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Abstract

The fast development of next-generation sequencing technology presents a major computational 

challenge for data processing and analysis. A fast algorithm, de Bruijn graph has been successfully 

used for genome DNA de novo assembly; nevertheless, its performance for transcriptome 

assembly is unclear. In this study, we used both simulated and real RNA-Seq data, from either 

artificial RNA templates or human transcripts, to evaluate five de novo assemblers, ABySS, Mira, 

Trinity, Velvet and Oases. Of these assemblers, ABySS, Trinity, Velvet and Oases are all based on 

de Bruijn graph, and Mira uses an overlap graph algorithm. Various numbers of RNA short reads 

were selected from the External RNA Control Consortium (ERCC) data and human chromosome 

22. A number of statistics were then calculated for the resulting contigs from each assembler. Each 

experiment was repeated multiple times to obtain the mean statistics and standard error estimate. 

Trinity had relative good performance for both ERCC and human data, but it may not consistently 

generate full length transcripts. ABySS was the fastest method but its assembly quality was low. 

Mira gave a good rate for mapping its contigs onto human chromosome 22, but its computational 

speed is not satisfactory. Our results suggest that transcript assembly remains a challenge problem 

for bioinformatics society. Therefore, a novel assembler is in need for assembling transcriptome 

data generated by next generation sequencing technique.
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A next-generation sequencing technology, RNA-Seq, has rapidly become a major tool for 

quantifying transcriptome for various organisms [1,2]. If research is conducted for human or 

model species whose reference genome is known, the transcriptome can be constructed by 

mapping the short reads of RNA-Seq onto the reference genome. Nevertheless, the genome 

sequences of most non-model species are not available. Therefore, transcriptome 

construction and quantification have to rely on transcriptome assembly that is technically 
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difficult. The development of assemblers for RNA-Seq faces two major technical challenges. 

First, the enormous number of short reads poses high requirements for computational speed 

and memory efficiency. For mammals and plants, the number of short reads typically ranges 

from 20 to 100 million for one sample. Pairwise alignments of all short reads are 

computationally costly; the assembly usually has terabytes of input and intermediate data, 

posing a big challenge for memory loading and data traffic. Second, a gene of eukaryotic 

cell often encodes multiple transcripts that share exons between each other. Different genes 

may also have consensus sequences. These shared sequences of RNA fragments may result 

in incorrect concatenation of short reads.

Currently there are two major types of assembly algorithms for genome sequences: overlap 

graph and de Bruijin graph [3]. Overlap graph is based on pairwise alignment between short 

reads [4]. In the graph, each node represents one short read, and an edge between two nodes 

indicates the two short reads have overlapping sequences. After some steps of simplifying 

the overlap graph by removing the transitive nodes and edges, a chain of nodes elicits the 

sequence of a contig or a transcript. Most overlap graph assemblers were developed in the 

late 1990s and early 2000s for shotgun genome sequencing. Mira [5], Phusion [6] and 

Newbler [7] are a few of the widely used overlap graph-based assembly programs. However, 

the step of making pairwise alignments makes it computational forbidden to use overlap 

graph methods for assembling the huge number of short reads generated by the next-

generation sequencing techniques. This stimulated researchers to develop new assembly 

programs based on de Bruijn graph [8], a fast graph algorithm. In de Bruijn graph, short 

reads were broken down into short DNA sequences of length k, referred as k-mers. k-mers 

are then used to form the graph. Thus, the time complexity for construction of de Bruijn 

graph is linear. Three prominent de Bruijn assemblers are ABySS [9], Velvet [10] and 

Trinity [11]. Another widely used transcriptome assembler, Oases [12], is built on top of 

Velvet by taking into account alternative splicing. A major drawback of de Bruijn graph 

algorithm is the loss of short read information when splitting reads into shorter k-mers. 

When two genes have a shared sequence of a length greater than k, de Bruijn graph would 

incorrectly connect the reads from these two genes. Therefore, transcriptome assembly 

remains a challenge for bioinformatics community to balance the computing efficiency and 

assembly accuracy.

In this study, we evaluated and compared the performance of five commonly used 

assemblers, Mira, ABySS, Velvet, Oases and Trinity for next-generation sequencing short 

reads generated from simulation, spike-in RNAs and human brain tissue. The assembly 

performance is evaluated by a set of statistics, including the number of contigs, N50 length, 

the rate of short reads mapping onto contigs and the rate of contigs mapping onto transcripts. 

To investigate the effect of the sequence depth on assembly, we selected varying number of 

short reads for the experiments. Our work demonstrated the challenges and the need of 

developing new algorithms for transcriptome assembly.
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1 Materials and methods

1.1 De novo assembly tools

Five assemblers, Mira (v3.4.0.1), ABySS (v1.3.3), Velvet (v1.2.03), Oases (0.2.06) and 

Trinity (r2012-06-08) were selected for this study. These tools include two types of 

assembly algorithms. Mira is based on overlap graph algorithm, whereas the other 

assemblers are all based on de Bruijn graph algorithm.

1.2 Data simulation

A 5000000 base pair (bp) region in human chromosome 22 between genomic positions 

35000000 and 40000000 was used for generating simulated short reads. The exon and 

transcript sequences in this genomic region were obtained from UCSC known genes dataset 

[13]. Short reads were generated from the transcript sequences at a random start position. 

Each short read sequence has equal chance to be made from the sense or anti-sense strand. A 

pre-assigned number (between 50 and 500) of short reads were generated for each transcript 

and each short read was 100 bp in length. If the sequence length between the start position 

and the end of the transcript is less than 100 bp, the short read would be removed. Therefore, 

the resulting number of short reads was often less than the pre-assigned number for a 

transcript. For each pre-assigned number of short reads, 10 replications were performed.

1.3 ERCC data

The RNA-Seq data for the External RNA Control Consortium (ERCC) RNAs [14] were 

provided to us by Beijing Genomics Institute, Shenzhen, China. The sample contains 92 

ERCC RNAs that have various concentrations. Bowtie [15] was used to map the short reads 

to the 92 RNA templates. Ten RNAs with the highest concentrations (the highest number of 

short reads mapped) were selected resulting a total of 1.5 billion short reads. A random set 

of short reads were selected for assembly. The numbers of selected reads were 20000, 

50000, 100000 and 200000 respectively. Each experiment was repeated three times.

1.4 Human brain RNA-Seq data

The RNA-Seq data for human brain tissue was collected by Illumina [16]. We selected all 

short reads that were mapped onto chromosome 22 using Bowtie. For each test of comparing 

assemblers, a random set of short reads mapped to chromosome 22 were selected. The 

numbers of selected short reads were between 200000 and 1500000. The set of short reads 

was also mapped onto chromosome 22 and their transcript template sequences were inferred 

from Ensembl Human Genome release 69 using Tophat and Cufflink [17,18]. The assembled 

contig sequences were then compared with the transcript template sequences. For each 

number of short reads, three experiments were conducted for replications.

1.5 Statistical analysis and programming

The five programs assembled the short reads of each RNA-Seq dataset into contigs. The 

performances of the five assemblies were compared using a set of statistics. For each test 

data, the exact number of transcript templates was known. Thus, the number of contigs in 

each assembly was compared with the expected number of transcripts. N50 is a commonly 
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used statistic for assembly evaluation. It is a weighted median of the lengths of contigs [19]. 

For genome sequencing, a larger N50 value indicates a better performance for the assembly. 

For transcriptome sequencing, though N50 is not as important, it is still a valuable 

measurement in our tests because the median transcript length is known. The rate of short 

reads mapping onto contigs indicates the amount of input information preserved by an 

assembly. The rate of contigs mapping onto transcripts indicates the accuracy of assembled 

contigs.

2 Results

2.1 The de Bruijn graph algorithm generates mis-assembled contigs

Although de Bruijn graph is computationally efficient, this algorithm potentially mis-link 

short reads because it is based on k-mers. If two transcripts that are encoded by distinct 

genes share a same k-mer, they will be mistakenly aligned and connected. The error rate of 

de Bruijn graph can be estimated by counting the number of pairs of transcripts that have at 

least one shared k-mers. This error rate may differ between species. In this study, we used 

human transcript data to estimate the error rate generated by de Bruijn graph.

We obtained 77600 human transcript sequences using UCSC Known Gene dataset. In order 

to find the chance that a pair of transcripts has a shared k-mer, we randomly selected 10000 

pairs of transcripts and count the number of pairs that have shared k-mers. The lengths of k-

mers ranged from 30 to 60 base pairs. The test was performed for nine times and the results 

are shown in Figure 1. For k=30, an average of 42 transcript pairs were found to have shared 

k-mers. This number dropped below 5 when the length of k-mer was large than 41. Many de 

Bruijn graph-based assemblers recommend a relative small k. For example, the default k for 

Velvet and Oases is 31. Our results suggested that a larger k-mer size should be used for 

assembly when using de Bruijn algorithm.

2.2 Simulation study

A eukaryotic gene often consists of numerous exons and introns that encode multiple 

transcripts. Such complicated gene structure presents a major challenge for eukaryotic 

transcriptome assembly. In order to simulate the process of eukaryotic transcriptome 

assembly, we select a small genomic region in human chromosome 22 between genomic 

positions 35000000 and 40000000 for generating random short reads. This small genomic 

region allows for fast computation while maintaining necessary complexity in gene 

structure. There are 187 genes that are located in this region encoding 2528 exons and 337 

transcripts. By average, each gene consists of 14 exons and encodes 2 transcripts. The 

average length of exons is 315 base pair (bp), and the median length is 135. Although the 

largest exon has 9795 nucleotides, approximately 90% of exons have less than 500 

nucleotides. Figure 1 shows the distribution of transcript lengths with a mean length of 2359 

bp.

To simulate the transcriptome sequencing, we randomly generate a number of short reads 

with 100 bp in length for each transcript. The start position of each short read was randomly 

selected. If the start position is close to the end of a transcript such that the resulting short 
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read is less than 100 bp, the read would be removed. No sequencing errors were introduced 

into the simulation. Each read has an equal chance to be synthesized from either the sense 

strand or the missense strand. The number of short reads per transcript ranged from 50 to 

500. Each simulation was repeated 10 times and the average statistics were calculated 

(Figure 2). The standard errors of all statistics were so small that they were invisible in 

Figure 2.

Figure 2A shows the number of contigs generated by each assembler. The expected number 

of contigs is 337 because the short reads were generated from 337 transcripts. ABySS, 

Velvet and Oases converged to 337 as the number of short reads increases and they (by 

average) generate 306.5, 427.5 and 367.5, respectively, when there are 500 short reads for 

each transcript. Trinity stabilized very fast and it consistently generated more than 600 

contigs for at least 100 reads per transcript. Mira had the least performance in terms of 

number of contigs. Its number of contigs almost linearly increased and it was above 1000 

when there were at least 300 reads per transcript.

N50 statistic is commonly used in assembly evaluation. It measures the weighted median of 

the contig lengths. N50 is an important statistic for genome assembly because a larger value 

indicates that the assembler create less break points in the genome. However, a larger N50 

does not necessarily imply better performance for transcriptome assembly be cause 

transcriptome are fragmented DNA sequences. In the simulation, it is known the average 

transcript length is 2359. Therefore, we evaluate the performance of assemblers by the 

distances of their N50 to 2359. Both Oases and Trinity had acceptable performance with 

N50s slightly greater than 2359 (Figure 2B). All the other assemblers had N50s less than 

1500, indicating they generated too many small con-tigs.

Mira and Trinity both had excellent short read mapping rate, approximately 90% of short 

reads mapped onto the assembled contigs, whereas other assemblers had less optimal 

performance (Figure 2C). In terms of contig mapping rate, ABySS and Velvet had about 

95% contigs that can be mapped to the transcripts (Figure 2D), whereas the rates were 

approximately 90%, 46% and 8% for Mira, Trinity and Oases, respectively.

2.3 ERCC data

The External RNA Control Consortium (ERCC) has developed a set of 92 RNAs that have 

been widely used in quality control for microarray, qPCR and next-generation sequencing 

for quality control [14,20]. The mean length of ERCC RNAs is 900 bp. A mix of ERCC 

RNAs was deeply sequenced using Illumina Hiseq platform. The concentrations of the 92 

RNAs are highly variable in the ERCC mix. Some RNAs are highly expressed and some 

other RNAs are rarely expressed. In order to test assembly algorithms, we selected only 10 

RNAs that had the highest concentrations in the ERCC mix. A total of 1.5 billion short reads 

were mapped to these 10 RNAs using Bowtie [15]. For each test, we randomly selected a set 

of short reads for assembly. The numbers of selected reads were 20000, 50000, 100000 and 

200000 respectively. Each experiment was repeated three times. The summary statistics are 

shown in Figure 3.
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In Figure 3A, both Oases and Trinity gave the best performance. For 200000 short reads, 

Oases generated exactly 10 contigs as expected from the 10 selected RNAs, and Trinity 

generated 10.7 contigs by average. ABySS had 6.3 contigs. The results for Velvet and Mira 

were not optimal, both giving hundreds of contigs. Similarly, Oases and Trinity had N50 

values that were close to the mean RNA length of 900 bp (Figure 3B). The other three 

assemblers gave significantly lower N50 values. Trinity had almost perfect results (close to 

100%) for short reads mapping rates and con-tig mapping rates (Figure 3C and D). Mira also 

had higher mapping rates than the other assemblers and its rates increased as the number of 

short reads increased. The mapping reads of the other three assemblers were below 60% for 

200000 short reads.

2.4 Human Chromosome 22 data

The five assemblers were compared using human brain RNA-Seq data. In order to facilitate 

the computation, the assembly was only performed on the short reads that mapped to human 

chromosome 22. We collected 7.8 million short reads in total for chromosome 22. For each 

test, we randomly selected a number of short reads for assembly. The numbers of short reads 

were between 200000 and 1500000. Each test was repeated three times. The transcripts that 

can be formed by the selected short reads were also identified using Tophat and Cufflinks on 

Ensembl Human Genome release 69 [17,18]. The assembly was evaluated by comparing 

contig sequences with the transcript sequences that were from the known human genome 

sequence.

In Figure 4A, the black line shows the number of transcripts identified by Cufflinks. Oases 

generated the closest number of contigs. Trinity also had a close number of con-tigs. All the 

other three assemblers had too many contigs. In Figure 4B, Oases had the largest N50. Mira, 

Trinity and Velvet all had the best rates for short reads mapping onto transcripts (Figure 4C). 

Trinity, Mira and Oases had the best rates for contigs mapping to transcripts, whereas 

ABySS had the low mapping rate for short reads and contigs (Figure 4C and D).

3 Discussion

Transcriptome sequencing is becoming a dominant technique to quantify the global gene 

expression driven by the rapidly dropping cost of next generation sequencing. For species 

without reference genomes, the first step of analysis is to assembly the raw short reads, a 

computationally complicated process. Most of assembly algorithms were originally 

developed for genome sequence, nevertheless the assembly of eukaryotic transcriptome is 

substantially more difficult because a single gene often encodes multiple transcripts by 

alternative splicing of a limited number of exons. It remains a question whether current 

assembly tools can meet the rapidly increasing demand of transcriptome sequencing [1,2]. 

This motivated us to perform an extensive comparison and evaluation for some of the most 

widely-used assembly programs using both simulated and real transcriptome data.

Five assembly tools were tested for three RNA-Seq data types: simulated data, ERCC data 

and human brain tissue data at various sequencing depths. The RNA-Seq simulation used 

human transcript sequences while assuming ideal conditions with equal numbers of short 

reads per transcript and without sequencing errors. The simulation results reflected the 
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effects of complicated gene structures of eukaryotic cells on assembly. ERCC data consists 

of a number of RNA templates. Because there is no significant overlap between RNA 

template sequences, ERCC RNA-Seq is a simplified transcriptome that contains alternative 

splicing isoforms and complicated gene structures. In order to test for eukaryotic 

transcriptome, we selected a subset of short reads from human brain RNA-Seq experiment. 

All the short reads were mapped to chromosome 22. We chose different number of short 

reads ranging from 200 K to 1.5 M. Approximately 800 K short reads in chromosome 22 

were equivalent to 100 M short reads for the whole human genome. Currently most human 

transcriptome studies employ between 20 and 100 M short reads per sample. Thus, our tests 

provided equivalent sequence depths to real studies.

Our testing results showed that the assembly tools had varying levels of performances for 

different data types and sequence depths. Mira gave good mapping rates for short reads and 

contigs, which was expected because it used a slower but more accurate algorithm, overlap 

graph. However, Mira’s assembly contained far more contigs than what is expected, and 

most of contigs were short. This indicated that Mira was not suitable for transcriptome 

assembly because of the complicated gene structures in eukaryotes. ABySS had low 

mapping rates for all three data types. Trinity had excellent mapping rate for short reads in 

simulated data, but the contig mapping rate was low. Trinity had good performance in 

mapping short reads to contigs and mapping contigs to transcripts for both ERCC and 

human chromosome 22 data. However, its N50 was not the best, implying Trinity could 

always generate the full length transcripts. As a revised version of Velvet for transcriptome 

assembly, Oases had better number of contigs and N50 than Velvet. Oases had a better short 

read mapping rates than Velvet in most of times. However, the contig mapping rate for Oases 

was not as good as Velvet for all of the tests.

In summary, no assembler had consistent good performance in all the statistics. For 

transcriptome assembly of prokaryotic cells that have simple gene structure, Trinity would 

be recommended. For eukaryotic genome, both Oases and Trinity gave acceptable 

performance. The development of transcriptome assembler remains a challenge for future 

genome studies.
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Figure 1. 
The numbers of transcript pairs that have shared k-mers. The total number of transcript pairs 

is 10000. The errors bar show the standard errors.
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Figure 2. 
The distribution of transcript lengths. The histogram shows the lengths of 337 transcripts 

that are encoded in human chromosome 22 between position 35000000 and 40000000.
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Figure 3. 
Comparison of assembly statistics for simulated transcriptome data. The x axis indicates the 

number of short reads generated for each transcript. A, The number of contigs from each 

assembler. B, N50 statistics. C, The percentage of short reads that can be mapped to the 

contigs. D, The percentage of contigs that can be mapped to the original 337 transcripts.
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Figure 4. 
Comparison of assembly statistics for ERCC data. The x axis indicates the total number of 

selected short reads for assembly. A, The number of contigs from each assembler. B, N50 

statistics. C, The percentage of short reads that can be mapped to the contigs. D, The 

percentage of contigs that can be mapped to the 10 RNA templates.
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Figure 5. 
Comparison of assembly statistics for human brain data. The x axis indicates the total 

number of selected short reads that were mapped to chromosome 22. A, The number of 

contigs from each assembler. B, N50 statistics. C, The percentage of short reads that can be 

mapped to the contigs. D, The percentage of contigs that can be mapped to the transcripts 

identified by Cufflinks.
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