RIME, DIREs** and SIDERs**
with a high level of identity. Conse-
quently, it has been called the 77-79 bp
signature. However, there are no data
reporting that the catalytic RNA and the
internal promoter functions of the 77—
79 bp signature are maintained across
various members of the ingi/L1Tc clade of
retrotransposons. Ingi is a supposedly
active LINE element that resides within
the 7. brucei (Tbing))® and T. wvivax
(Tvingi)** genomes like the L1Tc element
does in both the 7. ¢ruzi and 7. congolense
(L1Tco?®). RIME® is a truncated version
of ingi (like NARTc of L1Tc¢) and also
resides within 7. brucei (TbRIME) and
T. vivax (TvRIME) genomes.”* To date,
there is not data reporting the existence
of NARTc homologous elements in the
T’ congolense genome. DIREs (degenerated
ingi/L1Tc-related
(approx. 5kb) interspersed elements with

elements) are long
high nucleotide divergence among their
copies.”® The presence of abundant stop
codons and misreading mutations indicate
that DIREs have not coding capacity.
SIDERs (short interspersed degenerated
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short
degenerated elements of approximately
600 bp in length that reside, together
with DIREs, in the trypanosomatid’s
genomes.***” DIREs and SIDERs are
thought to be mobilized in #rans by the
ingil
L1Tc homologs in the genomes of various
spp» SIDERs are
especially abundant, have
described. Consequently, it is believed
that LmSIDERs and LmDIREs are not

active elements.*®

retroposons)  are non-coding

ingi/lL1Tc machinery. However,
Leishmania where

not been

Extensive phylogenetic analyses of
the ingi/L1Tcrelated elements’ lineage
of trypanosomatids have been pre-
formed.?**?* The transposition mech-
anism of the non-LTR elements involves
two single and asymmetric cleavages at
the target insertion site that lead to the
generation of a direct repetition (of
11-12 nt in L1T¢) flanking each element,
called target site duplication (TSD)
(Fig. S1B).”> The conservation degree of
the TSDs provides a hint of the elapsed
time from the transposition, since ancient
copies would have accumulated mutations
at their TSDs, while recent ones would
not. Based on that, it was established that
TvSIDER1c, TcoSIDERI, TbSIDERI,
LmSIDER and LmDIRE have not been
recently mobilized, suggesting they are not
active elements.?

Since the HDV-like ribozyme activity
has low sequence requirements but needs a
consistent folding, we have analyzed the
predicted folding of the 77 bp signature
of the ingi/L1Tc clade members as an
indicator of the element activity (Fig. S2).
The results indicate that the TvSIDERIc
consensus sequence has severe deficiencies
for a proper HDV-like ribozyme folding as
it has two mispairings in the P1 helix and a
complete extinction of the pseudoknot
P1.1 (Fig.3). However, the TvSIDERIa
and TvSIDERIb consensus sequence has
an HDV-like ribozyme folding, although
the latter bears a mispairing in the P3
pseudoknot (Fig.3). Interestingly, all the
foldings compatible with a functional
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HDV-like ribozyme correlate with the
deduced active elements by the analysis
of the TSDs.?

By contrast, the existence of a conserved
ribozyme activity in a degenerated retro-
transposon might mean that both the
insertion and the catalytic activity would
have been positively selected along the
evolution as they provide some kind of
favorable genetic regulation for the host.
This may well be the case of SIDER
copies inserted within the 3-UTR of
many genes of Leishmania major and
L. z'nﬁz;'zt14;'}1.48’49 In fact, it has been shown
that SIDER2 copies within the 3'-UTRs
of two genes in L. major (SIDER3810
and SIDER1270) and L. infantum
(SIDER4000 and SIDER1222) cause a
downregulation of the mRNAs via an
endonucleolytic cleavage of such RNAs
without prior deadenylation.”” In the
L. major SIDER2 copies two in vivo
endonucleolytic cleavages were detected
within the 77 bp signature (so called
“signature II” in LmSIDER2).“ The
existence of an active ribozyme within
this signature could explain the generation
of these endonucleolytic cleavages that
lead to the RNA degradation (Fig.2F).
The experimental evidences needed to
confirm this hypothesis are currently
being pursued.
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in blue and wobble basepairs are in red. The TvSIDER1c consensus presents severe misfolding mutations like two mismatches at P1 helix, one mismatch
at P2 and complete disappearance of the P1.1 pseudoknot. The TvSIDER1b presents one mismatch at P3 pseudoknot. Folding of TvSIDER1a has not

divergences with an expected active folding.
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