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A B S T R A C T

Background: At present, the application of fNIRS in the field of brain-computer interface (BCI) is being a hot topic.
By fNIRS-BCI, the brain realizes the control of external devices. A state-of-the-art BCI system has five steps which
are cerebral cortex signal acquisition, data pre-processing, feature selection and extraction, feature classification
and application interface. Proper feature selection and extraction are crucial to the final fNIRS-BCI effect. This
paper proposes a feature selection and extraction method for the mental arithmetic task. Specifically, we modified
the antagonistic activation pattern approach and used the combination of antagonistic activation patterns to
extract features for enhancement of the classification accuracy with low calculation costs.
Methods: Experiments are conducted on an open-acquisition dataset including fNIRS signals of eight healthy
subjects of mental arithmetic (MA) tasks and rest tasks. First, the signals are filtered using band-pass filters to
remove noise. Second, channels are selected by prior knowledge about antagonistic activation patterns. We used
cerebral blood volume (CBV) and cerebral oxygen exchange (COE) of selected each channel to build novel at-
tributes. Finally, we proposed three groups of attributes which are CBV, COE and CBV þ COE. Based on attributes
generated by the proposed method, we calculated temporal statistical measures (average, variance, maximum,
minimum and slope). Any two of five statistical measures were combined as feature sets.
Main results: With the LDA, QDA, and SVM classifiers, the proposed method obtained higher classification ac-
curacies the basic control method. The maximum classification accuracies achieved by the proposed method are
67.45 � 14.56% with LDA classifier, 89.73 � 5.71% with QDA classifier, and 87.04 � 6.88% with SVM classifier.
The novel method reduced the running time by 3.75 times compared with the method incorporating all channels
into the feature set. Therefore, the novel method reduces the computational costs while maintaining high clas-
sification accuracy. The results are validated by another open-access dataset including MA and rest tasks of 29
healthy subjects.
1. Introduction

The current brain-computer interface (BCI) systems are divided into
two categories according to different ways of detecting and measuring
brain activity. One is invasive technology, and the other is non-invasive
technology. Invasive BCIs place electrodes in the cerebral cortex where
they interact directly with neurons. This method requires invasive sur-
gery on the subject and requires a well-established medical condition.
Subjects are also at risk for possible post-surgical infection [1]. Electro-
corticography (ECoG) has gained more use due to its partially invasive
nature, which requires only the electrode array to be placed within the
skull and directly above the cortex. The advantages are low demanding
conditions for the surgery and a reduced risk of infection [2, 3, 4, 5].
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However, invasive BCIs techniques still face significant challenges for
subjects compared to non-invasive techniques [6, 7, 8]. Non-invasive
BCIs are free of surgical risks, medical limitations. Therefore, it gained
wider adoption. Non-invasive BCIs record electrophysiological signals or
hemodynamic response signals. The technique that uses electrophysio-
logical signals is electroencephalography (EEG), which records the
electrical signals generated by the neuronal activity of the brain [9, 10].
Non-invasive BCI for recording hemodynamic responses uses functional
neuroimaging techniques, for example, functional magnetic resonance
imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) [11,
12, 13, 14]. fMRI and fNIRS capture the changes in oxygen concentration
in the blood consumed by neuronal activity in the brain and indirectly
record neuronal activity. Besides the two above, Non-invasive BCI
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Figure 1. Innovation points of the proposed method (b) compared with the basic method (a) are highlighted in red font. Both the proposed method and the basic
method use the same preprocessing method to filter clutter. The proposed method uses vector phase analysis to enhance the classification performance of the features
extracted based on the antagonistic activation pattern. The features in the basic method are statistical measures calculated from the traditional signals (HbO and HbR)
obtained by averaging all channels.
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techniques include magnetoencephalography (MEG) and positron emis-
sion tomography (PET). MEG directly measures the weak bio-magnetic
signals emitted by neural currents in the brain [15, 16, 17, 18, 19].
PET uses an isotope-labeled drug called the imaging agent that is injected
into the body to study the pharmacokinetics of the tracer molecule. The
aggregation of imaging agents in the brain can be obtained by detectors
set around the brain. There are brightly displayed areas of highmetabolic
rate and darkly displayed areas of low metabolic rate on PET [20, 21].
Hybrid BCIs have also been used in recent studies, where hybrid BCI
means a combination of two or more technologies (i.e. fNIRS, fMRI, EEG,
MEG, PET or other techniques). Hybrid BCI can take different combi-
nations of techniques depending on the characteristics of the brain ac-
tivity elicited by a particular task [22, 23, 24, 25]. Among the
non-invasive techniques, EEG and fNIRS are widely used in BCI sys-
tems because they have lower costs and better temporal and spatial
resolution [26]. fNIRS and EEG are safer, more reliable, less costly and
more portable compared to fMRI. fNIRS indirectly detects brain activity
by measuring changes in the concentration of hemoglobin oxygenated
(HbO) and deoxygenated hemoglobin (HbR). Since fNIRS measures
directly on the scalp via a near-infrared light emitter and optical sensor, it
is more robust to noise and electromagnetic interference [27, 28, 29, 30].

The BCI system requires subjects to perform a designed experimental
task and decodes the subject’s brain responses. The experimental tasks
most frequently used to complete BCI decoding include mental arith-
metic (MA), motor execution and motor imagery. The decoding re-
searches of mental arithmetic and resting-state two-classification tasks
started earlier and a lot of decoding methods have been proposed. The
decoding of mental arithmetic tasks and resting tasks provides inputs for
the BCI system to control rehabilitation robots and drone equipment to
meet the use needs of human. A state-of-the-art BCI system has five steps
which are cerebral cortex signal acquisition, data pre-processing, feature
selection and extraction, feature classification and application interface.

One of the challenges faced by fNIRS-based BCI systems is the se-
lection of a suitable brain region for feature extraction. There is no
consensus on choosing which regions to aim for a specific task. Recent
studies have shown that proper filtering signal channels that have little
relevance to trial tasks about MA can improve classification accuracies.
Arcara et al compared the brain activity of the participants and divided
their responses into fast and slow [31]. Analysis of the entire brain
indicated that the rapid response has a higher degree of activation in the
right dorsolateral prefrontal cortex. The results showed that although the
left and right parietal cortex differ in the time of participation, these two
areas have contributed to solving MA problems. Pfurtscheller et al
investigated antagonistic activation patterns, which showed HbO has a
focal bilateral increase in the dorsolateral prefrontal cortex (DLPFC) and
simultaneously an HbO decrease in the medial area of the anterior
2

prefrontal cortex (APFC) [32]. Bauernfeind et al used the antagonistic
HbO features recorded by two channels over the prefrontal cortex to
detect the focal antagonistic hemodynamic response pattern during MA
tasks and increased the classification accuracies [33]. Those works
inspired us that a prior knowledge can help us find channels that are
highly relevant to the type of trial tasks, allowing us to achieve high
accuracies with a few feature dimensions.

The antagonistic activation pattern approach proposed by Pfurtsch-
eller et al found an antagonistic relationship between DLPFC and APFC.
Bauernfeind et al applied antagonistic activation patterns in the field of
BCI decoding, but the obtained classification accuracy was not high
(79.69%). Based on the research of Bauernfeind et al, this paper proposes
a novel feature extraction method aiming for improving classification
accuracies of two-classification BCIs that decode MA tasks and rest pe-
riods. We tested the proposed method with an open-access fNIRS data set
[33]. In the proposed method, we gathered channels that may be sensi-
tive to mental arithmetic tasks and are involved in the antagonistic
activation pattern approach, instead of screening for channels with the
best classification accuracy per subject as in the method of Bauernfeind
et al. The benefit of this approach is that it does not require a separate
optimization strategy for each subject, which makes the antagonistic
activation pattern approach more robust. Furthermore, our method re-
duces the number of channels compared with the method to incorporate
all channel information into the feature set. The decoding accuracy of our
method may be lower. To maintain high decoding accuracy while
reducing the number of channels, we introduce a vector-based phase
analysis (VPA) method (more explanation in next section). VPA was
proposed by Yoshino et al [34]. Nazeer et al applied it to improve BCI
decoding accuracy [35]. We used VPA to compute features of channels
selected by antagonistic activation patterns. The integrated procedure of
the basic method and the proposed method includes four steps shown in
Figure 1 (a) and (b). The novelty of our work is the combination of
vector-based phase analysis and antagonistic activation patterns. We
wish the novel method to realize high classification accuracies with low
calculation costs.

In the second section of our paper, we describe the details of the data
used for this study, which include subject information, experimental
paradigm, channel configuration, and signal acquisition. In section three,
the method is described, which includes signal pre-processing, the novel/
basic feature extraction method, normalization, classification, and sta-
tistical analysis. Section four describes the classification accuracy results
and running time results obtained by the novel method and the control
method groups, and the results of the statistical analysis. The fifth section
interprets the results and compares the results with the findings obtained
from similar studies. We also point out the limitations of this paper. The
last section concludes the whole paper.



Figure 2. Each subject included 3 or 4 sessions. Each session consisted of a 10-sec initial state and followed trials with 6 repetitions. Each trial included a 12-sec
mental arithmetic task and a 28-sec of rest task. X denotes signal recorded by fNIRS equipment, i the number of trials.

Figure 3. Channels positions are overlaid on a Mon-
treal Neurological Institute (MNI) -152 system
compatible canonical brain which is optimized for
NIRS analysis. The lowest line of channels is arranged
along FP1–FP2 line of the international EEG 10–20
system, with channel 48 exactly at FP1 position. Red
circles are near-infrared light sources, blue circles are
the detector and green blocks constitute measurement
channels. Bilateral dorsolateral prefrontal cortex
(DLPFC) and the anterior prefrontal cortex (APFC) are
defined by Brodmann area and are circled in red
rectangles in the figure. (Note: this figure is drawn
with reference to the literature [32].)
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2. Materials

2.1. Subjects and experimental paradigm

For the present investigations, we used an open-access dataset of
eight participants (three males, five females, mean age 26 years, stan-
dard deviation 2 years) during the performance of MA tasks. This
experience used block design. In periods of the initial state, the screen
kept blank and subjects remained relaxed. Two seconds before the task
started, a green bar appeared. After the cue (e.g., 97–4), Subjects were
asked to subtract a single digit from a two-digit number within 12 s as
soon as possible, and then had a 28-second rest period (Figure 2).
Subjects repeated the above experiment 18 or 24 times (subjects S01,
S02 and S03 are 18 trials, and subjects S04, S05, S06, S07 and S08 are
24 trials).
Table 1. According to the Channel number and corresponding MNI coordinates,
we estimated the location of cortical surface of each ROI (Note: this table is
drawn referring to the paper [39].)

ROI Channel Cortical areas

x y z

1. Anterior prefrontal cortex (APFC) 46 23 72 8

47 -8 73 6

48 -31 66 3

2. Left dorsolateral prefrontal cortex (Left DLPFC) 18 -51 23 41

28 -47 39 28

29 -61 11 28

3. Right dorsolateral prefrontal cortex (Right DLPFC) 13 48 31 42

23 57 26 29

24 45 62 29

3

2.2. Channel configuration and signal acquisition

The dataset was collected through a continuous-wave fNIRS system
(ETG-4000, Hitachi Medical Co., Japan). This equipment consists of 52
channels that are produced by 16 photo-detectors and 17 light emitters
(3 � 11 grid). The placement of channels is shown in Figure 3 [33]. An
emissions detector split from cortical areas of approximately 3 cm is
proposed to measure hemodynamic reaction signals. The fNIRS system
collects prefrontal cortex signals at a fixed sampling frequency of 10 Hz.
The wavelengths used for the instrument are 695 nm and 830 nm,
respectively.

3. Methods

3.1. Signal preprocessing

For the fNIRS raw signal processing, evaluations were carried out
using modified Beer-Lambert law (MBLL) to measure the concentration
changes in HbO and HbR.

�
ΔHbOðtÞ
ΔHbRðtÞ

�
¼

�
ΔαHbOðλ1Þ ΔαHbRðλ1Þ
ΔαHbOðλ2Þ ΔαHbRðλ2Þ

��1 ΔAðt; λ1Þ
ΔAðt; λ2Þ

l� d
(1)

In Eq. (1), l is the source and detector distance. d is the curved path
length factor. A(t, λ1) and A(t, λ2) are the absorptions at two different
light source wavelengths of λi (where i ¼ 1, 2). ΔαHbO (λ) and ΔαHbR (λ)
are HbO’s and HbR’s extinction coefficients. ΔHbO (t) and ΔHbR (t) are
the changes in concentration of HbO and HbR respectively.

HbO and HbR data include instrumental noises and physiological
noises, which consist of blood pressure (Mayer waves), respiration
(0.3–0.5 Hz), heartbeat (1–1.5 Hz), and artifacts. Therefore, signals were
filtered using the fourth-order 0.01–0.1 Hz band-pass Butterworth filter
to remove low and high frequency noises.



Figure 4. HbO and HbR form a set of orthogonal planes, and this plane is
rotated 45� counterclockwise to obtain another set of orthogonal planes
composed of CBV and COE. The plane generated by VPA shows eight phases.
The dotted circle shows the maximum value of the baseline signal from the
resting state.

Table 2. In this paper, five statistical measures were
used, and we completed the calculations using the
corresponding functions in MATLAB®.

Statistical measures Functions

Average mean

Variance var

Maximum max

Minimum min

Slope polyfit
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3.2. Proposed method

3.2.1. Channel selection
We referred to the study of Pfurtscheller et al [32]. According to

Brodmann area, they found that simple MA caused a relative focal
bilateral increase of HbO in DLPFC in parallel with a decrease in the
medial area of APFC. We used an arithmetic expression to devise our
filter.

Csðx; y; zÞ¼
�2 CR; if ðx; y; zÞ 2 SROI
62 CR; if ðx; y; zÞ 62 SROI

(2)

In formula (2), CS denotes a set of signal values of HbO and HbR
before filtering. CR is a set of processed signal values of HbO and HbR. x, y
and z are channel’s Montreal Neurological Institute (MNI) space co-
ordinates. SROI is a scope presented by MNI-space coordinates of regions
of interest (ROI). In the open-access dataset that we adopted, MNI-
coordinates of channel that our paper included are given in Table 1.
We chose 9 channels to extract features using VPA. Channel average was
not performed in these 9 channels.

3.2.2. Vector-based phase analysis
In order to solve the question that fNIRS-BCIs have an inherent delay

in the current fNIRS-BCI research, VPA is proposed for detecting initial
dips produced by brain activity [36, 37, 38, 39, 40, 41]. As shown in
Figure 4, HbO and HbR signals defined an orthogonal vector coordinate
plane. And then, we defined another orthogonal plane composed of CBV
and COE. There was an inclination angle of 45� counter-clockwise be-
tween this plane and the previous plane. CBV and COE are calculated
according to Eqn 3 and 4.

CBV ¼HbOþ HbRffiffiffi
2

p (3)

COE¼HbR� HbOffiffiffi
2

p (4)

In addition, there were two attributes in VPA, which are the magni-
tude (|L|) and the phase angle (k). |L| and k are calculated according to
Eqn 5 and 6.

jLj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HbO2 þ HbR2

2

r
(5)
4

k¼ tan�1 COE
CBV

(6)

� �

The dashed circles in Figure 4 represent thresholds that distinguish
between rest tasks and MA tasks, with the threshold value taken as the
maximum value of the signal in the resting state. Channel values higher
than the threshold are in the active state, while channel values below the
threshold are in the resting phase. The whole vector plane was divided
into eight phase angles, where phases one to five are the phases that
produce the initial inclination, and in those phases, HbR or COE shows an
increase. Phases six to eight are the hemodynamic response region,
where HbR and COE show a decrease. We used two attributes (i.e. CBV
and COE) to execute statistical calculations in each trial. The reason for
which CBV and COE were chosen is that in the study of Nazeer et al, the
CBV þ COE achieved maximum accuracies with minimum feature di-
mensions [35].

3.2.3. Statistical measures
In this paper, we chose five widely used statistical measures which are

average, variance, maximum, minimum and slope calculated in temporal
dimension [42, 43, 44, 45, 46].

Average is the signal average, which is the sum of all data values
divided by the number of all data. Average is calculated according to
formula (7).

X¼1
n

X
X (7)

where X denotes the signal value, n the number of data, X the average of
the samples.

Variance is a measure that reflects the degree of dispersion of a set of
data. Variance formula is shown in formula (8).

S2 ¼
P ðX � XÞ2

n� 1
(8)

where X denotes the signal value, X the average of the signal value, n the
number of data, S2 the variance of the sample data.

Maximum (or minimum) is the maximum (or minimum) signal
amplitude within the MA (/rest period) trial time window.

Slope reflects the coefficient of the first-order term of the first-order
function fitting to the temporal fluctuation of signals. We used all data
points of MA and rest periods to fit.

We used MATLAB® (version: R2019a) to achieve the above five sta-
tistical measures. The functions involved in this paper are shown in
Table 2. We used two statistical measures of nine channels, therefore
total feature dimensions are 9 � 2 ¼ 18 for CBV and COE and the total
feature dimensions of CBV þ COE are 9 � 2 � 2 ¼ 36.
3.3. Basic method

As a comparison group, we calculated another set of features by the
basic method. First, we averaged HbO and HbR of all channels. Second,
signals were calculated on the time level using statistical measures.
Third, any two of the five statistical measures that were used in the



Figure 5. Averaged HbO (a) and HbR (b) with standard deviation means all
channels in the time domain. Averaged CBV and COE with standard deviation
come from three regions of interest (ROIs) (A, B and C). According to Brodmann
area, ROI1 (A) is located approximately in the right dorsolateral prefrontal
cortex (DLPFC). ROI2 (B) is located approximately in the left DLPFC. ROI3 (C) is
located approximately in the medial area of anterior prefrontal cortex (APFC) (c,
d, e) are averaged CBV with standard deviation and (f, g, h) are averaged COE
with standard deviation. Above signals extract from trial 1 of subject S05.
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proposed method formed a set of feature groups. We proposed three
groups of features for HbO, HbR as well as HbO þ HbR, separately.
Therefore, total features are 2, 2 and 4 for HbO, HbR and HbO þ HbR.
The method of extracting the basic features is popular in current studies,
considering the influence of every channel on classification and avoiding
an increase in computational complexity.

3.4. Other methods

We used a combination of the VPA features and the method aver-
aging all channels as Hybrid Method 1 and a combination of the
traditional features and antagonistic activation pattern approach as
Hybrid Method 2. In addition, to further verify how effective the pro-
posed method is in reducing the number of channels while improving
the classification accuracies, we also designed an additional experiment
with the VPA method to extract the features of all channels, called
Hybrid Method 3. We used 4 control groups to compare with the novel
method.

3.5. Normalization

For eliminating the effect of dimensions on the convergence rate, the
feature values obtained by five methods were scaled by a normalization
process. We applied formula (9) to achieve normalized scaling to the
features within each subject:

X
0 ¼ X � Xmin

Xmax � Xmin
(9)

where X0 is the scaled feature, X the unscaled feature, Xmax the maximum
of the column feature, Xmin the minimum of the column feature.

3.6. Classification

Linear Discriminant Analysis (LDA), quadratic discriminant analysis
(QDA) and support vector machine (SVM) have been verified in the data
sets we used. We used 5 times 10-fold cross-validation to estimate of
performance classification of five methods. The entire dataset was first
divided into 10 roughly equal parts. Nine out of ten parts were used in
turn as the training set and the remaining one as the prediction set for
testing.

3.6.1. Linear Discriminant Analysis (LDA)
Due to low computational costs and high speed, LDA is often used as a

classifier in fNIRS-BCI [47, 48, 49, 50, 51]. The basic idea of LDA is to
project the data in low dimensions with the goal that the distance within
a class is as close as possible and the distance between the classes is
maximized to realize the classification. The specific method is to maxi-
mize the ratio of the variance between classes and minimize the ratio of
variance within classes.

3.6.2. Quadratic discriminant analysis (QDA)
QDA is a generalization of LDA. QDA presupposes that the classifi-

cation labels are two classes and that the measurements obey a normal
distribution. The difference with LDA is that QDA estimates a covariance
matrix for each class. In addition, the surface used to separate the sub-
spaces is a conic section. Thereby QDA enables the classifier to perform
more effectively and enhances classification accuracies [52].

3.6.3. Support vector machine (SVM)
SVM is a binary classification model. It is widely used in fNIRS-BCI

because SVM performs well in classifying high-dimensional features
and SVM is able to handle nonlinear problems by applying kernel tricks.
In this paper, we used radial basis function (RBF) kernel function. The
reason is that we found that using RBF kernel achieves higher classifi-
cation accuracy compared to other kernel functions (e.g., linear kernel
5

function) for both the benchmark methods and the proposed method. We
used a penalty parameter C ¼ 100 and parameter gamma was 1. The
MATLAB® tool libsvm was used for achieving SVM with RBF kernel.



Table 3. We used diagLDA, diagQDA and SVM to classify novel features and basic features. The bold stands for the average and standard deviation of maximum
accuracies achieved by each feature group.

CBV þ COE CBV COE HbO þ HbR HbO HbR

diagLDA

average variance 63.45 � 16.49 62.43 � 15.87 61.92 � 18.0 57.88 � 12.01 59.56 � 7.53 55.96 � 14.21

average minimum 62.3 � 15.82 58.92 � 15.39 63.55 ± 13.64 53.89 � 12.63 56.05 � 11.74 52.51 � 10.5

average maximum 62.13 � 19.57 64.23 � 14.48 56.96 � 19.38 59.13 � 12.4 59.38 � 7.82 56.4 � 14.73

average slope 60.97 � 10.58 60.22 � 10.77 60.4 � 10.29 53.55 � 11.56 53.83 � 10.07 49.7 � 13.97

variance minimum 62.67 � 15.08 61.45 � 14.74 63.01 � 14.11 55.13 � 16.02 55.55 � 12.13 53.96 � 13.24

variance maximum 63.2 � 17.13 67.45 ± 14.56 57.93 � 17.2 58.79 � 12.48 59.66 ± 9.63 55.2 � 15.27

variance slope 64.61 ± 14.17 64.18 � 13.58 63.03 � 11.45 59.29 � 10.83 58.21 � 9.42 57.18 � 14.33

minimum maximum 63.99 � 16.32 65.71 � 14.01 60.29 � 15.73 56.55 � 14.47 57.7 � 12.03 54.33 � 15.32

minimum slope 63.31 � 11.64 62.11 � 14.54 63.3 � 10.19 55.26 � 13.15 56.39 � 11.39 53.79 � 11.59

maximum slope 63.35 � 14.21 64.36 � 14.41 59.72 � 13.02 61.19 ± 10.7 59.54 � 8.24 58.83 ± 14.98

diagQDA

average variance 88.83 � 5.9 83.12 � 12.34 89.19 � 5.54 76.68 ± 6.96 68.91 � 6.31 69.5 ± 9.1

average minimum 89.73 ± 5.71 85.97 ± 7.86 89.37 ± 6.32 75.01 � 5.7 68.45 � 4.6 67.71 � 8.66

average maximum 89.35 � 4.12 81.84 � 12.63 88.24 � 5.36 76.03 � 7.6 69.65 ± 7.66 71.34 � 8.63

average slope 87.64 � 5.99 83.74 � 6.32 87.03 � 5.8 72.77 � 7.93 69.0 � 7.08 67.29 � 9.96

variance minimum 62.27 � 14.64 60.8 � 14.2 62.86 � 11.39 55.11 � 12.01 55.46 � 8.31 53.35 � 11.3

variance maximum 63.23 � 15.71 65.52 � 13.59 61.14 � 12.81 59.15 � 10.54 59.2 � 8.2 55.6 � 12.58

variance slope 66.98 � 14.11 67.22 � 12.71 64.77 � 10.17 62.43 � 11.63 61.04 � 8.82 58.65 � 14.09

minimum maximum 64.12 � 13.91 63.5 � 14.34 63.93 � 12.19 56.11 � 11.04 57.16 � 9.58 54.44 � 10.51

minimum slope 66.78 � 12.43 63.68 � 13.24 65.35 � 11.52 58.29 � 10.57 59.87 � 8.11 55.29 � 11.14

maximum slope 67.43 � 13.53 65.53 � 12.1 66.15 � 10.77 65.18 � 12.12 62.79 � 7.62 60.05 � 16.07

SVM

average variance 75.44 ± 11.34 79.2 � 11.92 81.74 � 9.66 58.58 � 16.52 51.6 � 12.61 48.63 � 15.73

average minimum 73.08 � 9.35 81.89 ± 9.12 79.55 � 8.81 52.01 � 14.52 45.56 � 13.73 39.91 � 11.47

average maximum 74.66 � 10.74 81.68 � 10.08 87.04 ± 6.88 61.95 ± 16.65 51.74 ± 13.29 49.68 � 16.24

average slope 71.11 � 9.49 77.98 � 6.33 79.73 � 6.0 53.36 � 11.96 46.82 � 12.2 37.64 � 9.94

variance minimum 61.53 � 20.25 62.65 � 15.73 65.31 � 15.59 49.61 � 17.63 46.29 � 16.71 45.8 � 13.65

variance maximum 65.19 � 15.83 61.99 � 14.04 65.44 � 14.94 53.51 � 19.68 48.41 � 18.13 50.87 ± 17.41

variance slope 63.53 � 19.53 64.44 � 13.96 63.9 � 14.12 53.97 � 15.44 49.65 � 16.04 48.39 � 17.29

minimum maximum 63.88 � 16.75 64.79 � 12.47 66.8 � 14.19 51.45 � 19.0 48.5 � 19.01 48.74 � 17.42

minimum slope 58.1 � 19.27 63.8 � 10.76 63.68 � 12.79 47.25 � 14.89 41.34 � 14.65 40.75 � 11.92

maximum slope 63.47 � 16.63 67.29 � 11.88 68.9 � 11.24 56.69 � 16.74 51.32 � 13.95 50.74 � 19.11
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3.7. Statistical analysis

We used paired sample t-tests to assess statistical differences. Given
the VPA features, we perform statistical significance analysis on the novel
method and Hybrid Method 2. Similarly, given the traditional features,
we perform statistical significance analysis on Hybrid Method 1 and the
basic method. On each classifier, we chose the maximum classification
accuracies.

4. Results

The averages of all channels of HbO and HbR are shown in Figure 5 (a
and b) and the averages of CBV and COE in 3 ROIs in the time domain are
shown in Figure 5 (c–h). The signals originated from the first trial of
subject 5. The basic method and proposed method extracted features
from the above signals. We measured average, variance, maximum,
minimum and slope in the temporal dimension of those signals.

We classified the features generated by the novel method and the
control method using diagLDA, diagQDA and SVM classifiers. The
average classification accuracies with diagLDA, diagQDA and SVM are
shown in Table 3 respectively. The maximum classification accuracies of
the proposed method using diagLDA, diagQDA and SVM classifiers are
67.45� 14.56%, 89.73� 5.71% and 87.04� 6.88%, respectively. While
the maximum classification accuracies of the basic method using the
above three classifiers are 61.19 � 10.7%, 76.68 � 6.96% and 61.95 �
16.65%, respectively. The maximum average accuracies obtained by
6

Hybrid Method 3 are 67.11 � 12.58% (diagLDA), 90.23 � 4.78% (dia-
gQDA) and 53.01 � 19.12% (SVM). The classification accuracies using
the novel method exceed the classification accuracies of the basic method
in all three classifiers and have classification accuracies close to those of
Hybrid Method 3.

We evaluated the algorithmic complexity of the novel method and
control methods. Due to the low time delay requirement of the BCI
decoding task, we focused on the time complexity of the algorithm. In
terms of file reading, feature calculation and extraction, the time spent by
the novel method and control methods is basically the same level, so the
main difference in time cost is focused on the training and prediction of
the classifier. We analyzed the three classifiers used separately. For an
LDA classifier, the time is usually O(ndt þ t3), where n is the number of
samples, d is the feature dimension and t ¼ min(n, d) [53]. For the QDA
classifier, the time complexity is O(vdn2 þ vn3(1/k þ 1/v)), where k is
the number of sample classes and v is the number of copies of the data to
be equally divided during cross-validation [54]. The time complexity of
the SVM classifier is not stable. For SVM whose kernel function is radial
basis, the algorithm complexity may be O(Ns

3þ Ns
2nþ Nsdnþ Nsd), O(Ns

3

þNsnþNsdnþNsd), O(Ns
2þNsdnþNsd) or O(dn2þNsd) [55]. Ns is the

number of support vectors. The algorithm complexity of SVM mainly
depends on the relative value of the number of support vectors and the
number of training sample points and whether the majority of support
vectors are on the upper boundary. From the above analysis, it can be
seen that the time complexity of classifier training and prediction largely
depends on the number of samples and feature dimension. When tested



Table 4.We completed the classification of all subject data
on the diagLDA, diagQDA and SVM classifiers to obtain the
running time of the program.

Methods Running time (s)

The novel method 24.712152

The basic method 14.445573

Hybrid Method 1 26.750237

Hybrid Method 2 14.261240

Hybrid Method 3 92.756068
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on the same dataset, the novel method and control methods have the
same number of samples, so the time complexity is mainly related to the
feature dimension. The feature dimension of the novel method is the
same as that of the hybrid method 1, lower than that of the hybrid
method 3 and higher than that of the hybrid method 2 and the basic
method. Therefore, the time complexity of the novel method is at the
same level as Hybrid Method 1, lower than Hybrid Method 3 and higher
than Hybrid Method 2 and the base method. In addition, we also calcu-
lated the time cost of all methods using post-hoc statistical methods. We
Figure 6. We extracted the feature distribution of trial 1 of subject S01 from the bas
feature space.
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timed the processing of all trials (reading the data, training, prediction,
and exporting classification accuracies) for all 8 subjects. Under Win-
dows 10 operating system, MATLAB R2019a and Intel(R) Core (TM)
i7-6700HQ CPU environment, the program running times are shown in
Table 4. The basic method and Hybrid Method 2 are at the level of the
shortest computation time. The proposed method and Hybrid Method 1
are at the level of moderate computation time. Hybrid method 3 is at the
level of the highest computational time.

Figure 6 is a display of the experimental data and shows the two-
dimensional feature spaces of features generated by basic method (a)
and proposed method (b). All feature dimensions of the novel method
and the basic method are compressed on a two-dimensional feature space
consisting of maximum and average values. Compared with the basic
method, the novel method adds some feature dimensions. Figure 7 il-
lustrates statistical distributions of accuracies for each method using
diagLDA, diagQDA and SVM classifiers. By t-tests, we get the results that
the classification accuracies of the novel method are significantly higher
than that of Hybrid Method 2 (a–c) and the classification accuracies of
Hybrid Method 1 are significantly higher than that of the basic method
(d–f). Figure 8 shows maximum accuracies the novel method (a–c) and
the basic method (d–f) represented by confusion matrix with diagLDA,
e method and the proposed method. The feature distribution is shown in the 2D



Figure 7. The statistical difference between the novel method and Hybrid Method 2 (a, b and c) and between Hybrid Method 1 and the basic method (d, e and f) with
diagLDA, diagQDA and SVM classifiers are shown as boxplots (**: p < 0.01, *: p < 0.05).
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diagQDA and SVM classifiers. The validation sets have samples from 18
to 24 trials of each subject. Each subject performed a 10-fold cross-
validation with 5 repetitions. Each trial was used as a test sample and
was reused 5 times, so the number of test samples in the validation sets
per subject is 90 or 120. The total number of validation sets is 90 � 3 þ
120 � 5 ¼ 870. The three classifiers (diagLDA, diagQDA and SVM) use
the proposed method to obtain less misjudgment of labels than the basic
method, which presents that the proposed method achieves better clas-
sification in each category than the basic method.

4.1. Verification

We validate the proposed method on a publicly available dataset
[56]. This dataset contains the ΔHbO and ΔHbR signals for the mental
arithmetic task and the baseline task for 29 subjects. Each task consisted
of 30 trials. We used 10 repetitions of 5-fold cross-validation on the
8

samples on the LDA classifier. Applying the proposed method, we ob-
tained the maximum average accuracy of 72.26 � 4.64%. Using the
base method, we got the maximum average accuracy of 65.72 � 8.90%.
We used the VPA method to calculate all channel features and got the
80.40 � 7.42% maximum average accuracy. The program running time
of the proposed method, the base method and the method calculating
all channels VPA features under Windows 10 operating system, MAT-
LAB 2019a and Intel(R) Core(TM) i7-6700HQ CPU environment is 121
s, 63 s and 1754 s. Compared with the basic method, the proposed
method improves the accuracy by 6.54% (p-value < 0.05), and the
computational costs are 1.92 times that of the basic method. The novel
method has no enhancement than the VPA method calculating all
channel features, but its computational costs reduce 14.50 times than
that of the VPA method calculating all channel features. The proposed
method improves the accuracy without significantly increasing the
computational costs.



Figure 8. Confusion matrixes are shown using the best accuracies of total test sets for all subjects achieved by novel features (a) and basic features (d) with diagLDA,
achieved by novel features (b) and basic features (e) with diagQDA and achieved by novel features (c) and basic features (f) with SVM. The label “1” denotes rest
periods and the label “2” denotes MA.
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5. Discussion

In this study, we successfully extracted features using VPA from 3
ROIs which have a close association withMA to improve the performance
of classification. The proposed method is different from most other
studies that used the average of all channels or a specific channel value
and also does not employ the traditional HbO and HbR features [57, 58,
59, 60, 61, 62, 63]. This study shows classification accuracies are
enhanced by using the novel method compared to the basic method. As
Figure 7 shows, both VPA features and the antagonistic activation pattern
approach play a role in improving the classification accuracy. The results
are improved from 61.19 � 10.7% to 67.45 � 14.56% with diagLDA
classifier, and 76.68 � 6.96% to 89.73 � 5.71% with diagQDA classifier,
and 61.95� 16.65% to 87.04� 6.88%with SVM classifier. It can be seen
from Table 4 that our proposed method effectively reduces the compu-
tational time complexity compared with the hybrid method 3. The novel
method reduces the running time by 3.75 times compared with the
hybrid method 3 while maintaining high classification accuracy. These
results are also confirmed using another publicly available dataset.

In order to evaluate the findings of this work, the results of the pro-
posed method are compared to a reported by Bauernfeind et al using the
same dataset [64]. They employed SVM to achieve 86.6 � 7.3%
maximum accuracies with 52 feature dimensions. In the recent literature,
such type of report achieved 93.26% maximum classification accuracies
using the same dataset with SVM classifier, but they used 832 feature
dimensions of 104 channels [65]. When the number of channels is 72, the
accuracy that they achieved is 86.99%. The results are lower than the
accuracies achieved by the feature group of CBV þ COE using SVM
(87.04 � 6.88%) and the feature dimensions (36 dimensions) that we
used is less than theirs. Because the research using the same dataset is not
enough, we glean some papers using other datasets. In another study of
distinguishing MA and REST with a different dataset, they extracted
9

Hilbert transform and summed derivative features [66]. Finally, they
achieved 84.94% classification accuracy. The paper of Aydin et al ac-
quired 88.67% accuracies for a MA dataset [67]. In their study, they used
stepwise regression analysis based on sequential feature selection and
ReliefF methods to optimize subject-specific feature subsets. The average
number of subjects’ channels is 18.9. Therefore, our proposed method
achieved good accuracies with less feature dimension. The low feature
dimension is able to achieve a decrease of calculation costs when the
algorithmic complexity of classifiers is related to the feature dimension.

This finding suggests two possible reasons. One of reason is that
channel selection based on antagonistic activation patterns probable re-
duces the number of irrespective features. The other reason is when we
used the features extracted by VPA, the classification performance of
features based on antagonistic active patterns may be enhanced, which
be explained as CBV and COE possibly include more information about
changes in oxygen metabolism. The above two factors bring on classifi-
cation accuracy improvement and exclusion of the features that have few
effects on the classification accuracy.

The limitations of this study are as follows. we utilized prior knowl-
edge about antagonistic active patterns to experiment with two classifi-
cations between MA tasks and rest periods, while the current trend about
BCI systems is towardsmulti-level classification. The next step is to aim at
other specific tasks, such as motor imagination or motor execution, to
establish a feature extraction strategy including ROIs involving motor
imagination and motor execution.

6. Conclusion

This paper aims to assess the performance of a novel method for
enhancing classification accuracies with low calculation costs. We used
the antagonistic activation patterns to select features and calculated two
new features using VPA, which are considered potentially to contain
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more information about blood oxygen changes. Compared with methods
as control groups in this paper, the proposed method obtained high
classification accuracies with low calculation costs. In comparison with
other similar studies, the accuracy achieved by our proposed method is
also at a high level. The feature dimensions of our proposed method are
lower than the results of the papers used as comparisons.
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