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Abstract: Peripheral artery disease (PAD) is caused by narrowing of arteries in the limbs, normally
occurring in the lower extremities, with severe cases resulting in amputation of the foot or leg.
A potential approach for treatment is to stimulate the formation of new blood vessels to restore blood
flow to limb tissues. This is a process called angiogenesis and involves the proliferation, migration,
and differentiation of endothelial cells. Angiogenesis can be stimulated by reactive oxygen species
(ROS), with NADPH oxidases (NOX) being a major source of ROS in endothelial cells. This review
summarizes the recent evidence implicating NOX isoforms in their ability to regulate angiogenesis
in vascular endothelial cells in vitro, and in PAD in vivo. Increasing our understanding of the
involvement of the NOX isoforms in promoting therapeutic angiogenesis may lead to new treatment
options to slow or reverse PAD.
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1. Introduction

Peripheral artery disease (PAD) is a condition where narrowed arteries reduce blood flow to
peripheral arteries, most commonly in the lower extremities. This is a major risk factor for lower-limb
amputations [1] and a major risk factor for heart attack [2,3]. Current interventions are insufficient in
many PAD patients because extensive disease precludes effective revascularization. This has prompted
alternate treatment strategies including angiogenesis, or the stimulation of new blood vessel growth,
to restore blood flow and preserve tissue survival.

Angiogenesis is the growth of capillary networks consisting of endothelial cell (EC) tubes,
driven by hypoxia-induced mediators; the most characterized being vascular endothelial growth
factor (VEGF) [4]. Remodeling, maturation, and stabilization of existing vessels by perivascular cells
(pericytes in capillaries) or vascular smooth muscle cells (VSMCs; in larger vessels) are essential for
generating functional collateral vessel networks in ischemia. Excessive reactive oxygen species (ROS)
can promote oxidative stress, exacerbate atherosclerosis and cardiovascular disease (CVD), however,
physiological levels are essential for cell signaling and maintaining homeostasis by their ability to
regulate proliferation, migration, and differentiation of cells. Indeed, ROS have been implicated in
angiogenesis and stability of the newly formed vessels [5–10], and NADPH oxidases (NOXs) are
a major source of ROS in ECs. In this review, we summarize the recent progress in understanding
ROS-derived NOX, and the role NOXs play in angiogenesis in vitro, and in PAD in vivo.

2. NOX Structure and Function

The nicotinamide adenine dinucleotide phosphate (NADPH) system is responsible for generating
free radicals in immune and other cells in the body. In humans, 7 isoforms exist, including NOX-1 to

Antioxidants 2017, 6, 56; doi:10.3390/antiox6030056 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0003-1723-2679
http://dx.doi.org/10.3390/antiox6030056
http://www.mdpi.com/journal/antioxidants


Antioxidants 2017, 6, 56 2 of 14

-5 and two dual oxidases, DUOX-1 and DUOX-2. Except for NOX-5 and DUOX-1 and -2, NOX are
phagocytic oxidases, whose main task is to generate ROS to kill foreign pathogens at homeostasis.
They are found in various parts of the body, and each implicated in multiple functions including
defense mechanisms, signal transduction, and hormone biosynthesis [11]. Of note, the major source of
EC ROS comes from NOX-1, -2, -4 and -5 [12,13]; these isoforms will be the focus of this review.

NOX are transmembrane proteins that transport electrons across the cell membrane to reduce
oxygen and produce superoxide (O2•–). While each NOX contains six transmembrane domains
along with a cytoplasmic domain that binds NADPH and flavin adenine dinucleotide, each isoform
is differentiated by specific cytosolic and membrane-bound subunits with the prototypic and most
characterized being NOX-2 (also known as gp91phox). For the prototypic NOX isoform, O2•– generation
is induced upon assembly of membrane-bound subunits e.g., NOX-2 and p22phox, together with
cytosolic subunits p67phox, p47phox, p40phox, and a small G-protein, namely Rac. Like NOX-2, NOX-1,
and -4 also assemble with p22phox, however NOX-1 oxidase activity requires NOX organizer 1
(NOXO1) and NOX activator 1 (NOXA1); isoforms of p67phox and p47phox. NOX-4 differs from
the prototypic NOX as it is constitutively active, but can be activated by polymerase-δ-interacting
protein 2 (POLDIP2). On the other hand, NOX-5 is calcium-dependent and can be regulated by
calmodulin [14,15]. NOX-1, -2, -3, and -5 produce O2•–. NOX-4 also produces O2•–, but primarily
emits H2O2 [16,17], potentially due to an extended extracytosolic loop that only occurs in the NOX-4
isoform [18]. Structures of NOX-1, -2, -4, and -5 are depicted in Figure 1.
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Figure 1. Vascular NADPH oxidase (NOX) and their regulatory subunits. NOX-1, -2, and -4 are 
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NOXA1, and Rac. NOX-2 activity is dependent on binding p67phox, p40phox, p47phox, and Rac, whilst 
NOX-4 is constitutively active and can be regulated by polymerase-δ-interacting protein 2 (POLDIP2). 
NOX-5 activity is influenced by calcium. All NOX isoforms generate O2•−, with NOX-4 preferentially 
producing H2O2. 

3. NOX: Role in Angiogenesis 

Angiogenesis is a normal, important, and carefully controlled process where capillaries form 
from pre-existing blood vessels. It is driven by pro- and anti-angiogenic factors acting on ECs, and 
proceeds through several defined stages. Initially, quiescent ECs are activated, stimulating 
expression of growth factor receptors, and the release of proteases that breakdown the basement 
membrane. ECs then proliferate and begin sprouting, followed by migration in the direction of the 
angiogenic stimulus, and form tubules (Figure 2). These events ultimately result in the formation of 
a lumen.  

Figure 1. Vascular NADPH oxidase (NOX) and their regulatory subunits. NOX-1, -2, and -4 are
localized at the membrane together with p22phox. The activity of NOX-1 is regulated by NOXO1,
NOXA1, and Rac. NOX-2 activity is dependent on binding p67phox, p40phox, p47phox, and Rac,
whilst NOX-4 is constitutively active and can be regulated by polymerase-δ-interacting protein 2
(POLDIP2). NOX-5 activity is influenced by calcium. All NOX isoforms generate O2•−, with NOX-4
preferentially producing H2O2.

3. NOX: Role in Angiogenesis

Angiogenesis is a normal, important, and carefully controlled process where capillaries form from
pre-existing blood vessels. It is driven by pro- and anti-angiogenic factors acting on ECs, and proceeds
through several defined stages. Initially, quiescent ECs are activated, stimulating expression of growth
factor receptors, and the release of proteases that breakdown the basement membrane. ECs then
proliferate and begin sprouting, followed by migration in the direction of the angiogenic stimulus,
and form tubules (Figure 2). These events ultimately result in the formation of a lumen.
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are also activated by conditions which induce angiogenesis, namely hypoxia and ischemia, and 
involve multiple cytokines and enzymes. Here, we will describe the recent advances in NOX isoforms 
in regulating angiogenic processes in vitro, but also in PAD in vivo.  
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NOX can produce ROS to inhibit EC proliferation and promote cell senescence in vitro [32,33], 
however, NOX can also stimulate proliferation and cell survival. The first evidence demonstrating 
NOX-1’s involvement in cell growth comes from Suh et al. (1999). In this study, NOX-1 
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also promoted human microvascular EC cell growth [36]. While these studies suggest a positive role 
for NOX-1 and -5 in EC proliferation, mechanism(s) for this are currently lacking and require further 
elucidation. The majority of the evidence linking NOX’s to EC proliferation comes from work 
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eNOS-derived nitric oxide (NO) activity produced by eNOS (which catalyzes the conversion of
L-arginine into NO and L-citrulline), is essential in EC homeostasis. Any imbalance or impairment in
eNOS-catalyzed NO production/bioactivity leads to a dysfunctional endothelium. Importantly, both
eNOS and NO are important mediators of angiogenesis with NO being the effector molecule [19,20].
Though the exact mechanism(s) are not fully understood, NO increases EC proliferation and migration
by increasing growth factor levels and expression; growth factors including VEGF, fibroblast growth
factor-2 (FGF-2), TNF-related apoptosis-inducing ligand (TRAIL), and urokinase type plasminogen
activator (uPA) [19,21–23]. Importantly, EC-derived NOX is activated by VEGF, FGF-2, platelet derived
growth factor (PDGF), Angiopoietin 1 or -2 (Ang1, Ang2), and TRAIL. NOX are also activated by
conditions which induce angiogenesis, namely hypoxia and ischemia, and involve multiple cytokines
and enzymes. Here, we will describe the recent advances in NOX isoforms in regulating angiogenic
processes in vitro, but also in PAD in vivo.

3.1. In Vitro Process of Angiogenesis

While excessive or supraphysiological levels of ROS can damage and kill ECs [24–28], ROS at
physiological levels are essential in mediating regular cellular functions including proliferation,
migration, and differentiation [29–31]; in vitro processes of angiogenesis. Importantly, these cellular
functions have been shown to require NOX isoforms and are described in detail below.

3.2. Proliferation

NOX can produce ROS to inhibit EC proliferation and promote cell senescence in vitro [32,33],
however, NOX can also stimulate proliferation and cell survival. The first evidence demonstrating
NOX-1’s involvement in cell growth comes from Suh et al. (1999). In this study, NOX-1 overexpression
stimulated proliferation of multiple cells, including VSMCs [34], but it wasn’t until recently, that EC
proliferation was shown to be regulated by NOX-1, where silencing NOX-1 impaired hypoxia-induced
human pulmonary artery EC proliferation [35]. NOX-5 overexpression also promoted human
microvascular EC cell growth [36]. While these studies suggest a positive role for NOX-1 and -5
in EC proliferation, mechanism(s) for this are currently lacking and require further elucidation.
The majority of the evidence linking NOX’s to EC proliferation comes from work involving NOX-2
and NOX-4. For example, NOX-2 and NOX-4 over expression increased human hybridoma EC
proliferation and ROS production [37], but silencing them inhibited ROS and EC proliferation [37].
NOX-4 binding proteins have also been implicated in EC growth; compared to control, siRNA to



Antioxidants 2017, 6, 56 4 of 14

POLDIP2 inhibited serum-inducible human umbilical vein EC proliferation, suggesting that POLDIP2
directly influences cell cycle processes [38]. Induction of NOX-4 either by NOX-4 overexpression,
VEGF [39], FGF-2, TRAIL [40], or transforming-growth-factor-β1 (TGFβ1) exposure [41,42] can
stimulate human microvascular EC growth. Importantly, NOX-2 or NOX-4-induced human
microvascular EC proliferation appears to involve mitogen activated protein kinase (MAPK), Akt,
or Smad pathways [40,43,44]. These pathways can facilitate eNOS activation, nitric oxide or
H2O2 production to stimulate proliferation [40,42,45–47]. NOX-4 is also known to interact with
phosphorylated VEGF receptor 2 and stimulate VEGF-induced human retinal microvascular EC
proliferation [39]. Interestingly, NOX-4 derived H2O2 can stimulate NOX-2, resulting in VEGF
receptor activation, and increased human and mouse EC proliferation [33,42,48]. These findings
imply cross-talk between NOX isoforms. Interestingly, both NOX-2 and NOX-4 can increase PDGF
receptor protein expression, implying that NOX isoforms may stimulate other growth factors to
promote EC proliferation in vitro [49]. Collectively, these studies suggest that NOX-2 and -4 are major
contributors to EC growth.

3.3. Sprouting

The majority of studies linking NOX isoforms to EC sprouting come from tumor angiogenesis [50–54].
In this review, we have focused on NOX isoforms that mediate vascular EC sprouting,
which predominantly include NOX-2 and NOX-4. A study by Craig et al. (2011) [45] demonstrated that
aortas from NOX-4 transgenic (NOX-4 TG) mice cultured in Matrigel for 7 days ex vivo, demonstrated
~25% enhanced sprouting compared to wildtype aortas [45]. Importantly, this effect was eNOS
dependent, since eNOS−/− NOX-4 TG mice did not display enhanced sprouting ability compared to
eNOS−/− mice alone [45]. Two hours of hypoxia followed by 4 h re-oxygenation also resulted in growth
of sprouts in a model of pig coronary artery endothelial spheroids [55]. These effects however, were
diminished when p47phox knockout spheroids were exposed to hypoxia/re-oxygenation, implicating
NOX cytosolic proteins in sprouting [55]. In a second model, aortas of p47phox−/− mice had impaired
sprouting ability compared to wildtype in response to hypoxia and re-oxygenation [55]. p47phox has
also been implicated in Ang-1 [56] and urotensin II (U-II) [57] stimulated sprouting. Ang-1 is an
important regulator of vascular angiogenesis [58]. Importantly, in response to Ang-1, pig coronary
artery endothelial spheroid sprouting was inhibited by broad-spectrum NOX inhibitors (apocynin or
diphenylene iodonium), with p47phox−/− EC spheroids and aortic ring vessel outgrowths showing
modest sprouting compared to wildtype [56]. U-II is a peptide ligand and a potent vasoconstrictor [59].
U-II-induced sprouting in cultured mouse vena cava explants was inhibited by treatment with
urantide, a U-II antagonist [57]. Importantly, vascular sprouting of the explants in Nox2−/− mice
was considerably reduced [57]. Furthermore, Nox2−/− mice had reduced U-II-induced invasion of
new vessels into Matrigel plugs [57]. Collectively, these studies suggest that NOX-2 and p47phox are
important in EC sprouting processes.

3.4. Migration and Tubule Formation

The role of NOX-1 in regulating migration and tubule formation has been described [53].
In NOX-1 deficient mouse lung ECs, VEGF, and FGF-2-stimulated intracellular ROS was severely
compromised compared to wildtype ECs. Importantly, NOX-1 deficient ECs were unable to migrate in
Matrigel, nor could they form tubules on fibrin gel [53]. Interestingly, these EC displayed increased
peroxisome proliferator-activated receptor-α (PPARα) expression, and exposure of these cells to
GW6471 (PPARα antagonist), restored their ability to migrate and form tubules [53]. While this is
suggestive that PPARα may play an antagonistic role in NOX-1-induced angiogenesis, the exact
mechanism(s) for NOX-1 mediated tubule formation requires further study.

Migration of ECs is often initiated upon detection of a hypoxic environment [4,60], but can also be
initiated in an environment of excess oxygen. Pendyala et al. (2009) found that hyperoxia-stimulated
production of ROS and EC migration, was in part, due to NOX-2 in human lung microvascular
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endothelial cells [61]. Silencing NOX-2 by adenovirus also inhibited Ang-1-inducible ROS production
and tubule formation of human umbilical vein EC’s [62]. Moreover, Ang-1-induced migration was
impaired in ECs isolated from p47phox−/− mice, associating with reduced intracellular ROS and reduced
activation of Akt and p42/44 MAP kinase [55]. The role of Ang-2 in angiogenesis has also been
described. Here, lipopolysaccharide (LPS)-induced VEGF and Ang-2 expression resulted in increased
human pulmonary microvascular EC ROS production, however, only inhibition of NOX-2 by siRNA,
but not NOX-1 and -4, reduced O2•– levels [63]. LPS also stimulated the formation of EC tubules, which
was attenuated by NOX-2, involving IκB kinase-β (IKKβ)/NF-κB and MAPK/AP-1 pathways [63].

Like NOX-2, NOX-4 can promote EC migration and tubule formation. A role for NOX-4 in
hyperoxia has been identified [61]. Here, the authors found that hyperoxia-induced migration and
tubule formation of human lung ECs in vitro, was significantly attenuated when NOX-2 and NOX-4
were silenced [61]. In addition to hyperoxia, the role of NOX-4 has been further examined in response
to other factors. For example, H2O2 production and TGFβ1-induced capillary formation was abolished
when NOX-4 was silenced in ECs [41]. Silencing NOX-4 also inhibited intracellular ROS production,
attenuated eNOS phosphorylation, as well as impaired TRAIL-inducible human microvascular EC
migration and tubule formation [40]. Stromal cell-derived factor-1 (SDF-1α) is a potent angiogenic
chemokine and induces migration of human microvascular EC [64]. When p22phox or NOX-5 were
silenced by siRNA, migration induced by SDF-1α was inhibited [65]. Silencing of p22phox and NOX-5
subunits also significantly reduced SDF-1α-induced tubule formation after 72 h. This suggests that
multiple NOXs with p22phox subunits and NOX-5, are involved in SDF-1α migration [65].

3.5. In Vivo Processes of Angiogenesis in PAD

Hindlimb ischemia is a common model of PAD. In most cases, this model involves ligation and
excision of the femoral artery and all side branches, with the ischemic process naturally promoting
angiogenesis in normal mice [66]. However, variations to this model do exist, and can affect angiogenic
outcomes [67]. For example, cutting or partial/complete resection of the femoral artery, iliac artery, or
femoral vein, independently, or collectively, or injury via coagulation, can alter the degree of ischaemic
damage, affecting degree of vascularity and limb perfusion [67,68]. As described above, NOX isoforms
are upregulated in response to hypoxic conditions and implicated in angiogenic processes in vitro.
These suggest that NOX may play a role in angiogenesis in response to ischemic injury in vivo.
However, to date only NOX-2 and NOX-4 have been proven to control the angiogenic process in PAD
following hindlimb ischemia. For example, NOX-2 protein expression was significantly increased
in newly formed capillaries and leukocytes in the ischemic limbs of wildtype mice [69]. Hindlimb
ischemia also increased NOX-2, -4, and p47phox mRNA expression in collateral arteries of rats at day 1,
3, and 7 post-surgery, whereas NOX-1 expression was undetected [70]. The importance of NOX-2 in
stimulating angiogenesis in PAD was confirmed in Nox2−/− mice; blood perfusion was significantly
impaired 7 days after ischemic injury when compared to wildtype, associating with reduced capillary
density and reduced O2•– production, but not inflammation [69]. Reduced collateral vessel growth
was also observed in rats where apocynin treatment or NOX-2 inhibition suppressed angiogenesis,
and inhibition of p47phox by siRNA in rats, or in p47phox−/− mice, led to reduced collateral vessel
growth in response to ischemia [70]. The bone marrow has also been implicated in NOX-2-induced
angiogenesis in PAD. ROS production, hypoxia, and HIF-1α expression were increased in bone marrow
after ischemic injury; a finding not observed in Nox2−/− mice [71]. Importantly, reduced ROS in bone
marrow of Nox2−/− mice associated with impaired vascularity and blood flow, as well as reduced
endothelial progenitor cell numbers in peripheral blood [71]. The authors concluded that NOX-2
dependent hypoxia in bone marrow stimulates EC progenitor expansion to facilitate mobilization of
these cells to areas of ischemic injury for tissue repair [71]. In support, more recent studies suggest
that EC-specific lineage and angiogenic potency of progenitor stem cells in mice require NOX-2 [72].
While these studies imply that NOX-2 is crucial in stimulating angiogenesis in PAD, other studies
contrastingly demonstrate no change in blood perfusion or vascularity in Nox2−/− mice [45,73]. It is
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unclear as to why there are discrepancies, however, variations in the way ischemia was initiated
is different between studies, confirming that variations to the model can result in differences in
vascularization [67,68].

Like NOX-2, NOX-4 can promote angiogenesis after hindlimb ischemia. This has been demonstrated
using multiple models in vivo including NOX-4 adenoviral gene therapy, and using transgenic and
Nox4−/− mice [45,74]. For example, local adenoviral NOX-4 injection 3 days prior to ischemia improved
blood flow recovery and stimulated capillary density in mice 28 days after injury [45]. A similar finding
was observed in EC-specific NOX-4 transgenic mice [45]. Not only did vascular tissue from these
mice display enhanced capillary sprouting ex vivo, in response to hindlimb ischemia, these mice had
enhanced capillary density in skeletal muscle, and marked improvement in blood perfusion compared
to littermate control mice [45]. Importantly the authors showed that eNOS activation was critical
for NOX-4-induced angiogenesis in PAD [45]. In contrast, global Nox4−/− or tamoxifen-inducible
deletion of NOX-4 in mice significantly attenuated blood flow recovery and vascularity in response
to hindlimb ischemia [74]. Furthermore, a reduction in NOX-4 mRNA expression in skeletal muscle
3 days after hindlimb ischemia was observed in Trail−/− mice associating with impaired blood flow
and capillary density [40]. Importantly, NOX-4 deletion in mice also resulted in reduced eNOS and
nitric oxide production [74]. Poldip2−/− mice are embryonic lethal [75], however, Poldip2+/− mice
exhibited reduced blood perfusion to the lower hindlimb, associating with reduced capillary density,
macrophage infiltration, and ~44% reduction in H2O2 production in gastrocnemius muscle after
ischaemic injury [38]. The authors proposed that new collaterals and maintenance of new vascular
networks were dependent on POLDIP2, since Poldip2+/− mice displayed regressed vasculature [38].
Using the porcine small intestine submucosa implant model of angiogenesis, Poldip2+/− mice also had
reduced endothelial invasion by approximately 50%. Collectively, these demonstrate the importance
NOX-2 and -4 and their subunits in angiogenic responses in vivo.

3.6. NOX-Mediated Perivascular Cell Processes Contributing to Vessel Stability

Perivascular cells including pericytes and VSMCs, play important roles in the stability of new
blood vessels. Stabilization and maturation of the newly-formed vessels is achieved by the activation,
proliferation, and recruitment of these cells, which wrap around the EC-tubes, providing support and
maintenance [76–78]. Pericytes closely associate and are in direct contact with small vessels such as
capillaries or microvasculature, whereas VSMCs wrap around larger arteries and veins, however, they
are separated by an extracellular matrix and are not in direct contact with the endothelium [79].

NOX-4 was identified as the main source of ROS in human brain pericytes, since NOX-4 RNAi,
but not rotenone, L-Name, or oxypurinol inhibited ROS production [80]. Importantly, silencing NOX-4
also blocked basal proliferation of these cells [80]. While this study implicates NOX-4-mediated ROS
on pericyte proliferation, the majority of work involving NOX isoforms in regulating proliferation and
migration in perivascular cells comes from VSMCs. For example, NOX-1 expression was increased
within 3 d after carotid artery ligation in Sprague Dawley rats, associating with elevated O2•– in vessels
derived from intimal and medial VSMCs [81]. The role of NOX-1-induced ROS in VSMC proliferation
and migration in vivo was further confirmed using mice with global NOX-1 deletion (Nox1−/y), or mice
expressing NOX-1 specifically in VSMCs (TgSMCnox1) [82]. Nox1−/y, but not TgSMCnox1 mice had reduced
intimal thickening in response to femoral artery wire injury [82]. The role of NOX-1 was further
characterized in VSMCs isolated from aortas of wildtype, Nox1−/y and TgSMCnox1 mice. Importantly,
TgSMCnox1 VSMCs exhibited increased PDGF-induced O2•– production, associating with increased
growth rate and migration [82]. Multiple factors have been shown to regulate VSMC processes
via NOX. These include epidermal growth factor receptor [83], FGF-2 [84], AngII [85], and the
plasminogen/plasmin system; important in blood coagulation and known to participate in vascular
remodeling [86]. Of note, uPA-inducible ROS ranged from 20 to 80 nmol/L in VSMCs; and using
pharmacological or molecular approaches, inhibition of NOX-1 significantly reduced ROS generation
and aortic VSMC proliferation [86]. Reports suggest NOX-2 is expressed in VSMCs [87,88], however,



Antioxidants 2017, 6, 56 7 of 14

its role in processes relating to angiogenesis is not fully defined, whereas, NOX-4 has been implicated.
For example, silencing NOX-4 reduced human VSMC proliferation and increased senescence [89],
implicating a role for NOX-4 in VSMC growth. NOX-4 also stimulated VSMC differentiation [90],
and affected VSMC integrity and migration, in part via POLDIP2 [91]. Here, silencing POLDIP2
reduced intracellular O2•– and H2O2, as well as POLDIP2, NOX-4, and p22phox protein expression,
with marked reduction in the localization of these proteins to focal adhesions in rat thoracic aortic
VSMCs [92]. Of note, silencing NOX-4 had a similar effect on cytoskeletal integrity [92]. Consistent with
these, Poldip2+/− mice had reduced VSMC content in ischemic skeletal muscle, suggesting impaired
VSMC remodeling in response to hindlimb ischemia [38]. Finally, reports linking NOX-5 to VSMC
proliferation have been described [93]. SiRNA to NOX-5 significantly reduced PDGF-induced O2•–

production, from ~800 to 500 pmol/mg protein (as assessed by 2-hydroethidium and HPLC) and
VSMC proliferation via the janus kinase (JAK)/signal transducer and activator of transcription (STAT)
pathway [93]; however, the precise mechanisms for this are unknown. Collectively, these studies
provide insight into NOX signaling in perivascular cell processes related to angiogenesis. More
studies are required to understand the role of NOX in differentiation, proliferation, and migration of
perivascular cells, and how they may contribute to vessel stability in angiogenesis.

4. NOX—Lessons from the Clinic

PAD is often a consequence of atherosclerosis, and NOX-derived oxidative stress has been linked
to lesion progression [94–97]. Of note, pharmacological inhibition of NOX can block ROS production,
thereby reducing atherosclerotic activity and disease progression in preclinical models [98,99].
These suggest that drugs targeting NOX may be beneficial in atherosclerosis and in people with PAD.
Importantly, NOX subunit p22phox expression was increased in atherosclerotic vs. non-atherosclerotic
arteries [100]. NOX-2 and NOX-4, but not NOX-1 were found to be abundant in diseased arteries,
correlating with atherosclerosis severity [101]. The first evidence of NOX as a major source of O2•– in
atherosclerotic blood vessels was described by Guzic et al. (2000) [102]. This has since been confirmed
by others, where O2•– was localized to coronary arteries and increased in atherosclerotic plaque
shoulders, associating with NOX-2, p22phox, and to some extent, NOX-4 expression [101]. Notably,
NOX-2 and p22phox mRNA was increased with the severity of disease [101]. Differential expression
of NOX isoforms dependent on the vessel bed have also been described, with veins expressing more
NOX-2 and p22phox, and arteries expressing more NOX-4 [103] Importantly, a strong correlation
between O2•– production with p22phox and NOX-4; NOX activity and endothelial dysfunction was
observed [103]. Very little has been described in relation to PAD, with one study showing increased
plasma NOX-2 associating with impaired endothelial function [104]. Interestingly, dark chocolate,
reduced markers of oxidative stress including circulating NOX-2, and improved walking autonomy
in patients with PAD diagnosed with intermittent claudication [105]. While these studies suggest
that NOX isoforms may be important mediators of ROS in artery dysfunction and cardiovascular
diseases, evidence that NOX-mediated ROS increases atherosclerotic risk in people is still lacking or
controversial e.g., in chronic granulomatous disease, an X-linked immune-deficiency disease caused
by mutation in one or all NOX-2 components. While, these patients have profound bacterial and
fungal infection due to the inability to eliminate foreign pathogens [106,107], they have reduced
carotid atherosclerosis [108], raising questions of the in vivo role of NOX-2 in CVD. The role of NOX
isoforms in angiogenesis in vascular diseases are also unclear. As such, more studies are needed to
fully elucidate the role of NOX-mediated ROS in vascular disease.

5. Conclusions

PAD can lead to gangrene and potential limb amputation. While current treatments include
lifestyle changes and stent placement, a new approach is to increase vascularization in the affected
limb by targeting ECs and stimulating angiogenesis. At physiological levels EC-derived ROS
is pro-angiogenic. In vitro studies have implicated NOX in important stages of angiogenesis;
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proliferation, sprouting, migration, and tubule formation. Furthermore, pre-clinical in vivo studies
have confirmed the importance of NOX family members in reperfusion after hind limb ischemia.
Crucially, clinical investigations have shown changes in NOX expression in the vessels of patients
diagnosed with PAD, suggesting these isoforms may be beneficial as therapeutic targets. Increasing
our understanding of the mechanism(s) regulating NOX-induced angiogenesis will be highly beneficial
in the development of treatments to increase both lifespan and life quality for patients with PAD.
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